Testing the Robustness of a Physically-Based Hydrological Model in Two Data Limited Inland Valley Catchments in Dano, Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observed Hydrological and Meteorological Data
2.3. Methods
2.3.1. Hydrological Modeling
2.3.2. Model Performance Estimation
2.4. Spatial Transposability of the Hydrological Model
3. Results and Discussion
3.1. Calibration and Validation of the Bankandi-Loffing Model
3.1.1. Model Performance
3.1.2. Water Balance
3.2. Transfer of Bankandi-Loffing Parameters to the Mebar Model without Recalibration
3.3. Recalibration and Validation of the Mebar Model
3.4. Comparing Water Balance between Bankandi-Loffing and Mebar
3.5. Transferred Model Parameter Values
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Denis, S.; Gapia, M.; Pokam, W.; Losembe, F.; Mfochivé, O. The Link between Forest, Water and People: An Agenda to Promote in the Context of Climate Change in Central Africa. In Nature and Faune: Managing Africa’s Water Resources: Integrating Sustainable Use of Land, Forest and Fisheries; Bojang, F., Ndeso-Atanga, A., Eds.; FAO: Accra, Ghana, 2012; pp. 48–51. Available online: http://www.fao.org/africa/publications/nature-and-faune-magazine/ (accessed on 3 June 2019).
- Schmengler, A.C. Modeling Soil Erosion and Reservoir Sedimentation at Hillslope and Catchment Scale in Semi-Arid Burkina Faso. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2011. Available online: http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert (accessed on 17 October 2019).
- Braman, L.M.; Van Aalst, M.K.; Mason, S.J.; Suarez, P.; Ait-Chellouche, Y.; Tall, A. Climate Forecasts in Disaster Management: Red Cross Flood Operations in West Africa, 2008. Disaster 2013, 37, 144–164. [Google Scholar] [CrossRef] [Green Version]
- Cornforth, R. Overview of the West African. Weather 2011, 67, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Lebel, T.; Ali, A. Recent Trends in the Central and Western Sahel Rainfall Regime (1990–2007). J. Hydrol. 2009, 375, 52–64. [Google Scholar] [CrossRef]
- Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; De Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M. The AMMA-CATCH Gourma Observatory Site in Mali: Relating Climatic Variations to Changes in Vegetation, Surface Hydrology, Fluxes and Natural Resources. J. Hydrol. 2009, 375, 14–33. [Google Scholar] [CrossRef] [Green Version]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation and Vulnerability-Contributions of the Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Matterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar] [CrossRef]
- Nka, B.N.; Oudin, L.; Karambiri, H.; Paturel, J.E.; Ribstein, P. Trends in Floods in West Africa: Analysis Based on 11 Catchments in the Region. Hydrol. Earth Syst. Sci. 2015, 19, 4707–4719. [Google Scholar] [CrossRef] [Green Version]
- Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G. Impacts of Climate Change on Hydro-Meteorological Drought over the Volta Basin, West Africa. Glob. Planet. Chang. 2017, 155, 121–132. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Elagib, N.A.; Tjernström, M.; Zhang, Q. Characterization of the Sahelian-Sudan Rainfall Based on Observations and Regional Climate Models. Atmos. Res. 2018, 202, 205–218. [Google Scholar] [CrossRef]
- Tschakert, P.; Sagoe, R.; Ofori-Darko, G.; Codjoe, S.N. Floods in the Sahel: An Analysis of Anomalies, Memory, and Anticipatory Learning. Clim. Chang. 2010, 103, 471–502. [Google Scholar] [CrossRef]
- Descroix, L.; Mahé, G.; Lebel, T.; Favreau, G.; Galle, S.; Gautier, E.; Olivry, J.-C.; Albergel, J.; Amogu, O.; Cappelaere, B. Spatio-Temporal Variability of Hydrological Regimes around the Boundaries between Sahelian and Sudanian Areas of West Africa: A Synthesis. J. Hydrol. 2009, 375, 90–102. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Montanari, A.; Lins, H.; Koutsoyiannis, D.; Brandimarte, L.; Blschl, G. Flood Fatalities in Africa: From Diagnosis to Mitigation. Geophys. Res. Lett. 2010, 37, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Hiernaux, P.; Guichard, F.; Mougin, E.; Kergoat, L.; Arjounin, M.; Lavenu, F.; Koité, M.; Paturel, J.-E.; Lebel, T. Rainfall Regime across the Sahel Band in the Gourma Region, Mali. J. Hydrol. 2009, 375, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, B.; Karambiri, H.; Polcher, J.; Yacouba, H.; Ribstein, P. Changes in Rainfall Regime over Burkina Faso under the Climate Change Conditions Simulated by 5 Regional Climate Models. Clim. Dyn. 2013, 42, 1363–1381. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartB_FINAL.pdf (accessed on 19 July 2019).
- Kasei, R.; Diekkrüger, B.; Leemhuis, C. Drought Frequency in the Volta Basin of West Africa. Sustain. Sci. 2010, 5, 89–97. [Google Scholar] [CrossRef]
- Klein, C.; Heinzeller, D.; Bliefernicht, J.; Kunstmann, H. Variability of West African Monsoon Patterns Generated by a WRF Multi-Physics Ensemble. Clim. Dyn. 2015, 45, 2733–2755. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood Risk and Climate Change: Global and Regional Perspectives. Hydrol. Sci. J. 2013, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- INSD Burkina Faso. Tableau de Bord Social du Burkina Faso; Institut National des Statistiques de la Démographie (INSD): Ouagadougou, Burkina Faso, 2014. [Google Scholar]
- INSD Burkina Faso. Profil et Évolution de la Pauvrété au Burkina Faso; Coulombe, H., Savadogo, K., Sawadogo, H., Yameogo, A.E., Kone, M., Bonkoungou, M., Sinare, K., Simonpietri, A., Menye, E., Fofack, H., Eds.; Institut National de la Statistique et de la Démographie (INSD): Ouagadougou, Burkina Faso, 2000. [Google Scholar]
- INSD Burkina Faso. Annuaire Statistique 2018; Institut National des Statistiques de la Démographie (INSD): Ouagadougou, Burkina Faso, 2019. [Google Scholar]
- Windmeijer, P.N.; Andriesse, W. Inland Valleys in West Africa: Agro-Ecological Characerization of Rice Growing Environments; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1993. [Google Scholar]
- Danvi, A.; Giertz, S.; Zwart, S.J.; Diekkrüger, B. Comparing Water Quantity and Quality in Three Inland Valley Watersheds with Different Levels of Agricultural Development in Central Benin. Agric. Water Manag. 2017, 192, 257–270. [Google Scholar] [CrossRef]
- Harmel, R.D.; Smith, P.K. Consideration of Measurement Uncertainty in the Evaluation of Goodness-of-Fit in Hydrologic and Water Quality Modeling. J. Hydrol. 2007, 337, 326–336. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment; Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Obuobie, E.; Diekkrüger, B. Using SWAT to Evaluate Climate Change Impact on Water Resources in the White Volta River Basin, West Africa. In Proceedings of the Conference on International Research on Food Security, Natural Resource Management and Rural Development, Hohenheim, Germany, 7 October 2008; Available online: http://www.tropentag.de/2008/abstracts/full/496.pdf (accessed on 31 January 2019).
- Schuol, J.; Abbaspour, K.C. Using Monthly Weather Statistics to Generate Daily Data in a SWAT Model Application to West Africa. Ecol. Model. 2007, 201, 301–311. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.; Srinivasan, R.; Yang, H. Estimation of Freshwater Availability in the West African Sub-Continent Using the SWAT Hydrologic Model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Poméon, T.; Diekkrüger, B.; Springer, A.; Kusche, J.; Eicker, A. Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach. Water 2018, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Schuol, J.; Abbaspour, K.C. Calibration and Uncertainty Issues of a Hydrological Model (SWAT) Applied to West Africa. Adv. Geosci. 2006, 9, 137–143. Available online: https://www.adv-geosci.net/9/137/2006/ (accessed on 11 January 2020). [CrossRef] [Green Version]
- Akpoti, K.; Antiwi, O.E.; Kabo-Bah, A.T. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Kumar, R.; Attinger, S. Multiscale Parameter Regionalization of a Grid-Based Hydrologic Model at the Mesoscale. Water Resour. Res. 2010, 46, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Samaniego, L.; Attinger, S. Implications of Distributed Hydrologic Model Parameterization on Water Fluxes at Multiple Scales and Locations. Water Resour. Res. 2013, 49, 360–379. [Google Scholar] [CrossRef]
- Poméon, T.; Diekkrüger, B.; Kumar, R. Computationally Efficient Multivariate Calibration and Validation of a Grid-Based Hydrologic Model in Sparsely Gauged West African River Basins. Water 2018, 10, 1418. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; He, C.; Bian, H.; Sheng, L. MIKE SHE Modeling of Ecohydrological Processes: Merits, Applications, and Challenges. Ecol. Eng. 2016, 96, 137–149. [Google Scholar] [CrossRef]
- Zhou, X.; Helmers, M.; Qi, Z. Modeling of Subsurface Tile Drainage Using MIKE SHE. Appl. Eng. Agric. 2013, 29, 865–873. [Google Scholar] [CrossRef]
- Ebel, B.A.; Loague, K. Physics-Based Hydrologic-Response Simulation: Seeing through the Fog of Equifinality. Hydrol. Process. Int. J. 2006, 20, 2887–2900. [Google Scholar] [CrossRef]
- Savenije, H.H.G. Equifinality, a Blessing in Disguise? Hydrol. Process. 2001, 15, 2835–2838. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Vrugt, J.A.; ter Braak, C.J.F.; Gupta, H.V.; Robinson, B.A. Equifinality of Formal (DREAM) and Informal (GLUE) Bayesian Approaches in Hydrologic Modeling? Stoch. Environ. Res. Risk Assess. 2009, 23, 1011–1026. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. A Manifesto for the Equifinality Thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Andersen, J.; Refsgaard, J.C.; Jensen, K.H. Distributed Hydrological Modelling of the Senegal River Basin—Model Construction and Validation. J. Hydrol. 2001, 247, 200–214. [Google Scholar] [CrossRef]
- Lebel, T.; Cappelaere, B.; Galle, S.; Hanan, N.; Kergoat, L.; Levis, S.; Vieux, B.; Descroix, L.; Gosset, M.; Mougin, E. AMMA-CATCH Studies in the Sahelian Region of West-Africa: An Overview. J. Hydrol. 2009, 375, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Schulla, J. Model Description WaSiM. Technical Report; Hydrology Software Consulting J. Schulla: Zurich, Switzerland, 2015; Available online: http://www.wasim.ch/downloads/doku/wasim/wasim_2015_en.pdf (accessed on 26 August 2019).
- Richards, L.A.; Weaver, L.R. Moisture Retention by Some Irrigated Soils as Related to Soil-Moisture Tension. J. Agric. Res. 1944, 69, 215–235. [Google Scholar]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Sci. Soc. Am. J. 1980, 44, 892. [Google Scholar] [CrossRef] [Green Version]
- Kasei, R.A. Modelling Impacts of Climate Change on Water Resources in the Volta Basin, West Africa. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2010. Available online: http://hss.ulb.uni-bonn.de/2010/1977/1977a.pdf (accessed on 7 June 2019).
- Yira, Y. Modeling Land Use Change Impacts on Water Resources in a Tropical West African Catchment (Dano, Burkina Faso). Ph.D. Thesis, University of Bonn, Bonn, Germany, 2016. Available online: http://hss.ulb.uni-bonn.de/2017/4583/4583.pdf (accessed on 18 September 2019).
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Seregina, L.S.; Van Der Linden, R. Impact of Climate Change on Water Resources in the Kilombero Catchment in Tanzania. Water 2019, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Näschen, K.; Diekkrüger, B.; Evers, M.; Höllermann, B.; Steinbach, S.; Thonfeld, F. The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios. Sustainability 2019, 11, 7083. [Google Scholar] [CrossRef] [Green Version]
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Steinbach, S.; Seregina, L.S.; Thonfeld, F.; Linden, R. Van Der. Hydrological Modeling in Data-Scarce Catchments: The Kilombero Floodplain in Tanzania. Water 2018, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Deb, P.; Kumari, N. Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem. Water Resour. Manag. 2020, 34, 327–341. [Google Scholar] [CrossRef]
- Nesru, M.; Shetty, A.; Nagaraj, M.K. Multi-Variable Calibration of Hydrological Model in the Upper Omo-Gibe Basin, Ethiopia. Acta Geophys. 2020, 68, 537–551. [Google Scholar] [CrossRef]
- Harmel, R.D.; Smith, P.K.; Migliaccio, K.W. Modifying Goodness-of-Fit Indicators to Incorporate Both Measurement and Model Uncertainty in Model Calibration and Validation. Am. Soc. Agric. Biol. Eng. 2010, 53, 55–63. [Google Scholar] [CrossRef]
- Rajib, M.A.; Merwade, V.; Yu, Z. Multi-Objective Calibration of a Hydrologic Model Using Spatially Distributed Remotely Sensed/in-Situ Soil Moisture. J. Hydrol. 2016, 536, 192–207. [Google Scholar] [CrossRef] [Green Version]
- KlemeŠ, V. Operational Testing of Hydrological Simulation Models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Bruneau, P.; Gascuel-Odoux, C.; Robin, P.; Merot, P.; Beven, K. Sensitivity to Space and Time Resolution of a Hydrological Model Using Digital Elevation Data. Hydrol. Process. 1995, 9, 69–81. [Google Scholar] [CrossRef]
- Seiller, G.; Anctil, F.; Perrin, C. Multimodel Evaluation of Twenty Lumped Hydrological Models under Contrasted Climate Conditions. Hydrol. Earth Syst. Sci. 2012, 16, 1171–1189. [Google Scholar] [CrossRef] [Green Version]
- Eguavoen, I.; McCartney, M. Water Storage: A Contribution to Climate Change Adaptation in Africa. Rural 2013, 21, 38–41. [Google Scholar]
- Giorgis, I.; Bonetto, S.; Giustetto, R.; Lawane, A.; Pantet, A.; Rossetti, P.; Thomassin, J.H.; Vinai, R. The Lateritic Profile of Balkouin, Burkina Faso: Geochemistry, Mineralogy and Genesis. J. Afr. Earth Sci. 2014, 90, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Iwaco, B.V. Carte Hydrogeologique de Burkina Faso-Feuille Bobo-Dioulasso; Ministère de L’Eau du Burkina Faso (BUMIGEB): Ouagadougou, Burkina Faso, 1993. [Google Scholar]
- NASA. Shuttle Radar Topography Mission (SRTM) C-Band Data Products. Available online: https://www2.jpl.nasa.gov/srtm/cbanddataproducts.html (accessed on 31 December 2014).
- Esri. World Boundaries and Places. Available online: https://www.arcgis.com/home/item.html?id=a842e359856a4365b1ddf8cc34fde079 (accessed on 26 May 2020).
- WRB. World Reference Base for Soil Resources-A Framework for International Classification, Correlation and Communication; World Soil Resources, Report 103; FAO: Rome, Italy, 2006. [Google Scholar] [CrossRef]
- Hounkpatin, O.K.L. Digital Soil Mapping Using Survey Data and Soil Organic Carbon Dynamics in Semi-Arid Burkina Faso. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2017. Available online: http://hss.ulb.uni-bonn.de/2018/5058/5058.htm (accessed on 18 September 2019).
- Forkuor, G. Agricultural Land Use Mapping in West Africa Using Multi-Sensor Satellite Imagery. Ph.D. Thesis, Julius-Maximilians-Universität, Würzburg, Germany, 2014. Available online: https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/10868/file/Thesis_Gerald_Forkuor_2014.pdf (accessed on 18 September 2019).
- Xu, X.; Li, J.; Tolson, B.A. Progress in Integrating Remote Sensing Data and Hydrologic Modeling. Prog. Phys. Geogr. 2014, 38, 464–498. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poméon, T.; Jackisch, D.; Diekkrüger, B. Evaluating the Performance of Remotely Sensed and Reanalysed Precipitation Data over West Africa Using HBV Light. J. Hydrol. 2017, 547, 222–235. [Google Scholar] [CrossRef]
- Bouwer, H. The Bouwer and Rice Slug Test—An Update. Groundwater 1989, 27, 304–309. [Google Scholar] [CrossRef]
- Bouwer, H.; Rice, R.C. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resour. Res. 1976, 12, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Fass, T. Hydrogeologie Im Aguima Einzugsgebiet in Benin / Westafrika. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2004. Available online: http://hss.ulb.uni-bonn.de (accessed on 18 September 2019).
- Şen, Z. Basic Porous Medium Concepts. In Practical and Applied Hydrogeology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 43–97. [Google Scholar] [CrossRef]
- Brutsaert, W. Evaporation to the Atmosphere, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1982. [Google Scholar] [CrossRef]
- Monteith, H.L. Vegetation and the Atmosphere, Volume 1: Principles, 1st ed.; Academic Press: London, UK, 1975; Volume 1. [Google Scholar] [CrossRef]
- Feddes, R.A.; Zaradny, H. Model for Simulating Soil-Water Content Considering Evapotranspiration-Comments. J. Hydrol. 1978, 37, 393–397. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary Conduction of Liquids through Porous Mediums. J. Appl. Phys. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A.Y. Modeling Land Use Change Impacts on Water Resources in a Tropical West African Catchment (Dano, Burkina Faso). J. Hydrol. 2016, 537, 187–199. [Google Scholar] [CrossRef]
- European Commission. SIMLAB and Other Software. Available online: https://ec.europa.eu/jrc/en/samo/simlab (accessed on 9 May 2020).
- Mckay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Schmalz, B.; Fohrer, N. Comparing Model Sensitivities of Different Landscapes Using the Ecohydrological SWAT Model. Adv. Geosci. 2009, 21, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Weglarczyk, S. The Interdependence and Applicability of Some Statistical Quality Measures for Hydrological Models. J. Hydrol. 1998, 206, 98–103. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part I-a Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff Conditions in the Upper Danube Basin under an Ensemble of Climate Change Scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springe: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evalution Guide Line for Systematic Qualification of Accuracy in Watershed Simulation. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Murphy, A.H. Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Cornelissen, T.; Diekkrüger, B.; Giertz, S. A Comparison of Hydrological Models for Assessing the Impact of Land Use and Climate Change on Discharge in a Tropical Catchment. J. Hydrol. 2013, 498, 221–236. [Google Scholar] [CrossRef]
- Idrissou, M. Modeling Water Availability for Smallholder Farming in Inland Valleys under Climate and Land Use/Land Cover Change in Dano, Burkina Faso. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2020. Available online: http://hdl.handle.net/20.500.11811/8351 (accessed on 30 May 2020).
- Beven, K. Interflow. In Unsaturated Flow in Hydrologic Modeling Theory and Practice; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1989; pp. 191–219. [Google Scholar]
- Giertz, S.; Junge, B.; Diekkrüger, B. Assessing the Effects of Land Use Change on Soil Physical Properties and Hydrological Processes in the Sub-Humid Tropical Environment of West Africa. Phys. Chem. Earth 2005, 30, 485–496. [Google Scholar] [CrossRef]
- Op de Hipt, F. Modeling Climate and Land Use Change Impacts on Water Resources and Soil Erosion in the Dano Catchment (Burkina Faso, West Africa). Ph.D. Thesis, University of Bonn, Bonn, Germany, 2017. Available online: http://hss.ulb.uni-bonn.de/2018/5030/5030.htm (accessed on 9 June 2019).
- de Hipt, F.O.; Diekkrüger, B.; Steup, G.; Yira, Y.; Hoffmann, T.; Rode, M. Applying SHETRAN in a Tropical West African Catchment (Dano, Burkina Faso)-Calibration, Validation, Uncertainty Assessment. Water 2017, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Assouline, S.; Or, D. The Concept of Field Capacity Revisited: Defining Intrinsic Static and Dynamic Criteria for Soil Internal Drainage Dynamics. Water Resour. Res. 2014, 50, 4787–4802. [Google Scholar] [CrossRef]
- Colman, E.A. A Laboratory Procedure for Determining the Field Capacity of Soils. Soil Sci. 1947, 63, 277–284. [Google Scholar] [CrossRef]
- Opoku-Duah, S.; Donoghue, D.N.M.; Burt, T.P. Intercomparison of Evapotranspiration over the Savannah Volta Basin in West Africa Using Remote Sensing Data. Sensors 2008, 8, 2736–2761. [Google Scholar] [CrossRef] [Green Version]
- Obada, E.; Alamou, E.A.; Chabi, A.; Zandagba, J.; Afouda, A. Trends and Changes in Recent and Future Penman-Monteith Potential Evapotranspiration in Benin (West Africa). Hydrology 2017, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Yira, Y.; Diekkrüger, B.; Steup, G.; Yaovi Bossa, A. Impact of Climate Change on Hydrological Conditions in a Tropical West African Catchment Using an Ensemble of Climate Simulations. Hydrol. Earth Syst. Sci. 2017, 21, 2143–2161. [Google Scholar] [CrossRef] [Green Version]
- Moradkhani, H.; Sorooshian, S. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis. In Hydrological Modelling and the Water Cycle: Coupling Atmosphere and Hydrological Models; Singh, V.P., Anderson, M., Bengstsson, L., Cruise, J.F., Kothyari, U.C., Serrano, S.E., Stephenson, D., Strupczewski, W.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; p. 291. [Google Scholar]
Ks (m s−1) | Ks (cm d−1) | |
---|---|---|
Minimum | 1.0 × 10−8 | 0.1 |
Maximum | 1.2 × 10−5 | 103.2 |
Mean | 1.6 × 10−6 | 13.8 |
Percentile 25% | 1.3 × 10−7 | 1.1 |
Median | 8.7 × 10−7 | 7.5 |
Percentile 75% | 1.6 × 10−6 | 14.1 |
Sub-Model | Parameter | Definition | Unit | Range |
---|---|---|---|---|
Soil | dr | Drainage density | m−1 | 1–110 |
kd | Storage coefficient for surface runoff | h | 10–110 | |
kh | Storage coefficient for interflow | h | 10–110 | |
Ks | Saturated hydraulic conductivity if the soil | m s−1 | 10−7–10−5 | |
kr | Reduction factor for Ks with depth | - | 0–1 | |
Q0 | Scaling factor for base flow | - | 0.1–2.5 | |
kb | Storage coefficient for base flow | M | 0.1–2.5 | |
ETp | rsc | Canopy surface resistance | s m−1 | 40–100 |
rse | Evaporation surface resistance | s m−1 | 40–100 |
Calibration (2014–2015) | Validation (2016) | |||
---|---|---|---|---|
BaLof | BaN | BaLof | BaN | |
R2 | 0.91 | 0.95 | 0.82 | 0.47 |
NSE | 0.88 | 0.95 | 0.77 | 0.40 |
KGE | 0.82 | 0.84 | 0.57 | 0.68 |
Pbias (%) | 15.9 | 12.4 | 29.4 | 1.6 |
P | ETp | ETa | EIa | Ea | Ta | E/Ta | Qt | Qs | Qi | Qb | Sim.Cr (%) | Obs.Cr (%) | Delta S | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | BaS | 969 | 2077 | 906 | 60 | 699 | 147 | 5 | 106 | 33 | 67 | 5 | 11 | - | −43 |
BaN | 925 | 1985 | 932 | 59 | 712 | 162 | 4 | 65 | 32 | 25 | 8 | 7 | 6 | −72 | |
Lof | 968 | 1941 | 868 | 57 | 675 | 136 | 5 | 130 | 38 | 17 | 75 | 13 | - | −30 | |
BaLof | 955 | 1965 | 890 | 58 | 688 | 145 | 5 | 108 | 36 | 23 | 49 | 11 | 8 | −43 | |
2015 | BaS | 1116 | 2158 | 898 | 56 | 676 | 165 | 4 | 195 | 72 | 108 | 15 | 17 | - | 23 |
BaN | 1172 | 2044 | 930 | 60 | 696 | 174 | 4 | 161 | 76 | 59 | 26 | 14 | 14 | 81 | |
Lof | 1189 | 2012 | 880 | 57 | 674 | 148 | 5 | 224 | 83 | 34 | 107 | 19 | - | 85 | |
BaLof | 1178 | 2033 | 897 | 58 | 681 | 157 | 4 | 203 | 80 | 47 | 75 | 17 | 19 | 78 | |
Calibration (2014–2015) | BaS | 1042 | 2118 | 902 | 58 | 688 | 156 | 4 | 150 | 52 | 88 | 10 | 14 | - | −10 |
BaN | 1048 | 2014 | 931 | 60 | 704 | 168 | 4 | 113 | 54 | 42 | 17 | 11 | 10 | 4 | |
Lof | 1078 | 1976 | 874 | 57 | 674 | 142 | 5 | 177 | 60 | 26 | 91 | 16 | - | 28 | |
BaLof | 1066 | 1999 | 894 | 58 | 684 | 151 | 5 | 156 | 58 | 35 | 62 | 15 | 14 | 18 | |
Validation (2016) | BaS | 933 | 2053 | 939 | 62 | 709 | 168 | 4 | 67 | 14 | 47 | 6 | 7 | - | −73 |
BaN | 980 | 2119 | 997 | 66 | 755 | 176 | 4 | 73 | 24 | 31 | 18 | 7 | 17 | −90 | |
Lof | 1019 | 1992 | 927 | 61 | 712 | 154 | 5 | 154 | 29 | 18 | 106 | 15 | - | −62 | |
BaLof | 1001 | 2036 | 949 | 63 | 725 | 162 | 4 | 122 | 26 | 24 | 71 | 12 | 14 | −70 | |
Annual mean (2014–2016) | BaS | 1006 | 2096 | 914 | 59 | 695 | 160 | 4 | 123 | 40 | 74 | 9 | 12 | - | −31 |
BaN | 1026 | 2049 | 953 | 62 | 721 | 171 | 4 | 100 | 44 | 38 | 17 | 10 | 12 | −27 | |
Lof | 1059 | 1982 | 892 | 58 | 687 | 146 | 5 | 169 | 50 | 23 | 96 | 16 | - | −2 | |
BaLof | 1045 | 2011 | 912 | 60 | 698 | 155 | 5 | 144 | 47 | 31 | 65 | 14 | 14 | −12 |
2014–2015 | 2016 | |
---|---|---|
R2 | 0.93 | 0.65 |
NSE | 0.92 | 0.64 |
KGE | 0.84 | 0.59 |
Pbias (%) | 0.9 | 11.9 |
Calibration (2014–2015) | Validation (2016) | |
---|---|---|
R2 | 0.95 | 0.71 |
NSE | 0.95 | 0.70 |
KGE | 0.96 | 0.70 |
Pbias (%) | 1.9 | 11.5 |
Calibration (2014–2015) | Validation (2016) | Mean (2014–2016) | |
---|---|---|---|
P | 1008 | 1024 | 1013 |
ETp | 1924 | 1848 | 1898 |
ETa | 848 | 875 | 857 |
EIa | 58 | 62 | 59 |
Ea | 672 | 694 | 679 |
Ta | 118 | 119 | 119 |
Qt | 146 | 141 | 144 |
Qs | 48 | 40 | 46 |
Qi | 58 | 54 | 56 |
Qb | 40 | 48 | 43 |
Sim.Cr (%) | 14 | 14 | 14 |
Delta S | 14 | 8 | 12 |
Parameter | Description | Unit | Value |
---|---|---|---|
Land use/land cover | |||
RootDistr | Root distribution | - | 1 (linear) |
TReduWet | Threshold value for starting oxygen stress due to nearly water saturated | - | 0.95 |
LimitReduWet | Maximum reduction of transpiration due to oxygen stress | - | 0.5 |
HReduDry | Hydraulic head (suction) value for starting dryness stress | m H2O | 3.45 |
IntercepCap | Specific thickness of the water layer on the leaves | mm | 0.0–0.3 |
Albedo | Albedo | - | 0.10–0.23 |
rsc | Canopy surface resistance for transpiration | s m−1 | 0.2–55.8 |
rsi | Interception surface resistance | s m−1 | 80 |
rse | Evaporation surface resistance for bare soil | s m−1 | 0.2–77.4 |
LAI | Leaf area index | - | 0–5 |
Z0 | Aerodynamic roughness length | M | 0–1 |
VCF | Vegetation cover fraction | - | 0.0–0.7 |
RootDepth | Root depth | M | 0.0–1.8 |
Soil | |||
Ks | Saturated hydraulic conductivity | m s−1 | 3.1 × 10−7 to 9.8 × 10−6 |
kr | Recession of Ks with depth | - | 0.01–0.99 |
θs | Saturated water content | - | 0.34–0.55 |
θr | Residual water content | - | 0.03–0.09 |
α | van Genuchten empirical parameter | m−1 | 0.5–5.0 |
n | van Genuchten empirical parameter | - | 0.36–1.35 |
thickness | Thickness of a single numerical layer | m | 0.1–0.7 |
layers | Number of numerical layer per horizon | - | 1–13 |
dr | Drainage density | m−1 | 46–93 |
kd | Storage coefficient for surface runoff | h | 12–77 |
kh | Storage coefficient for interflow | h | 14–110 |
q0 | Scaling factor for base flow | m | 0.10–2.46 |
kb | Storage coefficient for base flow | mm h−1 | 0.20–1.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idrissou, M.; Diekkrüger, B.; Tischbein, B.; Ibrahim, B.; Yira, Y.; Steup, G.; Poméon, T. Testing the Robustness of a Physically-Based Hydrological Model in Two Data Limited Inland Valley Catchments in Dano, Burkina Faso. Hydrology 2020, 7, 43. https://doi.org/10.3390/hydrology7030043
Idrissou M, Diekkrüger B, Tischbein B, Ibrahim B, Yira Y, Steup G, Poméon T. Testing the Robustness of a Physically-Based Hydrological Model in Two Data Limited Inland Valley Catchments in Dano, Burkina Faso. Hydrology. 2020; 7(3):43. https://doi.org/10.3390/hydrology7030043
Chicago/Turabian StyleIdrissou, Mouhamed, Bernd Diekkrüger, Bernhard Tischbein, Boubacar Ibrahim, Yacouba Yira, Gero Steup, and Thomas Poméon. 2020. "Testing the Robustness of a Physically-Based Hydrological Model in Two Data Limited Inland Valley Catchments in Dano, Burkina Faso" Hydrology 7, no. 3: 43. https://doi.org/10.3390/hydrology7030043
APA StyleIdrissou, M., Diekkrüger, B., Tischbein, B., Ibrahim, B., Yira, Y., Steup, G., & Poméon, T. (2020). Testing the Robustness of a Physically-Based Hydrological Model in Two Data Limited Inland Valley Catchments in Dano, Burkina Faso. Hydrology, 7(3), 43. https://doi.org/10.3390/hydrology7030043