An Evaluation of Statistical Downscaling Techniques for Simulating Daily Rainfall Occurrences in the Upper Ping River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Downscaling Models
2.1.1. Regression Models
2.1.2. Modified Markov Model (MMM)
2.2. Study Area and Data Collection
2.2.1. Study Area
2.2.2. Rainfall Data
2.2.3. Reanalysis Data
2.2.4. General Circulation Model (GCM) Data
2.3. Model and Predictor Sets
2.3.1. Predictor Selection
2.3.2. Wetness State Indicators (WIs)
2.3.3. Single Site and Multisite Cases
2.3.4. Downscaling Models
2.3.5. Bias Correction
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Comparison of Statistics
3.3. Preliminary Screening of Model and Data Combination Cases
3.4. Number of Wet Days
3.5. Number of Wet and Dry Spells
3.6. Spatial Dependence of Rainfall Occurrence
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Wilby, R.L.; Hay, L.E.; Leavesley, G.H. A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 1999, 225, 67–91. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Hay, L.E.; Clark, M.P. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol. 2003, 282, 56–75. [Google Scholar] [CrossRef]
- Anh, Q.T.; Taniguchi, K. Coupling dynamical and statistical downscaling for high-resolution rainfall forecasting: Case study of the Red River Delta, Vietnam. Prog. Earth Planet. Sci. 2018, 5, 28. [Google Scholar]
- Herrmann, M.; Ngo-Duc, T.; Trinh-Tuan, L. Impact of climate change on sea surface wind in Southeast Asia, from climatological average to extreme events: Results from a dynamical downscaling. Clim. Dyn. 2020, 54, 2101–2134. [Google Scholar] [CrossRef]
- Tien Thanh, N.; Dutto Aldo Remo, L. Projected changes of precipitation idf curves for short duration under climate change in central Vietnam. Hydrology 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Winkler, J.A.; Palutikof, J.P.; Andresen, J.A.; Goodess, C.M. The simulation of daily temperature time series from GCM output. Part II: Sensitivity analysis of an empirical transfer function methodology. J. Clim. 1997, 10, 2514–2532. [Google Scholar] [CrossRef]
- Pervez, M.S.; Henebry, G.M. Projections of the Ganges–Brahmaputra precipitation—Downscaled from GCM predictors. J. Hydrol. 2014, 517, 120–134. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.S.; Auld, H.; Li, Q.; Li, G. Possible impacts of climate change on extreme weather events at local scale in south–central Canada. Clim. Change 2012, 112, 963–979. [Google Scholar] [CrossRef] [Green Version]
- Tavakolifar, H.; Shahghasemi, E.; Nazif, S. Evaluation of climate change impacts on extreme rainfall events characteristics using a synoptic weather typing-based daily precipitation downscaling model. J. Water Clim. Chang. 2017, 8, 388–411. [Google Scholar] [CrossRef] [Green Version]
- Baghanam, A.H.; Eslahi, M.; Sheikhbabaei, A.; Seifi, A.J. Assessing the impact of climate change over the northwest of Iran: An overview of statistical downscaling methods. Theor. Appl. Climatol. 2020, 141, 1135–1150. [Google Scholar] [CrossRef]
- Brissette, F.P.; Khalili, M.; Leconte, R. Efficient stochastic generation of multi-site synthetic precipitation data. J. Hydrol. 2007, 345, 121–133. [Google Scholar] [CrossRef]
- Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr. 1999, 23, 329–357. [Google Scholar] [CrossRef]
- Harrold, T.I.; Sharma, A.; Sheather, S.J. A nonparametric model for stochastic generation of daily rainfall occurrence. Water Resour. Res. 2003, 39, 1300. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. Preserving low-frequency variability in generated daily rainfall sequences. J. Hydrol. 2007, 345, 102–120. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour. Res. 2010, 46, W07526. [Google Scholar] [CrossRef]
- Wilks, D.S. Multisite generalization of a daily stochastic pricipitation generation model. J. Hydrol. 1998, 210, 178–191. [Google Scholar] [CrossRef]
- Mehrotra, R.; Srikanthan, R.; Sharma, A. A comparison of three stochastic multi-site precipitation occurrence generators. J. Hydrol. 2006, 331, 280–292. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J. Hydrol. 2007, 335, 180–193. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A.; Kumar, D.N.; Reshmidevi, T.V. Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model. J. Hydrol. 2013, 488, 84–100. [Google Scholar] [CrossRef]
- Salvi, K.; Ghosh, S. High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment. J. Geophys. Res. Atmos. 2013, 118, 3557–3578. [Google Scholar] [CrossRef]
- Steinschneider, S.; Brown, C. A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments. Water Resour. Res. 2013, 49, 7205–7220. [Google Scholar] [CrossRef]
- Sharma, D.; Babel, M.S. Application of downscaled precipitation for hydrological climate-change impact assessment in the upper Ping River Basin of Thailand. Clim. Dyn. 2013, 41, 2589–2602. [Google Scholar] [CrossRef]
- Wuthiwongyothin, S.; Jang, S.H.; Ishida, K.; Kavvas, M.L. The effects of climate change on hydrology based on dynamically downscaling and physically-based hydrology model at upper Ping river basin, Thailand. Internet J. Soc. Soc. Manag. Syst. 2017, 11, 78–89. [Google Scholar]
- Wuthiwongyothin, S.; Mili, S.; Phadungkarnlert, N. A study of correcting climate model daily rainfall prduct using Quantile Mapping in upper Ping river basin, Thailand. In Proceedings of the 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, 25–28 September 2019. [Google Scholar]
- Saengsawang, S.; Pankhao, P.; Kaprom, C.; Sriwongsitanon, N. Projections of future rainfall for the upper Ping River Basin using regression-based downscaling. Adv. Clim. Change Res. 2017, 8, 256–267. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Homsi, R.; Shiru, M.S.; Shahid, S.; Ismail, T.; Harun, S.B.; Al-Ansari, N.; Yaseen, Z.M. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Eng. Appl. Comput. Fluid Mech. 2020, 14, 90–106. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. Conditional resampling of hydrologic time series using multiple predictor variables: A K-nearest neighbour approach. Adv. Water Resour. 2006, 29, 987–999. [Google Scholar] [CrossRef]
- Xu, C.Y. From GCM to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Plangoen, P.; Udmale, P. Impacts of Climate Change on Rainfall Erosivity in the Huai Luang Watershed, Thailand. Atmosphere 2017, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Ligaray, M.; Kim, H.; Sthiannopkao, S.; Lee, S.; Cho, K.H.; Kim, J.H. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand. Water 2015, 7, 6892–6909. [Google Scholar] [CrossRef]
- Petpongpan, C.; Ekkawatpanit, C.; Kositgittiwong, D. Climate Change Impact on Surface Water and Groundwater Recharge in Northern Thailand. Water 2020, 12, 1029. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Kumar, D. Downscaling daily precipitation over the Upper Shivnath basin: A comparison of three statistical downscaling techniques. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1676–1688. [Google Scholar] [CrossRef]
- Coulibaly, N.; Coulibaly, T.J.H.; Mpakama, Z.; Savané, I. The Impact of Climate Change on Water Resource Availability in a Trans-Boundary Basin in West Africa: The Case of Sassandra. Hydrology 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Bodian, A.; Dezetter, A.; Diop, L.; Deme, A.; Djaman, K.; Diop, A. Future Climate Change Impacts on Streamflows of Two Main West Africa River Basins: Senegal and Gambia. Hydrology 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I.; Kalin, R.M.; Aladejana, J.A.; White, C.J. Potential Impacts of Climate Change on Extreme Weather Events in the Niger Delta Part of Nigeria. Hydrology 2020, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.; Sharma, A. Assessing future droughts in Australia-a nesting model to correct for long-term persistence in general circulation model precipitation simulations. In Proceedings of the 8th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia, 13–17 July 2009; pp. 3935–3941. [Google Scholar]
- Piani, C.; Haerter, J.O. Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res. Lett. 2012, 39, L20401. [Google Scholar] [CrossRef]
- Vrac, M.; Friederichs, P. Multivariate—intervariable, spatial, and temporal—bias correction. J. Clim. 2015, 28, 218–237. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. Correcting for systematic biases in multiple raw GCM variables across a range of timescales. J. Hydrol. 2015, 520, 214–223. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A multivariate quantile-matching bias correction approach with auto-and cross-dependence across multiple time scales: Implications for downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A Resampling Approach for Correcting Systematic Spatiotemporal Biases for Multiple Variables in a Changing Climate. Water Resour. Res. 2019, 55, 754–770. [Google Scholar] [CrossRef] [Green Version]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.; Sharma, A. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments. Water Resour. Res. 2011, 47, W04508. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Ocean Modelling for Resource Characterization. In Fundamentals of Ocean Renewable Energy; Academic Press: Cambridge, MA, USA, 2018; pp. 193–235. [Google Scholar]
- Mehrotra, R.; Sharma, A.; Cordery, I. Comparison of two approaches for downscaling synoptic atmospheric patterns to multisite precipitation occurrence. J. Geophys. Res. 2004, 109, D14107. [Google Scholar] [CrossRef]
Model Cases | Single Site | Multisite | Single Site | Multisite | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ryrly 1 | R366 2 | MMM | Ryrly 1 | R366 2 | MMM | Ryrly 1 | R366 2 | MMM | Ryrly 1 | R366 2 | MMM | |
Annual mean | Annual standard deviation | |||||||||||
ATM | 0.14 | 0.28 | 1.68 | 0.45 | 0.33 | 1.46 | 48.88 | 57.59 | 41.40 | 48.89 | 57.44 | 41.63 |
ATM-WI30 | 0.15 | 0.24 | 1.98 | 0.47 | 0.17 | 1.82 | 35.57 | 50.91 | 33.26 | 35.33 | 50.98 | 33.20 |
ATM-WI30&90 | 0.16 | 0.23 | 1.85 | 0.39 | 0.17 | 1.67 | 36.69 | 50.48 | 12.13 | 36.73 | 50.51 | 12.15 |
ATM-WI30&365 | 0.16 | 0.24 | 1.93 | 0.40 | 0.17 | 1.75 | 43.73 | 51.27 | 11.42 | 43.78 | 51.31 | 11.23 |
ATM-WI30&90&365 | 0.16 | 0.23 | 1.66 | 0.49 | 0.18 | 1.52 | 43.99 | 50.92 | 23.89 | 43.76 | 50.99 | 23.69 |
ATM-WI90 | 0.15 | 0.28 | 2.22 | 0.42 | 0.17 | 1.95 | 40.98 | 50.58 | 25.87 | 41.00 | 50.59 | 25.41 |
ATM-WI90&365 | 0.16 | 0.28 | 1.98 | 0.49 | 0.18 | 1.74 | 45.75 | 51.22 | 12.58 | 45.41 | 51.26 | 12.61 |
ATM-WI365 | 0.14 | 0.23 | 2.10 | 0.52 | 0.19 | 1.84 | 48.18 | 52.87 | 22.50 | 48.20 | 52.86 | 22.01 |
Monthly mean | Monthly standard deviation | |||||||||||
ATM | 13.25 | 3.17 | 3.49 | 13.74 | 3.30 | 3.51 | 36.54 | 39.70 | 20.59 | 36.59 | 39.71 | 20.39 |
ATM-WI30 | 12.20 | 3.16 | 3.83 | 12.46 | 3.21 | 3.89 | 28.51 | 35.94 | 17.07 | 28.63 | 35.89 | 16.85 |
ATM-WI30&90 | 11.49 | 3.20 | 3.99 | 11.85 | 3.25 | 3.99 | 27.96 | 35.88 | 11.76 | 28.04 | 35.83 | 11.68 |
ATM-WI30&365 | 12.14 | 3.16 | 3.86 | 12.46 | 3.21 | 3.88 | 29.59 | 35.95 | 12.33 | 29.64 | 35.90 | 12.09 |
ATM-WI30&90&365 | 11.52 | 3.22 | 4.06 | 11.79 | 3.27 | 4.07 | 29.07 | 35.90 | 14.72 | 29.18 | 35.82 | 14.66 |
ATM-WI90 | 14.23 | 3.33 | 3.94 | 14.57 | 3.38 | 3.92 | 34.53 | 37.30 | 16.04 | 34.60 | 37.28 | 15.98 |
ATM-WI90&365 | 14.33 | 3.36 | 3.88 | 14.59 | 3.41 | 3.88 | 35.28 | 37.27 | 12.52 | 35.36 | 37.22 | 12.31 |
ATM-WI365 | 13.26 | 3.19 | 3.81 | 13.81 | 3.24 | 3.81 | 36.42 | 38.69 | 16.48 | 36.43 | 38.64 | 16.42 |
Number of dry spells | Number of wet spells | |||||||||||
ATM | 52.72 | 25.36 | 7.38 | 54.75 | 26.69 | 6.64 | 38.01 | 33.24 | 9.37 | 38.30 | 33.25 | 10.33 |
ATM-WI30 | 42.57 | 23.90 | 5.97 | 44.84 | 25.26 | 6.98 | 35.37 | 32.95 | 10.06 | 35.56 | 33.01 | 10.26 |
ATM-WI30&90 | 42.51 | 23.82 | 4.96 | 44.67 | 25.19 | 6.00 | 35.42 | 32.93 | 10.73 | 35.71 | 32.99 | 10.85 |
ATM-WI30&365 | 41.60 | 23.88 | 5.62 | 43.71 | 25.24 | 6.64 | 35.21 | 32.95 | 10.09 | 35.50 | 33.01 | 10.33 |
ATM-WI30&90&365 | 41.53 | 23.84 | 4.99 | 43.72 | 25.20 | 6.06 | 35.26 | 32.93 | 11.16 | 35.44 | 32.99 | 11.22 |
ATM-WI90 | 48.70 | 24.51 | 5.73 | 50.62 | 25.93 | 6.89 | 36.92 | 33.15 | 9.57 | 37.21 | 33.21 | 9.88 |
ATM-WI90&365 | 48.50 | 24.51 | 5.51 | 50.55 | 25.92 | 6.65 | 36.87 | 33.14 | 9.78 | 37.06 | 33.20 | 10.07 |
ATM-WI365 | 52.72 | 25.15 | 6.66 | 55.05 | 26.55 | 7.75 | 38.01 | 33.23 | 9.43 | 38.21 | 33.29 | 9.74 |
Cross correlation of annual wet days | Cross correlation of monthly wet days | |||||||||||
ATM | 100.88 | 134.14 | 112.90 | 138.28 | 117.54 | 159.94 | 90.22 | 101.61 | 83.63 | 37.28 | 45.93 | 42.38 |
ATM-WI30 | 67.65 | 104.09 | 97.66 | 88.49 | 89.70 | 128.53 | 78.54 | 92.73 | 78.58 | 34.97 | 42.68 | 42.68 |
ATM-WI30&90 | 68.98 | 101.02 | 63.54 | 86.43 | 89.24 | 77.07 | 77.48 | 92.74 | 73.73 | 34.28 | 42.87 | 42.82 |
ATM-WI30&365 | 91.93 | 105.99 | 68.02 | 119.41 | 90.98 | 75.20 | 79.19 | 92.66 | 77.81 | 35.96 | 42.72 | 44.13 |
ATM-WI30&90&365 | 91.51 | 103.56 | 46.07 | 121.30 | 91.66 | 46.88 | 78.27 | 92.74 | 74.81 | 35.71 | 42.86 | 46.27 |
ATM-WI90 | 82.30 | 101.60 | 86.26 | 111.45 | 90.40 | 111.26 | 87.81 | 97.84 | 82.42 | 37.18 | 45.05 | 44.84 |
ATM-WI90&365 | 96.18 | 105.06 | 59.47 | 131.64 | 92.17 | 63.66 | 89.11 | 97.63 | 82.74 | 38.33 | 44.94 | 47.13 |
ATM-WI365 | 98.17 | 112.60 | 87.27 | 130.88 | 93.79 | 105.43 | 90.46 | 100.74 | 84.68 | 37.53 | 45.76 | 45.16 |
Model Cases | Single Site | Multisite | Single Site | Multisite | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ryrly | R366 | MMM | Ryrly | R366 | MMM | Ryrly | R366 | MMM | Ryrly | R366 | MMM | |
Annual mean | Annual standard deviation | |||||||||||
ATM | 3.48 | 0.97 | 4.85 | 4.19 | 0.81 | 4.62 | 43.24 | 55.24 | 44.73 | 42.91 | 54.96 | 44.24 |
ATM-WI30 | 3.11 | 1.08 | 6.71 | 3.75 | 0.94 | 6.51 | 42.80 | 54.73 | 41.60 | 42.79 | 54.34 | 41.40 |
ATM-WI30&90 | 3.04 | 1.04 | 8.58 | 3.70 | 0.92 | 8.41 | 43.66 | 54.43 | 31.44 | 43.34 | 54.12 | 31.50 |
ATM-WI30&365 | 2.61 | 1.10 | 10.11 | 3.23 | 0.97 | 9.92 | 43.48 | 54.49 | 33.39 | 43.32 | 54.36 | 33.19 |
ATM-WI30&90&365 | 2.61 | 1.05 | 11.66 | 3.22 | 0.93 | 11.45 | 44.09 | 54.28 | 22.91 | 43.66 | 54.12 | 22.90 |
ATM-WI90 | 3.31 | 1.03 | 7.42 | 4.00 | 0.91 | 7.27 | 42.36 | 54.40 | 38.28 | 42.38 | 53.85 | 37.90 |
ATM-WI90&365 | 3.03 | 1.02 | 10.75 | 3.72 | 0.92 | 10.56 | 43.02 | 54.43 | 28.88 | 42.61 | 53.94 | 28.79 |
ATM-WI365 | 3.61 | 1.20 | 8.73 | 4.30 | 1.04 | 8.52 | 42.79 | 54.70 | 38.11 | 42.51 | 54.24 | 37.94 |
Monthly mean | Monthly standard deviation | |||||||||||
ATM | 19.97 | 4.76 | 12.62 | 20.80 | 4.84 | 12.70 | 28.36 | 34.43 | 21.31 | 28.74 | 34.31 | 21.25 |
ATM-WI30 | 20.62 | 5.36 | 14.58 | 21.43 | 5.48 | 14.61 | 29.37 | 34.38 | 20.86 | 29.87 | 34.25 | 20.89 |
ATM-WI30&90 | 20.61 | 5.38 | 16.66 | 21.39 | 5.53 | 16.71 | 29.34 | 34.33 | 19.12 | 29.82 | 34.28 | 19.24 |
ATM-WI30&365 | 20.55 | 5.46 | 16.80 | 21.29 | 5.53 | 16.83 | 29.34 | 34.25 | 19.87 | 29.83 | 34.19 | 19.87 |
ATM-WI30&90&365 | 20.46 | 5.46 | 18.70 | 21.26 | 5.54 | 18.74 | 29.34 | 34.46 | 17.87 | 29.80 | 34.19 | 17.94 |
ATM-WI90 | 20.46 | 5.04 | 14.49 | 21.23 | 5.17 | 14.58 | 28.63 | 34.50 | 20.85 | 29.16 | 34.28 | 20.83 |
ATM-WI90&365 | 20.47 | 5.06 | 16.87 | 21.18 | 5.19 | 16.85 | 28.67 | 34.33 | 19.22 | 29.10 | 34.20 | 19.28 |
ATM-WI365 | 20.05 | 4.87 | 14.82 | 20.88 | 4.95 | 14.85 | 28.23 | 34.39 | 21.03 | 28.78 | 34.30 | 21.01 |
Number of dry spells | Number of wet spells | |||||||||||
ATM | 54.63 | 19.37 | 10.76 | 56.76 | 20.51 | 11.28 | 30.51 | 27.30 | 17.62 | 31.24 | 27.30 | 17.88 |
ATM-WI30 | 57.45 | 20.66 | 9.92 | 59.62 | 21.98 | 10.26 | 32.47 | 28.82 | 19.60 | 33.13 | 28.89 | 19.76 |
ATM-WI30&90 | 58.02 | 20.69 | 8.97 | 59.95 | 21.94 | 9.13 | 32.77 | 28.91 | 21.29 | 33.32 | 28.95 | 21.37 |
ATM-WI30&365 | 57.01 | 20.68 | 8.74 | 58.98 | 21.93 | 8.99 | 32.54 | 28.85 | 21.59 | 33.09 | 28.92 | 21.73 |
ATM-WI30&90&365 | 57.38 | 20.58 | 9.07 | 59.33 | 21.83 | 9.16 | 32.83 | 28.92 | 23.27 | 33.37 | 28.96 | 23.30 |
ATM-WI90 | 54.30 | 19.58 | 8.63 | 56.55 | 20.82 | 8.85 | 30.58 | 28.09 | 19.18 | 31.35 | 28.11 | 19.27 |
ATM-WI90&365 | 71.21 | 19.53 | 8.34 | 72.69 | 20.70 | 8.40 | 39.81 | 28.14 | 21.16 | 40.19 | 28.15 | 21.25 |
ATM-WI365 | 54.75 | 19.16 | 9.01 | 56.99 | 20.41 | 9.39 | 30.52 | 27.67 | 19.40 | 31.35 | 27.69 | 19.57 |
Cross correlation of annual wet days | Cross correlation of monthly wet days | |||||||||||
ATM | 126.44 | 147.79 | 116.92 | 140.33 | 122.12 | 135.54 | 103.78 | 107.85 | 83.91 | 42.02 | 48.65 | 44.07 |
ATM-WI30 | 116.16 | 139.58 | 111.69 | 141.74 | 124.51 | 142.70 | 96.57 | 105.61 | 81.67 | 41.84 | 48.59 | 45.31 |
ATM-WI30&90 | 118.31 | 139.08 | 115.73 | 140.67 | 124.51 | 147.31 | 96.27 | 105.47 | 79.34 | 42.24 | 48.80 | 46.58 |
ATM-WI30&365 | 117.53 | 140.35 | 120.36 | 152.29 | 124.28 | 149.24 | 102.40 | 105.44 | 81.49 | 39.15 | 48.68 | 47.39 |
ATM-WI30&90&365 | 115.70 | 138.39 | 123.81 | 144.51 | 124.31 | 148.60 | 95.07 | 105.28 | 79.74 | 41.64 | 48.82 | 49.13 |
ATM-WI90 | 120.18 | 139.71 | 110.51 | 145.96 | 124.10 | 143.18 | 101.52 | 106.87 | 84.51 | 41.64 | 48.95 | 46.26 |
ATM-WI90&365 | 124.76 | 140.24 | 120.60 | 143.44 | 123.83 | 147.70 | 103.74 | 106.51 | 83.90 | 40.90 | 49.09 | 48.58 |
ATM-WI365 | 126.44 | 140.77 | 117.90 | 141.82 | 124.94 | 147.37 | 103.54 | 107.49 | 86.02 | 42.31 | 48.60 | 47.13 |
Statistics | Observed | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
Data | RYrly | R366 | MMM | RYrly | R366 | MMM | |
Annual wet days | |||||||
Mean | 89.60 | ||||||
ATM | 89.92 (0.45) | 89.71 (0.33) | 88.41 (1.46) | 93.23 (4.19) | 89.92 (0.81) | 86.62 (4.62) | |
ATM-WI30&90 | 89.88 (0.39) | 89.63 (0.17) | 88.38 (1.67) | 92.68 (3.70) | 89.31 (0.92) | 83.67 (8.41) | |
ATM-WI30&365 | 89.89 (0.40) | 89.60 (0.17) | 88.25 (1.75) | 92.27 (3.23) | 89.25 (0.97) | 82.07 (9.92) | |
Standard deviation | 16.89 | ||||||
ATM | 9.03 (48.89) | 7.57 (57.44) | 10.39 (41.63) | 10.19 (42.91) | 8.04 (54.96) | 9.88 (44.24) | |
ATM-WI30&90 | 11.02 (36.73) | 8.70 (50.51) | 15.38 (12.15) | 10.10 (43.34) | 8.20 (54.12) | 12.11 (31.50) | |
ATM-WI30&365 | 9.88 (43.78) | 8.56 (51.31) | 15.92 (11.23) | 10.10 (43.32) | 8.15 (54.36) | 11.77 (33.19) | |
Monthly wet days | |||||||
Mean | 7.47 | ||||||
ATM | 7.49 (13.74) | 7.48 (3.30) | 7.37 (3.51) | 7.77 (20.80) | 7.44 (4.84) | 7.22 (12.70) | |
ATM-WI30&90 | 7.49 (11.85) | 7.47 (3.25) | 7.36 (3.99) | 7.72 (21.39) | 7.44 (5.53) | 6.97 (16.71) | |
ATM-WI30&365 | 7.49 (12.46) | 7.47 (3.21) | 7.35 (3.88) | 7.69 (21.29) | 7.44 (5.53) | 6.84 (16.83) | |
Standard deviation | 3.01 | ||||||
ATM | 2.20 (36.59) | 1.98 (39.71) | 2.57 (20.39) | 2.74 (28.74) | 2.15 (34.31) | 2.59 (21.25) | |
ATM-WI30&90 | 2.40 (28.04) | 2.09 (35.83) | 2.93 (11.68) | 2.70 (29.82) | 2.16 (34.19) | 2.70 (19.24) | |
ATM-WI30&365 | 2.36 (29.64) | 2.08 (35.90) | 2.87 (12.09) | 2.68 (29.83) | 2.16 (34.19) | 2.63 (19.87) | |
Wet days in dry season | |||||||
Mean | 11.40 | ||||||
ATM | 17.08 (50.22) | 12.35 (8.63) | 11.77 (4.05) | 21.12 (86.27) | 12.57 (10.54) | 12.96 (15.94) | |
ATM-WI30&90 | 15.30 (34.46) | 12.28 (7.93) | 11.54 (3.28) | 20.92 (84.57) | 12.80 (12.54) | 11.98 (10.63) | |
ATM-WI30&365 | 15.13 (32.97) | 12.27 (7.91) | 11.56 (3.41) | 20.67 (82.31) | 12.78 (12.44) | 11.84 (10.48) | |
Standard deviation | 5.52 | ||||||
ATM | 4.34 (26.64) | 3.36 (42.18) | 5.29 (7.75) | 5.82 (16.33) | 3.74 (35.90) | 4.76 (20.39) | |
ATM-WI30&90 | 4.68 (19.73) | 3.75 (34.47) | 5.43 (6.74) | 5.69 (16.26) | 3.84 (34.24) | 5.37 (14.75) | |
ATM-WI30&365 | 4.53 (22.51) | 3.71 (35.34) | 5.29 (7.75) | 5.70 (16.55) | 3.80 (34.74) | 5.05 (17.05) | |
Wet days in wet season | |||||||
Mean | 78.20 | ||||||
ATM | 72.84 (6.89) | 77.35 (1.12) | 76.69 (2.09) | 72.11 (7.88) | 76.75 (2.00) | 73.67 (6.67) | |
ATM-WI30&90 | 74.58 (4.65) | 77.35 (1.10) | 76.84 (1.98) | 71.77 (8.35) | 76.52 (2.33) | 71.69 (9.72) | |
ATM-WI30&365 | 74.76 (4.42) | 77.32 (1.13) | 76.69 (2.09) | 71.60 (8.56) | 76.47 (2.40) | 70.23 (11.35) | |
Standard deviation | 13.82 | ||||||
ATM | 7.28 (49.48) | 6.68 (53.97) | 13.37 (9.98) | 8.04 (44.83) | 7.06 (51.47) | 8.49 (41.64) | |
ATM-WI30&90 | 9.07 (36.30) | 7.39 (48.73) | 12.98 (10.20) | 7.36 (45.32) | 7.17 (51.16) | 9.93 (30.98) | |
ATM-WI30&365 | 8.45 (40.91) | 7.34 (49.00) | 13.37 (9.98) | 7.95 (45.39) | 7.11 (51.20) | 9.80 (31.87) |
Statistics | Observed | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
Data | RYrly | R366 | MMM | RYrly | R366 | MMM | |
Dry spells | |||||||
No. of dry spells of 2-9 days | 23.87 | 32.98 (38.33) | 31.02 (30.21) | 25.56 (7.27) | 35.52 (40.78) | 30.34 (27.30) | 26.22 (10.57) |
No. of dry spells of 10-18 days | 3.52 | 4.42 (26.48) | 3.68 (7.89) | 3.70 (6.81) | 5.24 (50.02) | 3.75 (9.27) | 3.94 (14.25) |
No. of dry spells of >18 days | 4.49 | 2.83 (37.06) | 3.47 (22.87) | 4.23 (6.03) | 2.23 (50.69) | 3.54 (21.30) | 4.22 (6.71) |
Wet spells | |||||||
No. of wet spells of 2-4 days | 15.90 | 16.95 (14.27) | 17.25 (14.63) | 16.53 (5.68) | 18.89 (21.75) | 18.04 (17.23) | 16.25 (8.03) |
No. of wet spells of 5-7 days | 2.91 | 1.58 (47.87) | 1.69 (44.21) | 2.75 (12.78) | 2.00 (34.10) | 1.90 (37.40) | 2.34 (24.81) |
No. of wet spells of >7 days | 1.15 | 0.31 (82.91) | 0.33 (80.69) | 0.90 (25.47) | 0.41 (72.44) | 0.38 (75.93) | 0.60 (56.46) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheevaprasert, S.; Mehrotra, R.; Thianpopirug, S.; Sriwongsitanon, N. An Evaluation of Statistical Downscaling Techniques for Simulating Daily Rainfall Occurrences in the Upper Ping River Basin. Hydrology 2020, 7, 63. https://doi.org/10.3390/hydrology7030063
Cheevaprasert S, Mehrotra R, Thianpopirug S, Sriwongsitanon N. An Evaluation of Statistical Downscaling Techniques for Simulating Daily Rainfall Occurrences in the Upper Ping River Basin. Hydrology. 2020; 7(3):63. https://doi.org/10.3390/hydrology7030063
Chicago/Turabian StyleCheevaprasert, Sirikanya, Rajeshwar Mehrotra, Sansarith Thianpopirug, and Nutchanart Sriwongsitanon. 2020. "An Evaluation of Statistical Downscaling Techniques for Simulating Daily Rainfall Occurrences in the Upper Ping River Basin" Hydrology 7, no. 3: 63. https://doi.org/10.3390/hydrology7030063
APA StyleCheevaprasert, S., Mehrotra, R., Thianpopirug, S., & Sriwongsitanon, N. (2020). An Evaluation of Statistical Downscaling Techniques for Simulating Daily Rainfall Occurrences in the Upper Ping River Basin. Hydrology, 7(3), 63. https://doi.org/10.3390/hydrology7030063