Assessment of Surface Irrigation Potential of the Dhidhessa River Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection and Processing
2.2.1. Climate
2.2.2. Discharge Data
2.2.3. Physiographical Data
2.3. Methods
2.3.1. SWAT Model
2.3.2. SWAT Sensitivity Analysis
2.3.3. Model Calibration and Validation
2.3.4. Model Performance Evaluation
2.3.5. Assessing Water Availability
2.3.6. Computation of the Irrigation Potential Area
2.3.7. Land Suitability Evaluation
3. Results and Discussion
3.1. Surface Water Modelling
3.2. Surface Water Availablity Assessment
3.3. Potential Irrigable Area
3.4. Land Suitability Assessment Results
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Awulachew, S.B.; Erkossa, T.; Namara, R. Irrigation Potential in Ethiopia: Constraints and Opportunities for Enhancing the System; Unpublished Report to the Bill and Melinda Gates Foundation: Seattle, WA, USA, 2010. [Google Scholar]
- Li, Z.; Deng, X.; Wu, F.; Hasan, S. Scenario analysis for water resources in response to land use change in the middle and upper reaches of the Heihe River Basin. Sustainability 2015, 7, 3086–3108. [Google Scholar] [CrossRef] [Green Version]
- Watts, G.; Battarbee, R.W.; Bloomfield, J.P.; Crossman, J.; Daccache, A.; Durance, I.; Elliott, J.A.; Garner, G.; Hannaford, J.; Hannah, D.M.; et al. Climate change and water in the UK – past changes and future prospects. Prog. Phys. Geogr. 2015, 39, 6–28. [Google Scholar] [CrossRef]
- Keshta, E.; Gad, M.A.; Amin, D. A Long–Term Response-Based Rainfall-Runoff Hydrologic Model: Case Study of The Upper Blue Nile. Hydrology 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer Science & Business Media: New Delhi, India, 2012. [Google Scholar]
- Olayide, O.E.; Tetteh, I.K.; Popoola, L. Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture? Agric. Water Manag. 2016, 178, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.A.; Couto, W.; Buol, S.W. The fertility capability soil classification system: Interpretation, applicability and modification. Geoderma 1982, 27, 283–309. [Google Scholar] [CrossRef]
- Verheye, W.; Koohafkan, A.; Nachtergaele, F. The FAO guidelines for land evaluation. Encycl. Land Use Land Cover Soil Sci. Land Eval. 2009, 2, 78–100. [Google Scholar]
- FAO; UNEP. The Future of our Land–Facing the Challenge, Guidelines for Integrated Planning for Sustainable Management of Land Resources; FAO: Rome, Italy, 1999. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 1985; Volume 29. [Google Scholar]
- Huang, M.; Gallichand, J.; Wang, Z.; Goulet, M. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China. Hydrol. Process. Int. J. 2006, 20, 579–589. [Google Scholar] [CrossRef]
- Changnon, S.A.; Pielke, R.A., Jr.; Changnon, D.; Sylves, R.T.; Pulwarty, R. Human factors explain the increased losses from weather and climate extremes. Bull. Am. Meteorol. Soc. 2000, 81, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Duran-Encalada, J.A.; Paucar-Caceres, A.; Bandala, E.; Wright, G. The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. Eur. J. Oper. Res. 2017, 256, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Obeysekera, J.; Irizarry, M.; Park, J.; Barnes, J.; Dessalegne, T. Climate change and its implications for water resources management in south Florida. Stoch. Environ. Res. Risk Assess. 2011, 25, 495–516. [Google Scholar] [CrossRef]
- Aswathanarayana, U. Water Resources Management and the Environment; CRC Press: Meppel, The Netherlands, 2001. [Google Scholar]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Leta, O.T.; Bauwens, W. Assessment of the impact of climate change on daily extreme peak and low flows of Zenne basin in Belgium. Hydrology 2018, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13. [Google Scholar] [CrossRef]
- Wang, M.; Shao, Y.; Jiang, Q.O.; Xiao, L.; Yan, H.; Gao, X.; Wang, L.; Liu, P. Impacts of Climate Change and Human Activity on the Runoff Changes in the Guishui River Basin. Land 2020, 9, 291. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Vergine, P.; Salerno, C.; Libutti, A.; Beneduce, L.; Gatta, G.; Berardi, G.; Pollice, A. Closing the water cycle in the agro-industrial sector by reusing treated wastewater for irrigation. J. Clean. Prod. 2017, 164, 587–596. [Google Scholar] [CrossRef]
- Rahman, M.S.; Saha, N.; Islam, A.T.; Shen, S.; Bodrud-Doza, M. Evaluation of water quality for sustainable agriculture in Bangladesh. Water Air Soil Pollut. 2017, 228, 385. [Google Scholar] [CrossRef]
- Dinka, M.O. Quality composition and irrigation suitability of various surface water and groundwater sources at Matahara Plain. Water Resour. Res. 2016, 43, 677–689. [Google Scholar] [CrossRef]
- Hagos, F.; Makombe, G.; Namara, R.E.; Awulachew, S.B. Importance of Irrigated Agriculture to the Ethiopian Economy: Capturing the Direct net Benefits of Irrigation, Colombo, Sri Lanka; International Water Management Institute: Anand, India, 2009; Volume 128, p. 37. [Google Scholar]
- Lemann, T.; Roth, V.; Zeleke, G.; Subhatu, A.; Kassawmar, T.; Hurni, H. Spatial and temporal variability in hydrological responses of the Upper Blue Nile basin, Ethiopia. Water 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Araya, T.; Nyssen, J.; Govaerts, B.; Deckers, J.; Cornelis, W.M. Impacts of conservation agriculture-based farming systems on optimizing seasonal rainfall partitioning and productivity on vertisols in the Ethiopian drylands. Soil Tillage Res. 2015, 148, 1–13. [Google Scholar] [CrossRef]
- Manaswi, C.; Thawait, A. Application of soil and water assessment tool for runoff modeling of Karam River basin in Madhya Pradesh. Int. J. Sci. Eng. Technol. 2014, 3, 529–532. [Google Scholar]
- Fischer, G.; Tubiello, F.N.; Van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M. Climate Change: Impact on Agriculture and Costs of Adaptation; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 21. [Google Scholar]
- Farjad, B.; Pooyandeh, M.; Gupta, A.; Motamedi, M.; Marceau, D. Modelling Interactions between Land Use, Climate, and Hydrology along with Stakeholders’ Negotiation for Water Resources Management. Sustainability 2017, 9, 2022. [Google Scholar] [CrossRef] [Green Version]
- Fiener, P.; Dlugoß, V.; Korres, W.; Schneider, K. Spatial variability of soil respiration in a small agricultural watershed—Are patterns of soil redistribution important? Catena 2012, 94, 3–16. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.M. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Gebre, S.L.; Tadele, K.; Mariam, B.G. Potential impacts of climate change on the hydrology and water resources availability of Didessa Catchment, Blue Nile River Basin, Ethiopia. J. Geol. Geosci. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Awulachew, S.B.; McCartney, M.; Ibrahim, Y.; Shiferaw, Y.S. Evaluation of water availability and allocation in the Blue Nile Basin. In Proceedings of the 2nd International Forum on Water and Food, Addis Ababa, Ethiopia, 10–14 November 2008; p. 6. [Google Scholar]
- Kabite, G.; Gesesse, B. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 175–183. [Google Scholar] [CrossRef]
- Adgolign, T.B.; Rao, G.V.R.S.; Abbulu, Y. Assessment of Spatio-Temporal Occurrence of Water Resources in Didissa Sub-Basin, West Ethiopia. Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. (IJCSEIERD) 2015, 5, 105–120. [Google Scholar]
- Sima, B. Flow Regime and Land Cover Changes in the Didessa Sub-Basin of the Blue Nile River, South-Western Ethiopia. 2011. Available online:https://stud.epsilon.slu.se/2661/ (accessed on 1 July 2020).
- MoWIE, F. Federal Democratic Republic of Ethiopia Ministry of Water, Irrigation and Electricity: Arjo Dhidhessa Dam and Appurtenant Structures Final Design Modification Report; Federal Democratic Republic of Ethiopia Ministry of Water, Irrigation and Electricity, OWWDSE/SES LLC, USA/Synergics Hydro (India) Pvt. Ltd.: Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Molden, D.J.; Awulachew, S.B.; Conniff, K.; Rebelo, L.-M.; Mohamed, Y.; Peden, D.; Kinyangi, J.; Breugel, P.V.; Mukherji, A.; Cascão, A. Nile Basin Focal Project; Synthesis Report, Project Number 59; Challenge Program on Water and Food and International Water Management Institute: Colombo, Sri Lanka, 2009. [Google Scholar]
- Worqlul, A.W.; Ayana, E.K.; Yen, H.; Jeong, J.; MacAlister, C.; Taylor, R.; Gerik, T.J.; Steenhuis, T.S. Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena 2018, 163, 332–341. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xue, B.; Yan, Y.; Wang, G.; Sun, W.; Li, Z.; Yu, J.; Xie, G.; Shi, H. Model Uncertainty Analysis Methods for Semi-Arid Watersheds with Different Characteristics: A Comparative SWAT Case Study. Water 2019, 11, 1177. [Google Scholar] [CrossRef] [Green Version]
- Worqlul, A.W.; Collick, A.S.; Rossiter, D.G.; Langan, S.; Steenhuis, T.S. Assessment of surface water irrigation potential in the Ethiopian highlands: The Lake Tana Basin. Catena 2015, 129, 76–85. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Ringler, C.; Wood-Sichra, U.; Robertson, R.; Wood, S.; Zhu, T.; Nelson, G.; Guo, Z.; Sun, Y. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 2011, 36, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Brauman, K.A.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environ. Res. Lett. 2013, 8, 024030. [Google Scholar] [CrossRef]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D.F. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Cherie, N. SWAT modeling of the impact of future climate change on the hydrology and the water resources in the upper Blue Nile River basin, Ethiopia. In Proceedings of the 6th International Conference on Water Resources and Environment Research, ICWRER, Koblenz, Germany, 3–7 June 2013; pp. 488–523. [Google Scholar]
- Van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F. Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci. 2012, 16, 3371. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Alemayehu, T.; McCartney, M.; Kebede, S. The water resource implications of planned development in the Lake Tana catchment, Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 211–221. [Google Scholar] [CrossRef]
- Belete, M.A. Modeling and Analysis of Lake Tana Sub Basin Water Resources Systems, Ethiopia; Universitat Agrar-und Umweltwissenschaftliche Fakultat: Rostock, Germany, 2014. [Google Scholar]
- Dawit, M.; Halefom, A.; Teshome, A.; Sisay, E.; Shewayirga, B.; Dananto, M. Changes and variability of precipitation and temperature in the Guna Tana watershed, Upper Blue Nile Basin, Ethiopia. Model. Earth Syst. Environ. 2019, 5, 1395–1404. [Google Scholar] [CrossRef]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47, W04511. [Google Scholar] [CrossRef]
- Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of the Lake Tana basin, Ethiopia. J. Maps 2013, 9, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Gadédjisso-Tossou, A.; Avellán, T.; Schütze, N. Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa. Water 2018, 10, 1803. [Google Scholar] [CrossRef] [Green Version]
- Adgolign, T.B.; Rao, G.S.; Abbulu, Y. Evaluation of Existing Environmental Protection Policies and Practices vis-à-vis Sustainable Water Resources Development in Didessa Sub-basin, West Ethiopia. Nat. Environ. Pollut. Technol. 2016, 15, 385. [Google Scholar]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.; Salim, R. Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Palazón, L.; Navas, A. Case study: Effect of climatic characterization on river discharge in an alpine-prealpine catchment of the spanish pyrenees using the SWAT model. Water 2016, 8, 471. [Google Scholar] [CrossRef]
- Tiwari, P. Land-use changes in Himalaya and their impact on the plains ecosystem: Need for sustainable land use. Land Use Policy 2000, 17, 101–111. [Google Scholar] [CrossRef]
- Fiseha, B.M.; Setegn, S.G.; Melesse, A.M.; Volpi, E.; Fiori, A. Hydrological analysis of the Upper Tiber River Basin, Central Italy: A watershed modelling approach. Hydrol. Process. 2013, 27, 2339–2351. [Google Scholar] [CrossRef]
- Di Luzio, M.; Srinivasan, R.; Arnold, J.G. Integration of Watershed Tools and Swat Model into Basins 1. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 1127–1141. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.; Srinivasan, R.; Arnold, J. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Mengistu, D.; Sorteberg, A. Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin. Hydrol. Earth Syst. Sci. 2012, 16, 391. [Google Scholar] [CrossRef] [Green Version]
- Tobin, K.J.; Bennett, M.E. Improving SWAT Model Calibration Using Soil MERGE (SMERGE). Water 2020, 12, 2039. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Melesse, A.M.; Abtew, W.; Setegn, S.G. Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Springer Science & Business Media: Geneva, Switzerland, 2014. [Google Scholar]
- Zhou, Y.; Wenninger, J.; Yang, Z.; Yin, L.; Huang, J.; Hou, L.; Wang, X.; Zhang, D.; Uhlenbrook, S. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China—A synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 2435. [Google Scholar] [CrossRef] [Green Version]
S/n | Station Name | Elevation (m) | Data Coverage (year) | Missed (%) |
---|---|---|---|---|
1 | Anger | 1350 | 1986–2013 | 27.89 |
2 | Arjo | 2565 | 1986–2013 | 27.80 |
3 | Bedelle | 2011 | 1986–2013 | 1.34 |
4 | Didessa | 1310 | 1986–2013 | 28.19 |
5 | Ejaji | 1732 | 1986–2013 | 26.7 |
6 | Jima | 1718 | 1986–2013 | 0.18 |
7 | Limu ganet | 1766 | 1986–2013 | 4.28 |
8 | Nekemte | 2080 | 1986–2013 | 1.32 |
Parameters | Description | Range |
---|---|---|
EPCO | Plant uptake compensation factor that expresses the amount of water needed to meet the plant’s uptake demand | 0–1 |
ESCO | Soil evaporation compensation factor that directly influences the evapotranspiration losses from the watershed | 0–1 |
CANMX | Maximum canopy storage | 0–100 |
SOL_AWC | Available water capacity of the soil layer | 0.2–0.3 |
PLAPS | Precipitation lapse rate | 0–100 |
TLAPS | Temperature lapse rate | 13–15 |
SLSOIL | Slope length for the lateral subsurface flow | 0.4–0.5 |
SOL_DB | Density of the soil | 1–1.6 |
CH_K | The hydraulic conductivity of the channel | 0–500 |
CN2 | The initial Soil Conservation Services (SCS) runoff curve number | 0–100 |
SLSUBBSN | Average slope length | 0.3–0.3 |
HRU_SLP | Average slope steepness | −0.3–0.3 |
OV_N | Manning’s n value for overland flow | −0.3–0.3 |
ALPHA_BF | The parameter that expresses the recession or the rate at which the groundwater is returned to the flow | 0–1 |
GWQMN | The threshold depth of water in the shallow aquifer required to return the flow | 0–5000 |
GW_DELAY | The required time for water leaving the bottom of the root zone to reach the shallow aquifer where it can contribute to lateral groundwater flow | 1–500 |
GW_REVAP | Groundwater “revap” coefficient, which is a dimensionless coefficient controlling the rate of water movement between the root zone and the shallow aquifer | 0.02–0.2 |
REVAPMN | Threshold depth of water in the shallow aquifer needed for “revap” or percolation to the deep aquifer to occur (mmH2O). | 0–500 |
RCHRG_DP | Fraction of deep aquifer percolation fraction which recharges the deep aquifer | 0–1 |
Gaging Station | Simulation Period | Objective Function | Period | Value |
---|---|---|---|---|
Dhidhessa Near Arjo | 1989–2000 | R2 | Calibration | 0.85 |
NSE | 0.87 | |||
RMSE | 19.16 | |||
MAE | 16.82 | |||
PBIAS | 8.63 | |||
2001–2012 | R2 | Validation | 0.91 | |
NSE | 0.89 | |||
RMSE | 19.84 | |||
MAE | 16.48 | |||
PBIAS | 8.26 |
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg. monthly (cm) | 82.5 | 66.2 | 70.5 | 94.1 | 178.8 | 371.6 | 515.2 | 619.5 | 648.9 | 498.0 | 236.3 | 127.2 |
70% dependable | 75.2 | 64.2 | 53.8 | 60.9 | 134.5 | 265.9 | 436.3 | 563.4 | 538.6 | 388.1 | 182.9 | 101.5 |
80% dependable | 69.0 | 56.1 | 51.9 | 55.9 | 116.6 | 241.4 | 386.8 | 515.0 | 531.0 | 346.5 | 159.6 | 87.5 |
85% dependable | 67.0 | 54.0 | 50.3 | 54.1 | 113.1 | 237.9 | 370.0 | 494.8 | 494.5 | 320.0 | 142.5 | 87.1 |
90% dependable | 65.3 | 51.9 | 47.2 | 52.3 | 101.9 | 214.9 | 332.3 | 480.8 | 436.8 | 315.0 | 134.9 | 84.0 |
Slope Class | Irrigation Application Method | Agricultural Area, (ha) | For Annual Runoff | For 70% Dependable Flow | For 80% Dependable Flow |
---|---|---|---|---|---|
Potential Irrigable Area, ha | |||||
less than 8% | Surface | 259,028 | 1,104,426 | 901,669.8 | 831,301.4 |
Sprinkler | 1,877,267 | 1,532,629 | 1,413,019 | ||
Drip | 2,331,566 | 1,903,525 | 1,754,970 | ||
less than 15% | Surface | 643,162 | 1,104,426 | 901,669.8 | 831,301.4 |
Sprinkler | 1,877,267 | 1,532,629 | 1,413,019 | ||
Drip | 2,331,566 | 1,903,525 | 1,754,970 | ||
less than 30% | Surface | 1,023,581 | 1,104,426 | 901,669.8 | 831,301.4 |
Sprinkler | 1,877,267 | 1,532,629 | 1,413,019 | ||
Drip | 2,331,566 | 1,903,525 | 1,754,970 |
Suitable Land When Considering a Slope of Less Than 8% | ||||
Suitability Class | Area Coverage for Different Agro-Ecological Zoning Values | |||
HL | LL | ML | Total | |
N | 2630.80 | 557,302.41 | 624,851.15 | 1,212,012.42 |
S | 105.88 | 163,014.75 | 95,907.77 | 259,028.40 |
% of S | 17.6 | |||
Suitable Land When Considering A Slope Less Than 15% | ||||
N | 2255.22 | 357,629.09 | 440,760.43 | 827,879.19 |
S | 481.29 | 362,687.47 | 279,992.87 | 643,161.63 |
% of S | 43.72 | |||
Suitable Land When Considering A Slope Less Than 30% | ||||
N | 877.44 | 203,777.99 | 215,691.14 | 447,459.74 |
S | 1859.94 | 516,589.64 | 505,131.50 | 1,023,581.08 |
% of S | 69.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawit, M.; Olika, B.D.; Muluneh, F.B.; Leta, O.T.; Dinka, M.O. Assessment of Surface Irrigation Potential of the Dhidhessa River Basin, Ethiopia. Hydrology 2020, 7, 68. https://doi.org/10.3390/hydrology7030068
Dawit M, Olika BD, Muluneh FB, Leta OT, Dinka MO. Assessment of Surface Irrigation Potential of the Dhidhessa River Basin, Ethiopia. Hydrology. 2020; 7(3):68. https://doi.org/10.3390/hydrology7030068
Chicago/Turabian StyleDawit, Meseret, Bilisummaa Dirriba Olika, Fiseha Behulu Muluneh, Olkeba Tolessa Leta, and Megarsa Olumana Dinka. 2020. "Assessment of Surface Irrigation Potential of the Dhidhessa River Basin, Ethiopia" Hydrology 7, no. 3: 68. https://doi.org/10.3390/hydrology7030068
APA StyleDawit, M., Olika, B. D., Muluneh, F. B., Leta, O. T., & Dinka, M. O. (2020). Assessment of Surface Irrigation Potential of the Dhidhessa River Basin, Ethiopia. Hydrology, 7(3), 68. https://doi.org/10.3390/hydrology7030068