Analyzing the Impacts of Serial Correlation and Shift on the Streamflow Variability within the Climate Regions of Contiguous United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Calculation of Trend
2.2.2. Calculation of Shift
2.2.3. Calculation of Field Significance
3. Results and Discussions
3.1. Trend Results
3.1.1. Trend in Seasonal Streamflow
3.1.2. Trend in Percentile Streamflow
3.2. Shift and Trend-Shift Results
4. Conclusions
- The trend in streamflow varied spatially with the climate regions and the number of stations showing trend also differed with seasons. A greater number of stations showed a trend during summer as compared to other seasons. Stations of NE showed an increasing trend in streamflow while stations of NW and SW showed a decreasing streamflow trend during summer.
- A greater number of stations showed a trend in Q05 and Q50 as compared to Q95 and Q100. Stations of NGP and NE showed an increasing trend while stations of NW and SW showed a decreasing trend in Q05 and Q50. Very few stations with a decreasing trend in Q100 were scattered over all climate regions except for a few stations of NE and MW showing an increasing trend.
- Both LTP and lag-1 autocorrelation were observed in seasonal streamflow volume and percentile streamflow. LTP influenced the trend significance of streamflow more than lag-1 autocorrelation as a smaller number of stations showed the MK3 trend as compared to the MK1 and MK2 trends. The maximum number of stations of NW and SW showed decreasing MK1, MK2, and MK3 summer streamflow trend; this suggests the changes in streamflow within the region are not caused by long term variability rather may be attributed to the recent changes caused by changing climate.
- A smaller number of stations showed a shift in both seasonal streamflow volume and percentile streamflow after accounting for lag-1 autocorrelation. Accounting for lag-1 autocorrelation improved the results of change point; stations within each climate regions showed more uniformity in change points after accounting for lag-1 autocorrelation.
- A smaller number of stations showed a trend in both seasonal and percentile streamflow records after accounting for the shift. This shows the changes in streamflow are the result of regime shift as compared to the long-term trends.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nazemi, A.; Wheater, H.S. Assessing the Vulnerability of Water Supply to Changing Streamflow Conditions. Eos Trans. Am. Geophys. Union 2014, 95, 288. [Google Scholar] [CrossRef]
- Bridgewater, P.; Guarino, E.; Thompson, R. Hydrology in the Anthropocene. Encycl. Anthr. 2018, 87–92. [Google Scholar] [CrossRef]
- Joshi, N.; Kalra, A.; Lamb, K.W. Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region. Hydrology 2020, 7, 71. [Google Scholar] [CrossRef]
- Deb, P.; Kiem, A.S.; Willgoose, G. A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. J. Hydrol. 2019, 575, 273–291. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V.P., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Durdu, Ö.F. Effects of climate change on water resources of the Büyük Menderes River basin, western Turkey. Turk. J. Agric. Forest. 2010, 34, 319–332. [Google Scholar]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Solander, K.C.; Reager, J.T.; Wada, Y.; Famiglietti, J.S.; Middleton, R.S. GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- NCEI. NOAA National Centers for Environmental Information. U.S. Billion-Dollar Weather and Climate Disasters. Available online: http://www.ncdc.noaa.gov/billions/summary-stats (accessed on 5 May 2020). [CrossRef]
- Mallakpour, I.; Villarini, G. Investigating the relationship between the frequency of flooding over the central United States and large-scale climate. Adv. Water Resour. 2016, 92, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Chang. 2015, 5, 250–254. [Google Scholar] [CrossRef]
- Shukla, S.; Safeeq, M.; AghaKouchak, A.; Guan, K.; Funk, C. Temperature impacts on the water year 2014 drought in California. Geophys. Res. Lett. 2015, 42, 4384–4393. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Cheng, L.; Mazdiyasni, O.; Farahmand, A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Rahaman, M.; Kalra, A.; Thakur, B.; Lamb, K.W.; Maheshwari, P. Regional Climatological Drought: An Assessment Using High-Resolution Data. Hydrology 2020, 7, 33. [Google Scholar] [CrossRef]
- Lins, H.F.; Slack, J.R. Streamflow trends in the United States. Geophys. Res. Lett. 1999, 26, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Sagarika, S.; Kalra, A.; Ahmad, S. Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol. 2014, 517, 36–53. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Lettenmaier, D.P. Effects of Climate Change on Hydrology and Water Resources in the Columbia River Basin. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1597–1623. [Google Scholar] [CrossRef]
- Thakur, B.; Kalra, A.; Ahmad, S.; Lamb, K.W.; Lakshmi, V. Bringing statistical learning machines together for hydro-climatological predictions—Case study for Sacramento San joaquin River Basin, California. J. Hydrol. Reg. Stud. 2020, 27, 100651. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. The importance of prewhitening in change point analysis under persistence. Stoch. Environ. Res. Risk Assess. 2015, 30, 763–777. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.A. Unmasking a Shifty Climate System. Science 1992, 255, 1508–1510. [Google Scholar] [CrossRef] [Green Version]
- Gedalof, Z.; Mantua, N.J.; Peterson, D.L. A multi-century perspective of variability in the Pacific Decadal Oscillation: New insights from tree rings and coral. Geophys. Res. Lett. 2002, 29, 57-1. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.M., Jr.; Xu, J. The 1977 Global Regime Shift: A Discussion of Its Dynamics and Impacts in the Eastern Pacific Ecosystem. Atmos. Ocean 2012, 50, 421–436. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45, 45. [Google Scholar] [CrossRef]
- Bunting, A.H.; Dennett, M.D.; Elston, J.; Milford, J.R. Rainfall trends in the West African Sahel. Q. J. R. Meteorol. Soc. 1976, 102, 59–64. [Google Scholar] [CrossRef]
- Thakur, B.; Kalra, A.; Lakshmi, V.; Lamb, K.W.; Miller, W.P.; Tootle, G. Linkage between ENSO phases and western US snow water equivalent. Atmos. Res. 2020, 236, 104827. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Regonda, S.K.; Rajagopalan, B.; Clark, M.; Pitlick, J. Seasonal Cycle Shifts in Hydroclimatology over the Western United States. J. Clim. 2005, 18, 372–384. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; p. 49. [Google Scholar]
- Kendall, M. Multivariate Analysis; Charles Griffin: London, UK, 1975; p. 210. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Von Neumann, J. Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Stat. 1941, 12, 367–395. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Clim. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Tank, A.M.G.K.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Clim. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. 1951, 116, 770–808. [Google Scholar]
- Koutsoyiannis, D.; Montanari, A. Statistical analysis of hydroclimatic time series: Uncertainty and insights. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P. A comparison of the power of the ttest, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des teststde Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Melillo, J.M.; Richmond, T.C.; Yohe, G. Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014; p. 841.
- Bosilovich, M.G. Regional Climate and Variability of NASA MERRA and Recent Reanalyses: U.S. Summertime Precipitation and Temperature. J. Appl. Meteorol. Clim. 2013, 52, 1939–1951. [Google Scholar] [CrossRef]
- Schoof, J.T.; Ford, T.W.; Pryor, S.C. Recent Changes in U.S. Regional Heat Wave Characteristics in Observations and Reanalyses. J. Appl. Meteorol. Clim. 2017, 56, 2621–2636. [Google Scholar] [CrossRef]
- Lins, H.F. USGS Hydro-Climatic Data Network 2009 (HCDN-2009). In Fact Sheet; U.S. Geological Survey: Washington, DC, USA, 2012; p. 4. [Google Scholar]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Adv. Stud. Theor. Appl. Econom. 1992, II, 345–381. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wilks, D.S. On “Field Significance” and the False Discovery Rate. J. Appl. Meteorol. Clim. 2006, 45, 1181–1189. [Google Scholar] [CrossRef]
- Redmond, K.T.; Koch, R.W. Surface Climate and Streamflow Variability in the Western United States and Their Relationship to Large-Scale Circulation Indices. Water Resour. Res. 1991, 27, 2381–2399. [Google Scholar] [CrossRef]
- Zhang, Y.; Schilling, K. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J. Hydrol. 2006, 324, 412–422. [Google Scholar] [CrossRef]
- Miles, E.L.; Snover, A.K.; Hamlet, A.F.; Callahan, B.; Fluharty, D. Pacific Northwest Regional Assessment: The Impacts of Climate Variability and Climate Change on the Water Resources of the Columbia River Basin1. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, K.E.; Palecki, M.A.; Ensor, L.; Easterling, D.; Hubbard, K.G.; Robinson, D.; Redmond, K. Trends in Twentieth-Century U.S. Extreme Snowfall Seasons. J. Clim. 2009, 22, 6204–6216. [Google Scholar] [CrossRef]
- Pathak, P.; Kalra, A.; Ahmad, S. Temperature and precipitation changes in the Midwestern United States: Implications for water management. Int. J. Water Resour. Dev. 2016, 33, 1003–1019. [Google Scholar] [CrossRef]
- De Martino, G.; Fontana, N.; Marini, G.; Singh, V.P. Variability and Trend in Seasonal Precipitation in the Continental United States. J. Hydrol. Eng. 2013, 18, 630–640. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy Precipitation and High Streamflow in the Contiguous United States: Trends in the Twentieth Century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Arheimer, B.; Donnelly, C.; Lindström, G. Regulation of snow-fed rivers affects flow regimes more than climate change. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L. Temporal evolution of low-flow regimes in Canadian rivers. Water Resour. Res. 2008, 44, 44. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Knight, R.W.; Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nat. Cell Biol. 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Van Loon, H. Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Chang. 1995, 31, 301–326. [Google Scholar]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, T. Why do some pelagic fishes have wide fluctuations in their numbers? Biological basis of fluctuation from the viewpoint of evolutionary ecology. FAO Fish 1983, 291, 1065–1080. [Google Scholar]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2017, 7, 48–52. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 2002, 29, 38-1. [Google Scholar] [CrossRef]
- Solander, K.C.; Bennett, K.E.; Middleton, R.S. Shifts in historical streamflow extremes in the Colorado River Basin. J. Hydrol. Reg. Stud. 2017, 12, 363–377. [Google Scholar] [CrossRef]
- Pathak, P.; Kalra, A.; Ahmad, S.; Bernardez, M. Wavelet-Aided Analysis to Estimate Seasonal Variability and Dominant Periodicities in Temperature, Precipitation, and Streamflow in the Midwestern United States. Water Resour. Manag. 2016, 30, 4649–4665. [Google Scholar] [CrossRef]
S.N. | NCA Regions | No. of Stations | Constituent States |
---|---|---|---|
1 | Northwest (NW) | 56 | Idaho, Oregon, Washington |
2 | Southwest (SW) | 76 | California, Nevada, Utah, Arizona, New Mexico, Colorado |
3 | Northern Great Plains (NGP) | 41 | Kansas, Nebraska, South Dakota, North Dakota, Wyoming, Montana |
4 | Southern Great Plains (SGP) | 29 | Texas, Oklahoma |
5 | Midwest (MW) | 58 | Ohio, Indiana, Michigan, Illinois, Wisconsin, Missouri, Iowa, Minnesota |
6 | Northeast (NE) | 65 | Maine, Vermont, New Hampshire, Massachusetts, New York, Rhode Island, Connecticut, New Jersey, Pennsylvania, Maryland, Delaware, Washington DC, West Virginia |
7 | Southeast (SE) | 94 | Virginia, Kentucky, Tennessee, Arkansas, Mississippi, Alabama, Louisiana, Georgia, Florida, South Carolina, North Carolina |
Winter | Spring | Summer | Autumn | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trend (+/−) | Shift (+/−) | Trend (+/−) | Shift (+/−) | Trend (+/−) | Shift (+/−) | Trend (+/−) | Shift (+/−) | |||||||||||||
MK1 | MK2 | MK3 | Shift-1 | Shift-2 | MK1 | MK2 | MK3 | Shift-1 | Shift-2 | MK1 | MK2 | MK3 | Shift-1 | Shift-2 | MK1 | MK2 | MK3 | Shift-1 | Shift-2 | |
Midwest | 1/1 | 1/1 | 0/0 | 3/1 | 2/1 | 6/8 | 5/8 | 6/7 | 4/8 | 4/8 | 2/7 | 2/7 | 2/6 | 1/10 | 1/9 | 5/3 | 5/3 | 4/1 | 4/11 | 4/11 |
Northeast | 11/0 | 11/0 | 9/0 | 18/1 | 17/1 | 1/6 | 1/6 | 1/6 | 1/3 | 0/3 | 22/1 | 20/1 | 20/1 | 17/0 | 15/0 | 20/0 | 19/0 | 14/0 | 22/0 | 15/0 |
Northern Great Plains | 8/1 | 8/2 | 1/0 | 13/1 | 8/1 | 4/1 | 5/1 | 0/1 | 7/3 | 6/3 | 10/4 | 9/4 | 2/3 | 12/7 | 9/7 | 15/1 | 14/1 | 5/0 | 18/4 | 14/2 |
Northwest | 0/1 | 0/1 | 0/0 | 0/1 | 0/1 | 0/2 | 0/2 | 0/1 | 0/2 | 0/2 | 0/26 | 0/27 | 0/25 | 0/29 | 0/26 | 3/2 | 3/2 | 3/1 | 1/2 | 1/2 |
Southeast | 0/5 | 0/7 | 0/5 | 0/36 | 0/36 | 0/11 | 0/12 | 0/10 | 0/13 | 0/15 | 0/6 | 0/7 | 0/6 | 0/7 | 0/7 | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 |
Southern Great Plains | 0/2 | 0/1 | 0/0 | 2/2 | 1/1 | 0/3 | 0/3 | 0/1 | 0/2 | 0/2 | 1/3 | 1/3 | 0/2 | 1/5 | 1/5 | 0/2 | 0/2 | 0/1 | 2/2 | 2/2 |
Southwest | 11/4 | 9/6 | 6/1 | 13/3 | 10/5 | 0/13 | 0/12 | 0/11 | 0/14 | 0/13 | 0/26 | 0/25 | 0/22 | 0/24 | 0/24 | 3/12 | 3/14 | 2/3 | 4/18 | 2/14 |
Q05 | Q50 | Q95 | Q100 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trend (+/−) | Shift(+/−) | Trend (+/−) | Shift(+/−) | Trend (+/−) | Shift(+/−) | Trend (+/−) | Shift(+/−) | |||||||||||||
MK1 | MK2 | MK3 | Shift-1 | Shift-2 | MK1 | MK2 | MK3 | Shift-1 | Shift-2 | MK1 | MK2 | MK3 | Shift-1 | Shift-2 | MK1 | MK2 | MK3 | Shift-1 | Shift-2 | |
Midwest | 5/7 | 5/10 | 0/2 | 3/12 | 1/10 | 2/9 | 2/9 | 0/7 | 2/9 | 1/9 | 1/8 | 1/8 | 1/7 | 2/9 | 2/9 | 3/4 | 3/4 | 3/4 | 3/2 | 3/2 |
Northeast | 17/1 | 17/1 | 17/1 | 20/1 | 20/1 | 32/1 | 27/1 | 11/1 | 45/1 | 32/1 | 2/0 | 2/0 | 1/0 | 2/0 | 2/0 | 4/1 | 4/1 | 3/1 | 4/1 | 4/1 |
Northern Great Plains | 18/2 | 16/4 | 1/0 | 20/3 | 15/4 | 16/1 | 16/1 | 0/0 | 22/3 | 13/3 | 4/4 | 3/3 | 1/3 | 7/8 | 4/7 | 0/1 | 0/1 | 0/1 | 2/2 | 2/2 |
Northwest | 6/21 | 0/21 | 0/16 | 1/25 | 0/25 | 2/2 | 2/2 | 2/1 | 1/5 | 0/5 | 0/1 | 0/2 | 0/1 | 1/2 | 0/2 | 3/1 | 3/2 | 2/1 | 6/2 | 6/2 |
Southeast | 2/30 | 2/35 | 2/15 | 2/31 | 2/30 | 0/21 | 0/32 | 0/5 | 0/25 | 0/30 | 0/2 | 0/2 | 0/2 | 0/4 | 0/4 | 0/2 | 0/2 | 0/1 | 0/6 | 0/5 |
Southern Great Plains | 1/3 | 1/3 | 0/2 | 5/4 | 3/4 | 1/1 | 1/1 | 0/0 | 3/3 | 2/2 | 0/2 | 0/2 | 0/0 | 0/3 | 0/3 | 0/4 | 0/4 | 0/3 | 0/5 | 0/5 |
Southwest | 4/27 | 5/27 | 1/12 | 6/28 | 4/26 | 5/16 | 3/17 | 2/1 | 4/20 | 2/16 | 0/9 | 0/9 | 0/8 | 0/7 | 0/7 | 0/9 | 0/9 | 0/9 | 0/7 | 0/5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, B.; Kalra, A.; Joshi, N.; Jogineedi, R.; Thakali, R. Analyzing the Impacts of Serial Correlation and Shift on the Streamflow Variability within the Climate Regions of Contiguous United States. Hydrology 2020, 7, 91. https://doi.org/10.3390/hydrology7040091
Thakur B, Kalra A, Joshi N, Jogineedi R, Thakali R. Analyzing the Impacts of Serial Correlation and Shift on the Streamflow Variability within the Climate Regions of Contiguous United States. Hydrology. 2020; 7(4):91. https://doi.org/10.3390/hydrology7040091
Chicago/Turabian StyleThakur, Balbhadra, Ajay Kalra, Neekita Joshi, Rohit Jogineedi, and Ranjeet Thakali. 2020. "Analyzing the Impacts of Serial Correlation and Shift on the Streamflow Variability within the Climate Regions of Contiguous United States" Hydrology 7, no. 4: 91. https://doi.org/10.3390/hydrology7040091
APA StyleThakur, B., Kalra, A., Joshi, N., Jogineedi, R., & Thakali, R. (2020). Analyzing the Impacts of Serial Correlation and Shift on the Streamflow Variability within the Climate Regions of Contiguous United States. Hydrology, 7(4), 91. https://doi.org/10.3390/hydrology7040091