Investigating Tradeoffs between Agricultural Development and Environmental Flows under Climate Change in the Stung Chinit Watershed, Cambodia
Abstract
:1. Introduction
2. Study Area
3. Model Description
3.1. Model Formulation
3.1.1. Water Evaluation and Planning
3.1.2. Catchments and Land Use
3.1.3. Irrigated Rice Representation
3.1.4. Climate Inputs
3.1.5. Reservoirs and Irrigation Schemes
Stung Chinit Reservoir Characteristics [47] | Elevation (m) | Volume (m3) | Flooded Area (ha) |
---|---|---|---|
Empty | 248 | 0 | 0 |
Dead storage level | 248.3 | 2,740,000 | 261.82 |
Minimum supply level | 251.6 | 26,240,000 | 1700.94 |
Full supply level | 252 | 35,580,000 | 2110.05 |
Taing Krasaing Reservoir Characteristics [46] | |||
Minimum supply level | 9.08 | 0 | Unknown |
Full supply level | 16.4 | 7,000,000 | Unknown |
Maximum capacity of canal | 84.5 m3/s |
3.1.6. Domestic Water Use
3.2. Calibration
3.3. Scenario Analysis
4. Results
4.1. Climate Change in the Stung Chinit Watershed
4.2. Comparison of Water Demands
4.3. Irrigation and Streamflow Coverage
4.4. Tradeoffs between Different Water Uses
5. Discussion
5.1. Vulnerability of the Stung Chinit Watershed
5.2. Water Management and Inequitable Water Access
5.3. Future Work
- A better representation of losses due to infiltration on the fields and canals to better determine actual water availability in the system. Issues with infiltration have been mentioned in previous work, but volumes lost are not well understood [45];
- Assessing how land use change is affecting water availability, particularly due to siltation in the reservoirs, a concern mentioned in stakeholder workshops;
- Improving the representation of the reservoirs and their operations if more data are available;
- Considering different cropping patterns between and within irrigation groups, rather than assuming that all groups plant the same.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Catchment Name | WEAP Method | Irrigated? | River | Upstream of Gauge? | Area in 2017 (km2) |
---|---|---|---|---|---|
Catchment 1 | Soil moisture | N | Stung Chinit | Y | 1771.3 |
Catchment 2 | Soil moisture | N | Stung Chinit | Y | 801.1 |
Catchment 3 | Soil moisture | N | Stung Chinit | Y | 769.2 |
Catchment 4 | Soil moisture | N | Catch 4 River, Stung Chinit | Y | 449.2 |
Catchment 5 | Soil moisture | N | Stung Chinit | Y | 412.5 |
Catchment 6 | Soil moisture | N | Stung Chinit | Y | 143.2 |
Catchment 7 | Soil moisture | N | Stung Taing Krasaing | N | 828.4 |
Catchment 8 | Soil moisture | N | Catch 8 River, Stung Taing Krasaing | N | 44.1 |
Catchment 9 | Soil moisture | N | Stung Taing Krasaing | N | 181.6 |
Catchment 10 | Soil moisture | N | Catch 10 River, Downstream Floodplain | N | 201.3 |
Catchment 11 | Soil moisture | N | Catch 11 River, Downstream Floodplain | N | 300.5 |
Catchment 12 | Soil moisture | N | Downstream Floodplain | N | 1627.5 |
Group 1 | MABIA | Y | Chinit Main Canal | N | 30.0 |
Group 2 | MABIA | Y | Stung Taing Krasaing | N | 76.6 |
Group 3 | MABIA | Y | Stung Taing Krasaing Reservoir | N | 12.1 |
Group 4 | MABIA | Y | Chinit Main Canal | N | 9.3 |
Group 5 | MABIA | Y | Stung Chinit | N | 16.4 |
Group 6 | MABIA | Y | Chinit Main Canal | N | 36.2 |
Group 7 | MABIA | Y | Stung Taing Krasaing | N | 4.5 |
Group 8 | MABIA | Y | Catch 11 River, Downstream Floodplain | N | 4.8 |
WESTool Land Use Category | WEAP Land Use Category | 2002 Area (km2) | 2015 Area (km2) |
---|---|---|---|
Closed forest | Forest | 4815 | 3259 |
Open forest | |||
Wetland forest | |||
Plantation | Plantation | 2 | 203 |
Irrigated cropland | Non-Irrigated Rice 1 | 1375 | 1722 |
Rainfed cropland | |||
Mosaic cropland | Mosaic Cropland | 1281 | 2193 |
Pasture | Pasture | 154 | 154 |
Urban | Urban | 24 | 24 |
Water | Water | 35 | 36 |
Wetland | Wetland | 18 | 21 |
N/A | Irrigated Rice 1 | 0 | 92 |
Crop Pattern | Rice (1) | Crop Name (1) | Plant Date (2) | Harvest Date (2) | Duration (1) | Water Depth (Assuming Plant by Transplant). Dry Season is Shaded. (3) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J | F | M | A | M | J | J | A | S | O | N | D | |||||||||||||||||||
R1 | Med | Pkar Rumdoul | June/July (4) | October/November (4) | 120 to 140 days | Plant | maint 3 cm | |||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
R2 | Early | IR 66 | May | August | 105 to 115 days | Plant | maint 3 cm | |||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
Med | Pkar Rumdoul | September | January | 120 to 140 days | Plant | maint 3 cm | ||||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
R3 | Early | IR 66 | May | August | 105 to 115 days | Plant | maint 3 cm | |||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
Early | IR 66 | September | December | 105 to 115 days | Plant | maint 3 cm | ||||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
Early | IR 66 | January | May | 105 to 115 days | Plant | maint 3 cm | ||||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
R4 | Early | 85 Day | May | July | 85 days | Plant | maint 3 cm | |||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
Early | 85 Day | August | October | 85 days | Plant | maint 3 cm | ||||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
Early | 85 Day | November | January | 85 days | Plant | maint 3 cm | ||||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr | |||||||||||||||||||||||||||||
Early | 85 Day | February | April | 85 days | Plant | maint 3 cm | ||||||||||||||||||||||||
Grow | fill 20 cm | maint 20–30 cm | ||||||||||||||||||||||||||||
Harvest | dr |
Location of Villages | % Demand Sourced from Groundwater | % Demand Sourced from Surface Water | % Demand Sourced from Other Demand | Surface Water Source |
---|---|---|---|---|
Catchment 1 | 88 | 7 | 5 | Stung Chinit |
Catchment 2 | 83 | 17 | 0 | Stung Chinit |
Catchment 3 | 93 | 3 | 4 | Stung Chinit |
Catchment 4 | 95 | 3 | 2 | Catch 4 River |
Catchment 5 | 86 | 7 | 7 | Stung Chinit |
Catchment 6 | 97 | 2 | 1 | Stung Chinit |
Catchment 7 | 97 | 2 | 1 | Stung Taing Krasaing |
Catchment 8 | 87 | 4 | 10 | Catch 8 River |
Catchment 9 | 87 | 9 | 5 | Stung Taing Krasaing |
Catchment 10 | 91 | 4 | 4 | Catch 10 River |
Catchment 11 | 86 | 9 | 5 | Catch 11 River |
Catchment 12 | 92 | 7 | 1 | Stung Chinit in downstream Floodplain |
Variable | WEAP Simulation | Source 1 | Source 2 | Source 3 |
---|---|---|---|---|
Reservoir evaporation | Range: 0.04–7.8 mm/day Average: 3.9 mm/day | 4.5 mm/day [45] | 4–5 mm/day [47] | Pan Evaporation Measurements: Range: 0.88–9.97 mm/day Average: 4.9 mm/day [58] |
Deep percolation | Average: 0.25 mm/day | Range: 2–8 mm/day [46] | ||
Irrigation pre-saturation | 250–300 mm (transplanting) | 150–200 mm [45] (broadcasting) | ||
Wet season rice irrigation requirement | Average: 8433 m3/ha | Average: 8000 m3/ha [46] | Average: 7000 m3/ha [45] |
References
- UNDP Climate Change Country Profiles: Cambodia. Available online: https://www.geog.ox.ac.uk/research/climate/projects/undp-cp/UNDP_reports/Cambodia/Cambodia.hires.report.pdf (accessed on 3 November 2020).
- International Food Policy Research Institute. Building Climate Resilience in the Agriculture Sector of Asia and the Pacific; Asian Development Bank: Manila, Philippines, 2009; ISBN 978-971-561-827-4. [Google Scholar]
- Hasson, S.; Pascale, S.; Lucarini, V.; Böhner, J. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res. 2016, 180, 42–63. [Google Scholar] [CrossRef] [Green Version]
- Thoeun, H.C. Observed and projected changes in temperature and rainfall in Cambodia. Weather Clim. Extrem. 2015, 7, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Country Report of Cambodia Disaster Management. Available online: https://www.adrc.asia/countryreport/KHM/2013/KHM_CR2013B.pdf (accessed on 12 November 2020).
- Bun, S.; Oeurng, C.; Lim, V.; Hornbuckle, J. Estimating Rice Water Use using Water Balance Approach: Case study in Cambodia. Techo-Sci. Res. J. 2014, 2, 17–24. [Google Scholar]
- Keskinen, M.; Kakonen, M.; Tola, P.; Varis, O. The Tonle Sap Lake, Cambodia: Water-related conflicts with abundance of water. EPSJ 2007, 2. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Water Management Planning in Cambodia. Available online: http://www.iwmi.cgiar.org/Publications/issue_briefs/cambodia/issue_brief_01-awm_planning_in_cambodia.pdf (accessed on 12 November 2020).
- Smith, D.; Hornbuckle, J. A review on rice productivity in Cambodia and water use measurement using direct and indirect methods on a dry season rice crop. Tech. Rep. ACIAR 2013, 46, 12. [Google Scholar]
- Chhinh, N.; Millington, A. Drought monitoring for rice production in Cambodia. Climate 2015, 3, 792–811. [Google Scholar] [CrossRef] [Green Version]
- Touch, V.; Martin, R.J.; Scott, F.; Cowie, A.; Liu, D.L. Climate change impacts on rainfed cropping production systems in the tropics and the case of smallholder farms in North-west Cambodia. Environ. Dev. Sustain. 2017, 19, 1631–1647. [Google Scholar] [CrossRef]
- Cambodia Agricultural Research and Development. Available online: Institutehttps://www.cardi.org.kh/download.php?&file=Annual_Report_2012_Englsih.pdf (accessed on 12 October 2020).
- Cambodia Halving Poverty by 2015–Poverty Assessment 2006. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/154931468214795356/cambodia-halving-poverty-by-2015-poverty-assessment-2006 (accessed on 12 October 2020).
- Assessing the Economic Benefits of an Early Wet Season Rice Crop in Cambodia’s Rainfed Lowlands. Available online: https://studylib.net/doc/7878276/assessing-the-economic-benefits-of-an-early-wet-season-ri (accessed on 2 November 2020).
- US Department of Agriculture. Cambodia: Future Growth Rate of Rice Production Uncertain; US Department of Agriculture: Washington, DC, USA, 2010. Available online: https://ipad.fas.usda.gov/highlights/2010/01/cambodia/ (accessed on 2 November 2020).
- Hunsberger, C.; Work, C.; Herre, R. Linking climate change strategies and land conflicts in Cambodia: Evidence from the Greater Aural region. World Dev. 2018, 108, 309–320. [Google Scholar] [CrossRef]
- Nesbitt, H.J. Rice production in Cambodia: Cambodia-Irrigation-Australia Project; International Rice Research Institute: Manila, Philippines, 1997; ISBN 978-971-22-0100-4. [Google Scholar]
- Kim, S. Climate Change and Water Governance in Cambodia: Challenge and Perspectives for Water Security and Climate Change in Selected Catchments, Cambodia; Sreymom, S., Sokhem, P., Eds.; Cambodia Development Resource Institute: Phnom Penh, Cambodia, 2015; ISBN 9789924500049.
- Van Ty, T.; Sunada, K.; Ichikawa, Y.; Oishi, S. Evaluation of the state of water resources using Modified Water Poverty Index: A case study in the Srepok River basin, Vietnam-Cambodia. Int. J. River Basin Manag. 2010, 8, 305–317. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Murphy, T.; Irvine, K.; Sampson, M. The stress of climate change on water management in Cambodia with a focus on rice production. Clim. Dev. 2013, 5, 77–92. [Google Scholar] [CrossRef]
- Stewart, M.A.; Coclanis, P.A. Environmental Change and Agricultural Sustainability in the Mekong Delta; Springer: Dordrecht, The Netherlands, 2011; Volume 45, ISBN 978-94-007-0933-1. [Google Scholar]
- Sithirith, M. Water governance in Cambodia: From centralized water governance to farmer water user community. Resources 2017, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.A.; Li, S.; Wang, Q.; Lee, W.-S.; Lee, E.-J.; Horstmann, N.; Park, H.; Veasna, T.; Vanndy, L.; Pros, K.; et al. Assessing rice productivity and adaptation strategies for Southeast Asia under climate change through multi-scale crop modeling. Agric. Syst. 2016, 143, 14–21. [Google Scholar] [CrossRef]
- Thomas, T.; Ponlok, T.; Bansok, R.; De Lopez, T.; Chiang, C.; Phirun, N.; Chhun, C. Cambodian Agriculture: Adaptation to Climate Change Impact. SSRN J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Shrestha, S.; Datta, A. Assessment of climate change impact on water diversion from the Bago River to the Moeyingyi wetland, Myanmar. Curr. Sci. 2017, 112, 377. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Shrestha, M.; Babel, M.S. Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environ. Earth Sci 2016, 75, 280. [Google Scholar] [CrossRef]
- Trang, N.T.T.; Shrestha, S.; Shrestha, M.; Datta, A.; Kawasaki, A. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci. Total Environ. 2017, 576, 586–598. [Google Scholar] [CrossRef]
- Ministry of Environment Technical Coordination Unit for the Tonle Sap. Tole Sap Ecosystem and Value; 2001. Available online: http://www.mekonginfo.org/assets/midocs/0001325-environment-tonle-sap-ecosystem-and-value.pdf (accessed on 2 November 2020).
- Teh, L.S.L.; Bond, N.; Kc, K.; Fraser, E.; Seng, R.; Sumaila, U.R. The economic impact of global change on fishing and non-fishing households in the Tonle Sap ecosystem, Pursat, Cambodia. Fish. Res. 2019, 210, 71–80. [Google Scholar] [CrossRef]
- Sam, S.; Shinogi, Y. Performance assessment of farmer water user community: A case study in Stung Chinit irrigation system, Cambodia. Paddy Water Environ. 2015, 13, 19–27. [Google Scholar] [CrossRef]
- Irrigation Service Center (ISC). Stung Chinit Watershed Rapid Assessment Report. In Sustainable Water Partnership; Winrock International: Krong Saen Monourom, Cambodia, 2018. [Google Scholar]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Winrock International. Watershed Ecosystem Service Tool (WESTool). 2017. Available online: https://winrock.org/westool/ (accessed on 2 November 2020).
- Sieber, J.; Purkey, D. WEAP: Water evaluation and planning system. In User Guide for WEAP 2015; Stockholm Environmental Institute (SEI): Stockholm, Sweden, 2015. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. 326. [Google Scholar]
- Sheffield, J.; Goteti, G.; Wood, E.F. Global meteorological forcing dataset for land surface modeling. J. Climate. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- International Water Management Institute (IWMI). World Water & Climate Atlas. 2002. Available online: https://www.iwmi.cgiar.org/resources/world-water-and-climate-atlas/ (accessed on 2 November 2020).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Shrestha, S.; Shrestha, M.; Babel, M.S. Assessment of climate change impact on water diversion strategies of Melamchi Water supply project in Nepal. Appl. Clim. 2017, 128, 311–323. [Google Scholar] [CrossRef]
- Shrestha, M.; Acharya, S.C.; Shrestha, P.K. Bias correction of climate models for hydrological modelling - are simple methods still useful? Meteorol. Appl. 2017, 24, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Asian Development Bank (ADB). Cambodia: Stung Chinit Irrigation and Rural Infrastructure Project Completion Report; Asian Development Bank: Manila, Philippines, 2009; p. 62. [Google Scholar]
- International Centre for Environmental Management. The Impact of Water Supply Infrastructure on Floods and Droughts in the Mekong Region and the Implications for Food Production under the Mekong Challenge Program on Water and Food (MK12); Cambodia. 2014. Available online: https://icem.com.au/portfolio-items/the-impact-of-water-supply-infrastructure-on-floods-and-droughts-in-the-mekong-region/ (accessed on 3 October 2020).
- Rousseau, P.; Balmisse, S.; Toelen, P.; Fontenelle, J.-P.; Castellanet, C. Main Lessons Learnt from Project Implementation; Groupe de Recherche et d’Echanges Technologiques (GRET), Cambodia Center for Study and Development in Agriculture (CDAC): Phnom Penh, Cambodia, 2009; Volume 26. [Google Scholar]
- Lahmeyer IDP Consult, Inc.; TANCONS (Cambodia) co., Ltd. Kingdom of Cambodia: Uplands Irrigation and Water Resources Management Sector Project Appendix 7: Subproject Feasibility Study: Taing Krasaing Irrigation System; Asian Development Bank (ADB): Manila, Philippines, 2015. [Google Scholar]
- Lahmeyer International; SMEC Cambodia Consulting Ltd. Irrigation Infrastructure and Irrigation System Management Components; Stung Chinit Irrigation and Rural Infrastructure Project; Ministry of Water Resources and Meteorology (MOWRAM): Phnom Penh, Cambodia; Asian Development Bank (ADB): Manila, Philippines, 2006.
- Population Census 2008 (Province, District, Commune, Village Level). Available online: https://data.opendevelopmentcambodia.net/en/dataset/census-2008?type=dataset (accessed on 2 November 2020).
- Forni, L.G.; Galaitsi, S.E.; Mehta, V.K.; Escobar, M.I.; Purkey, D.R.; Depsky, N.J.; Lima, N.A. Exploring scientific information for policy making under deep uncertainty. Environ. Model. Softw. 2016, 86, 232–247. [Google Scholar] [CrossRef]
- Wopereis, M.C.S.; Kropff, M.J.; Maligaya, A.R.; Tuong, T.P. Drought-stress responses of two lowland rice cultivars to soil water status. Field Crop. Res. 1996, 46, 21–39. [Google Scholar] [CrossRef]
- Fukai, S.; Ouk, M. Increased productivity of rainfed lowland rice cropping systems of the Mekong region. Crop Pasture Sci. 2012, 63, 944. [Google Scholar] [CrossRef]
- Ikeda, H.; Kamoshita, A.; Yamagishi, J.; Ouk, M.; Lor, B. Assessment of management of direct seeded rice production under different water conditions in Cambodia. Paddy Water Environ. 2008, 6, 91–103. [Google Scholar] [CrossRef]
- Tabbal, D.F.; Bouman, B.A.M.; Bhuiyan, S.I.; Sibayan, E.B.; Sattar, M.A. On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agric. Water Manag. 2002, 56, 93–112. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- System of Rice Intensification—SRI Information by Country. Available online: http://sri.ciifad.cornell.edu/countries/ (accessed on 5 October 2020).
- Li, C.; Mosier, A.; Wassmann, R.; Cai, Z.; Zheng, X.; Huang, Y.; Tsuruta, H.; Boonjawat, J.; Lantin, R. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Shrestha, S.; Deb, P.; Bui, T.T.T. Adaptation strategies for rice cultivation under climate change in Central Vietnam. Mitig Adapt. Strat. Glob. Chang. 2016, 21, 15–37. [Google Scholar] [CrossRef]
- Ministry of Water Resources and Meteorology (MOWRAM). Rainfall Data from Phnom Penh Climate Station; Ministry of Water Resources and Meteorology (MOWRAM): Phnom Penh, Cambodia, 2018.
Irrigated Area by Group and Year (km2) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Total |
2008 | 9.5 | 0.0 | 0.0 | 2.9 | 5.2 | 11.5 | 0.0 | 0.0 | 29.2 |
2009 | 30.0 | 0.0 | 0.0 | 9.3 | 16.4 | 36.2 | 0.0 | 0.0 | 91.8 |
2017 | 30.0 | 76.6 | 12.1 | 9.3 | 16.4 | 36.2 | 4.5 | 0.0 | 185.1 |
2018 | 30.0 | 76.6 | 12.1 | 9.3 | 16.4 | 36.2 | 4.5 | 4.8 | 189.9 |
Assumption by Year | |||||||||
2007 | No irrigated area | ||||||||
2008 | The Stung Chinit reservoir starts supplying irrigation water in 2008 to 29.21 km2, approximately 30% of the total area, so 30% of each group that receives water from the Stung Chinit system (Groups 1, 4, 5 and 6) begins receiving water in this year | ||||||||
2009 | Starting in 2009, the Stung Chinit reservoir supplies water to the entire command area (Groups 1, 4, 5 and 6). | ||||||||
2017 | Starting in 2017, the Taing Krasaing reservoir starts supplying water to its entire command area (Groups 2, 3 and 7). | ||||||||
2018 | The expansion of the Stung Chinit system allows for 1/3 of Group 8 to receive water starting in 2018. |
Period | Rainfall | Temperature | Relative Humidity | Wind Speed | Cloud Coverage |
---|---|---|---|---|---|
1985–1995 | Thiesen polygon method using observed data from different stations | Princeton data at Pochentong station [38] | Weekly average observed data from Pochentong station | Princeton data [38] | IWMI estimates [39] |
1996–2010 | Observed data of Pochentong station | Observed data of Pochentong station | |||
2010–2017 | Weekly average Princeton data [38] | ||||
2019–2099 | 3 RCMs with 2 RCPs each and historical | 3 RCMs with 2 RCPs each and historical | Weekly average observed data from Pochentang station | Weekly average Princeton data [38] |
RCM Name | RCM Description | Driving GCM | Parameters | Simulation |
---|---|---|---|---|
CCAM-ACCESS | Commonwealth Scientific and Industrial Research Organization (CSIRO), Conformal-Cubic Atmospheric Model (CCAM) | ACCESS1.0 | Rainfall, Max and Min Temperatures | Historical Run: 1985–2005 Future Run: 2006–2099 RCP Scenarios: RCP 4.5 and RCP 8.5 |
CCAM-CNRM | CNRM-CM5 | |||
CCAM-MPI | MPI-ESM-LR |
Variable | Land Use Category | Value | Units |
---|---|---|---|
Deep Conductivity | All | 100 | mm/week |
Deep Water Capacity | All | 300 | mm |
Crop Coefficient (kc) | All | 1.1 | NA |
Root Zone Conductivity | All | 35 | mm/week |
Runoff Resistance Factor | Non-Irrigated Rice | 9 | NA |
Barren or Sparse Vegetation | 15 | NA | |
Forest | 24 | NA | |
Pasture | 18 | NA | |
Plantation | 12 | NA | |
Urban | 6 | NA | |
Water | 30 | NA | |
Wetland | 30 | NA | |
Preferred Flow Direction | All | 0.85 | NA |
Soil Water Capacity | Non-Irrigated Rice | 300 | mm |
All other categories | 700 | mm | |
Nash–Sutcliffe efficiency (NSE) | R2 | Percent Bias | Root Mean Squared Error (RMSE) (m3/s) |
0.81 | 0.8 | 19 | 31.94 |
Climate Projections | |||
---|---|---|---|
Projection Name | Description | ||
Historical | Historical climate, repeated into the future | ||
ACCESS 4.5 | RCM ACCESS, RCP 4.5 | ||
CNRM 4.5 | RCM CNRM, RCP 4.5 | ||
MPI-ESM-LR 4.5 | RCM MPI-ESM-LR, RCP 4.5 | ||
ACCESS 8.5 | RCM ACCESS, RCP 8.5 | ||
CNRM 8.5 | RCM CNRM, RCP 8.5 | ||
MPI-ESM-LR 8.5 | RCM MPI-ESM-LR, RCP 8.5 | ||
Management Strategies | |||
Strategy Name | Rice Crop Schedule | Increase Irrigated Area | Prioritize Different Demands |
S00 R_1x | Wet season rice | Maintain irrigated area at max size in 2018 for all irrigation schemes | During shortages, ensure supply to irrigation as first priority. No flow requirement implemented. |
S01 R_2x | Early wet season, wet season rice | ||
S02 R_3x | Early wet season, wet season, dry season rice | ||
S03 R_4x | Four rice crops per year | ||
S04 R_1x A_+10% | Wet season rice | Increase area of all irrigation schemes by 10% | |
S05 R_2x A_+10% | Early wet season, wet season rice | ||
S06 R_3x A_+10% | Early wet season, wet season, dry season rice | ||
S07 R_4x A_+10% | Four rice crops per year | ||
S08 R_1x FR_Q95 | Wet season rice | Maintain irrigated area at max size in 2018 for all irrigation schemes | During shortages, ensure 95 percentile flow downstream of irrigation diversions as first priority. |
S09 R _2x FR_Q95 | Early wet season, wet season rice | ||
S10 R_3x FR_Q95 | Early wet season, wet season, dry season rice | ||
S11 R_4x FR_Q95 | Four rice crops per year | ||
S12 R_1x A_ + 10% FR_Q95 | Wet season rice | Increase area of all irrigation schemes by 10% | |
S13 R_2x A_ + 10% FR_Q95 | Early wet season, wet season rice | ||
S14 R_3x A_ + 10% FR_Q95 | Early wet season, wet season, dry season rice | ||
S15 R_4x A_ + 10% FR_Q95 | Four rice crops per year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bresney, S.R.; Forni, L.; Mautner, M.R.L.; Huber-Lee, A.; Shrestha, M.; Moncada, A.M.; Ghosh, E.; Sopharith, T. Investigating Tradeoffs between Agricultural Development and Environmental Flows under Climate Change in the Stung Chinit Watershed, Cambodia. Hydrology 2020, 7, 95. https://doi.org/10.3390/hydrology7040095
Bresney SR, Forni L, Mautner MRL, Huber-Lee A, Shrestha M, Moncada AM, Ghosh E, Sopharith T. Investigating Tradeoffs between Agricultural Development and Environmental Flows under Climate Change in the Stung Chinit Watershed, Cambodia. Hydrology. 2020; 7(4):95. https://doi.org/10.3390/hydrology7040095
Chicago/Turabian StyleBresney, Susan R., Laura Forni, Marina R. L. Mautner, Annette Huber-Lee, Manish Shrestha, Angélica M. Moncada, Emily Ghosh, and Tes Sopharith. 2020. "Investigating Tradeoffs between Agricultural Development and Environmental Flows under Climate Change in the Stung Chinit Watershed, Cambodia" Hydrology 7, no. 4: 95. https://doi.org/10.3390/hydrology7040095
APA StyleBresney, S. R., Forni, L., Mautner, M. R. L., Huber-Lee, A., Shrestha, M., Moncada, A. M., Ghosh, E., & Sopharith, T. (2020). Investigating Tradeoffs between Agricultural Development and Environmental Flows under Climate Change in the Stung Chinit Watershed, Cambodia. Hydrology, 7(4), 95. https://doi.org/10.3390/hydrology7040095