Interdisciplinary Water Development in the Peruvian Highlands: The Case for Including the Coproduction of Knowledge in Socio-Hydrology
Abstract
:1. Introduction
2. Combined Socio-Hydrology Hydro-Social and Integrated Local Environmental Knowledge Conceptual Model
3. Upstream and Downstream Knowledge: Water Resources and Use in Andean Perú
3.1. Upstream Water Resources throughout the Vilcanota Watershed
3.2. Downstream Knowledge: Water and Society in Andean Peru
3.2.1. Water Rights in Perú
3.2.2. Indigenous Andean Communities and Allin Kawsay
4. Framework for the Coproduction of Knowledge
4.1. Project Goals and Approach to Knowledge Coproduction
4.2. Student Participants
4.3. Spring Preparatory Course
4.4. Summer International Research Experience
4.5. Fall Research Projects
5. Knowledge Coproduced and Project Impacts
5.1. Upstream Knowledge: Upper Ramuschaka Watershed and Local Water Resources
5.2. Downstream Knowledge: Water Use and Governance in Zurite
5.3. Project Impacts on the Community of Zurite
5.3.1. Immediate Infrastructure Benefit
5.3.2. Benefits of Knowledge Coproduction: Identification of the Risks and Opportunities of Current Water Resources and Irrigation Practices
5.4. Impacts on Student Participants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Fries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water: Invited Commentary. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Swyngedouw, E. Modernity and Hybridity: Nature, Regeneracionismo, and the Production of the Spanish Waterscape, 1890–1930. Ann. Assoc. Am. Geogr. 1999, 89, 443–465. [Google Scholar] [CrossRef]
- French, A. Webs and Flows: Socionatural Networks and the Matter of Nature at Peru’s Lake Parón. Ann. Am. Assoc. Geogr. 2019, 109, 142–160. [Google Scholar] [CrossRef]
- Baraer, M.; McKenzie, J.M.; Mark, B.G.; Bury, J.; Knox, S. Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru). Adv. Geosci. 2009, 22, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; et al. Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Drenkhan, F.; Carey, M.; Huggel, C.; Seidel, J.; Oré, M.T. The changing water cycle: Climatic and socioeconomic drivers of water-related changes in the Andes of Peru. WIREs Water 2015, 2, 715–733. [Google Scholar] [CrossRef]
- Oré, M.; Geng, D. Políticas públicas del agua en las regiones: Las viscisitudes para la creación del Consejo de Recursos Hídricos de la cuenca Ica-Huancavelica. In ¿Escasez de Agua? Retos Para La Gestión de La Cuenca Del Río Ica; Fondo Editorial PUCP; San Miguel: Lima, Perú, 2014. [Google Scholar]
- Ochoa-Tocachi, B.F.; Bardales, J.D.; Antiporta, J.; Pérez, K.; Acosta, L.; Mao, F.; Zulkafli, Z.; Gil-Ríos, J.; Angulo, O.; Grainger, S.; et al. Potential contributions of pre-Inca infiltration infrastructure to Andean water security. Nat. Sustain. 2019, 2, 584–593. [Google Scholar] [CrossRef]
- Carey, M.; Baraer, M.; Mark, B.G.; French, A.; Bury, J.; Young, K.R.; McKenzie, J.M. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). J. Hydrol. 2014, 518, 60–70. [Google Scholar] [CrossRef]
- Sato, T.; Kikuchi, N. Creation and Sustainable Governance of New Commons through Formation of Integrated Local Environmental Knowledge (ILEK Project). 2013. Available online: https://www.chikyu.ac.jp/rihn_e/project/E-05.html (accessed on 15 June 2021).
- Kitamura, K.; Nakagawa, C.; Sato, T. Formation of a Community of Practice in the Watershed Scale, with Integrated Local Environmental Knowledge. Sustainability 2018, 10, 404. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Chabay, I.; Helgeson, J. Transformations of Social-Ecological Systems; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Hong, L.; Page, S.E. Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl. Acad. Sci. USA 2004, 101, 16385–16389. [Google Scholar] [CrossRef] [Green Version]
- Aminpour, P.; Gray, S.A.; Singer, A.; Scyphers, S.B.; Jetter, A.J.; Jordan, R.; Murphy, R.M., Jr.; Grabowski, J.H. The diversity bonus in pooling local knowledge about complex problems. Proc. Natl. Acad. Sci. USA 2021, 118, 17–21. [Google Scholar] [CrossRef]
- ANA. Recursos Hídricos En El Perú. 2012. Available online: https://www.gob.pe/institucion/ana/noticias/139639-formulacion-del-plan-nacional-de-recursos-hidricos-se-realiza-de-manera-integrada-en-puno (accessed on 15 June 2021).
- ANA. Inventario Nacional de Lagunas de Las Cordilleras Vilcanota Y Carabaya, San Isidro, Lima, Perú. 2014. Available online: https://repositorio.ana.gob.pe/bitstream/handle/20.500.12543/199/ANA0000015.pdf?sequence=4&isAllowed=y (accessed on 15 June 2021).
- Salzmann, N.; Huggel, C.; Rohrer, M.; Silverio, W.; Mark, B.G.; Burns, P.; Portocarrero, C. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 2013, 7, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Kronenberg, M.; Schauwecker, S.; Huggel, C.; Salzmann, N.; Drenkhan, F.; Frey, H.; Giraáldez, C.; Gurgiser, W.; Kaser, G.; Juen, I.; et al. The Projected Precipitation Reduction over the Central Andes may Severely Affect Peruvian Glaciers and Hydropower Production. Energy Procedia 2016, 97, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Drenkhan, F.; Huggel, C.; Guardamino, L.; Haeberli, W. Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcanota-Urubamba basin. Sci. Total Environ. 2019, 665, 465–483. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Moulds, S.; Acosta, L.; De Bièvre, B.; Olmos, C.; Villacis, M.; Tovar, C.; Verbist, K.M.J. Glacial melt content of water use in the tropical Andes. Environ. Res. Lett. 2017, 12, 114014. [Google Scholar] [CrossRef]
- Squeo, F.A.; Warner, B.G.; Aravena, R.; Espinoza, D. Bofedales: High altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 2006, 79, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Josse, C.; Cuesta, F.; Navarro, G.; Barrena, V.; Cabrera, E.; Chacón-Moreno, E.; Ferreira, W.; Peralvo, M.; Saito, J.; Tovar, A. Atlas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. In Secr Gen Comunidad Andina Programa Reg Ecobona Condesan-Proy Páramo Andino Programa BioAndes EcoCiencia NatureServe LTA-UNALM IAvH ICAEULA CDC-UNALM RUMBOL SRL. Lima, Perú. 2009. Available online: http://www.saber.ula.ve/handle/123456789/39336 (accessed on 15 June 2021).
- Fonkén, M.S.M. An introduction to the bofedales of the Peruvian High Andes. Mires Peat 2014, 15, 1–13. [Google Scholar]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, C.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M.; et al. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 2016, 30, 4074–4089. [Google Scholar] [CrossRef] [Green Version]
- INEI. Estimaciónes y Proyecciones de Población Total Por Sexo de Las Principales Ciudades (2012–2015). Jesus Maria, Lima, Perú. 2015. Available online: https://www.inei.gob.pe/estadisticas/indice-tematico/poblacion-y-vivienda/ (accessed on 15 June 2021).
- SEDACUSCO. Memoría Annual, Cusco. 2019. Available online: https://www.sedacusco.com/transparencia/memoria/2019.pdf (accessed on 15 June 2021).
- INEI. Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas. Jesus Maria, Lima, Perú. 2017. Available online: http://censo2017.inei.gob.pe/ (accessed on 15 June 2021).
- Grille, R.G.; Remy, M.G. Building Democracy with Equality: The Participatory Experience in the Rural Province of Anta, Cusco, Peru. IDS Bull. 2009, 40, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Salvador, F.; Monerris, J.; Rochefort, L. Peatlands of the Peruvian Puna ecoregion: Types, characteristics and disturbance. Mires Peat 2014, 15, 1–17. [Google Scholar]
- Cooper, D.J.; Sueltenfuss, J.; Oyague, E.; Yager, K.; Slayback, D.; Cabrero Caballero, E.M.; Argollo, J.; Mark, B.G. Drivers of peatland water table dynamics in the central Andes, Bolivia and Peru. Hydrol. Process. 2019, 33, 1913–1925. [Google Scholar] [CrossRef]
- Tovar, C.; Arnillas, C.A.; Cuesta, F.; Buytaert, W. Diverging Responses of Tropical Andean Biomes under Future Climate Conditions. PLoS ONE 2013, 8, e63634. [Google Scholar] [CrossRef] [Green Version]
- Vergara, W.; Kondo, H.; Méndez Pérez, J.; Palacios, E. Visualizing Future Climate in Latin America: Results from the Application of the Earth Simulator; World Bank: Washington, DC, USA, 2007; pp. 1–173. [Google Scholar]
- Banco Nacional de Reserva de Perú. Cusco: Sintesis de Actividad Económica; Departamento de Estudios Económicos Sucursal Cusco: Cusco, Peru, 2020.
- Tarwick, P.B. The Struggle for Water in Peru: Comedy and Tragedy in the Andean Commons; Stanford University Press: Palo Alto, CA, USA, 2003. [Google Scholar]
- Bebbington, A.; Bury, J. Institutional challenges for mining and sustainability in Peru. Proc. Natl. Acad. Sci. USA 2009, 106, 17296. [Google Scholar] [CrossRef] [Green Version]
- Oré, M.; Rap, E. Políticas neoliberales de agua en el Perú. Antecedentes y entretelones de la ley de recursos hídricos. Debates Sociol. 2009, 34. Available online: https://revistas.pucp.edu.pe/index.php/debatesensociologia/article/view/2533 (accessed on 15 June 2021).
- Vos, J.M.C. Metric Matters: The Performance and Organisation of Volumetric Water Control. in Large-Scale Irrigation in the North Coast of Peru. 2002. Available online: https://edepot.wur.nl/198423 (accessed on 15 June 2021).
- Carey, M.; French, A.; O’Brien, E. Unintended effects of technology on climate change adaptation: An historical analysis of water conflicts below Andean Glaciers. J. Hist. Geogr. 2012, 38, 181–191. [Google Scholar] [CrossRef]
- Boelens, R.; Zwarteveen, M. Prices and Politics in Andean Water Reforms. Dev. Chang. 2005, 36, 735–758. [Google Scholar] [CrossRef]
- Zimmerer, K. The Indigenous Andean Concept of “Kawsay”, the Politics of Knowledge and Development, and the Borderlands of Environmental Sustainability in Latin America. PMLA 2012, 127, 600–606. [Google Scholar] [CrossRef]
- Lajo, J. Qhapaq Ñan: La Ruta Inka de Sabiduría. Editorial Abya Yala. 2006. Available online: https://digitalrepository.unm.edu/abya_yala/358 (accessed on 15 June 2021).
- Gelles, P.H. Water and Power in Highland Peru: The Cultural Politics of Irrigation and Development; Rutgers University Press: New Brunswick, NJ, USA, 2000. [Google Scholar]
- Pierotti, R.; Wildcat, D. Traditional ecological knowledge: The third alternative (commentary). Ecol. Appl. 2000, 10, 1333–1340. [Google Scholar] [CrossRef]
- Deloria, V., Jr. Traditional Technology. Winds Chang. 1990, 5, 12–17. [Google Scholar]
- Salmón, E. Kincentric ecology: Indigenous perceptions of the human–nature relationship. Ecol. Appl. 2000, 10, 1327–1332. [Google Scholar]
- Gose, P. Deathly Waters and Hungry Mountains: Agrarian Ritual and Class. Formation in an Andean Town, 4th ed.; University of Toronto Press: Toronto, ON, Canada, 1994. [Google Scholar]
- Bolin, I. The glaciers of the Andes are melting: Indigenous and anthropological knowledge merge in restoring water resources. In Anthropology and Climate Change: From Encounters to Actions; Leftcoast Press: Walnut Creek, CA, USA, 2009; pp. 228–239. [Google Scholar]
- Painter, J. Deglaciation in the Andean Region. UNDP—Human Development Report Office. 2007. Available online: http://hdr.undp.org/en/content/deglaciation-andean-region (accessed on 20 May 2021).
- Perez, C.; Nicklin, C.; Dangles, O.; Vanek, S.; Sherwood, S.G.; Halloy, S.; Garrett, K.A.; Forbes, G.A. Climate Change in the High Andes: Implications and adaptation strategies for small-scale farmers. Int. J. Environ. Cult. Econ. Soc. Sustain. 2010, 6, 71–88. [Google Scholar] [CrossRef]
- Lynch, B.D. Vulnerabilities, competition and rights in a context of climate change toward equitable water governance in Peru’s Rio Santa Valley. Glob. Environ. Chang. 2012, 22, 364–373. [Google Scholar] [CrossRef]
- French, A. ¿Una nueva cultura de agua?: Inercia institucional y la gestión tecnocrática de los recursos hídricos en el Perú. Anthropologica 2016, 34, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Rausch, K. Embedded Programs as a Model for Increased Study Abroad Access. Inst. Int. Educ. 2019. Available online: www.iie.org/en/Learn/Blog/2019/07/Embedded-Programs-as-a-Modelfor-Increased-Study-Abroad-Access (accessed on 17 September 2020).
- Taboada, H.; Ferregut, C.; Flores, B.; Bililign, S.; Engel, L.; Rathbun, L.; Ramos, I.; Winter, R. Broadening Participation of Underrepresented Minorities in STEM Research Abroad. Public Report. 2020. Available online: www.utep.edu/engineering/imse/stemresearchabroad/_Files/docs/TABOADA---%20OISE1848137-report.pdf (accessed on 20 September 2020).
- Tervalon, M.; Murray-Garcia, J. Cultural humility versus cultural competence: A critical distinction in defi. J. Health Care Poor Underserved 1998, 9, 117–125. [Google Scholar] [CrossRef]
- Yosso, T.J. Whose culture has capital? A critical race theory discussion of community cultural wealth. Race Ethn. Educ. 2005, 8, 69–91. [Google Scholar] [CrossRef]
- Bok, D.C. The SAGE Handbook of Intercultural Competence; Sage: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Deardorff, D.K. Identification and Assessment of Intercultural Competence as a Student Outcome of Internationalization. J. Stud. Int. Educ. 2006, 10, 241–266. [Google Scholar] [CrossRef]
- Mankiewicz, C. Essay: Student Science Research in Education Abroad. Front. Interdiscip. J. Study Abroad 2005, 12, 123–125. [Google Scholar] [CrossRef]
- Orellana, M.F.; Bowman, P.; Orellana, M.F.; Bowman, P. Cultural diversity research on learning and development: Conceptual, methodological, and strategic considerations. Educ. Res. 2003, 32, 26–32. [Google Scholar] [CrossRef]
- Vogel, C.; Moser, S.C.; Kasperson, R.E.; Dabelko, G.D. Linking vulnerability, adaptation and resilience science to practice: Pathways, players and partnerships. Glob. Environ. Chang. 2007, 17, 349–364. [Google Scholar] [CrossRef]
- Cash, D.W.; Moser, S.C. Linking global and local scales: Designing dynamic assessment and management processes. Glob. Environ. Chang. 2000, 10, 109–120. [Google Scholar] [CrossRef]
- Bringle, R.G.; Hatcher, J.A. A Service-Learning Curriculum for Faculty. Mich. J. Community Serv. Learn. 1995. [Google Scholar]
- Carlotto, V.; Concha, R.; Cárdenes, J.; Garcia, B.; Villafuerte, C. Geología y Geodinámica En La Quebrada Qenqo: Aluviones Que Afectaron Zurite-Cusco (2010); INGEMMET: Lima, Peru, 2010. [Google Scholar]
- Bonhomme, M.; Fornari, M.; Laubacher, G.; Sébrier, M.; Vivier, G. New Cenozoic K-Ar ages on volcanic rocks from the eastern High Andes, southern Peru. J. S. Am. Earth Sci. 1988, 1, 179–183. [Google Scholar] [CrossRef]
- Carlotto, V.; Carlier, G.; Jaillard, E.; Sempéré, T.; Mascle, G. Sedimentary and structural evolution of the Eocene-Oligocene Capas Rojas basin: Evidence for a late Eocene lithospheric delamination event in the southern Peruvian Altiplano. Andean Geodyn Ext. Abstr. 1999, 141–146. [Google Scholar]
- Wunderlich, W. Spatiotemporal Patterns in Water Yield from the Humid Puna: A Case Study in the Agrarian District of Zurite, Perú. 2021. Available online: https://digitalcommons.humboldt.edu/etd/481/ (accessed on 31 May 2021).
- Aybar, C.; Fernández, C.; Huerta, A.; Lavado, W.; Vega, F.; Felipe-Obando, O. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J. 2020, 65, 770–785. [Google Scholar] [CrossRef]
- Coward, E. Principles of Social Organization in an Indigenous Irrigation System. Hum. Organ. 1979, 38, 28–36. [Google Scholar] [CrossRef]
- Coward, E.W. Indigenous organisation, bureaucracy and development: The case of irrigation. J. Dev. Stud. 1976, 13, 92–105. [Google Scholar] [CrossRef]
- Mabry, J.B.; Cleveland, D.A. The Relevance of lndigenous lrrigation. Canals and Communities: Small-Scale Irrigation Systems; University of Arizona Press: Tucson, AZ, USA, 1996; pp. 227–259. [Google Scholar]
- Comisión de Regantes, Z.C. Sistema de Regación, Zurite, Perú. 2020. Available online: https://es.slideshare.net/belubel83/05-sistema-de-rotacin (accessed on 15 June 2021).
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1039. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.C.; Luganda, P. Talk for a change: Communication in support of societal response to climate change. IHDP Newsl. 2006, 1, 17–20. [Google Scholar]
- Kinzie, J.; Gonyea, R.; Shoup, R.; Kuh, G.D. Promoting persistence and success of underrepresented students: Lessons for teaching and learning. New Dir. Teach. Learn. 2008, 115, 21–38. [Google Scholar] [CrossRef]
- Kuh, G.D. Excerpt from high-impact educational practices: What they are, who has access to them, and why they matter. Assoc. Am. Coll. Univ. 2008, 14, 28–29. [Google Scholar]
- Tinto, V. Learning better together: The impact of learning communities on student success. High. Educ. Monogr. Ser. 2003, 1, 1–8. [Google Scholar]
- Museus, S.D. The culturally engaging campus environments (CECE) model: A new theory of success among racially diverse college student populations. High. Educ. Handb. Theory Res. 2014, 29, 189–227. [Google Scholar]
- Johnson, M.D.; Sprowles, A.E.; Goldenberg, K.R.; Margell, S.T.; Castellino, L. Effect of a Place-Based Learning Community on Belonging, Persistence, and Equity Gaps for First-Year STEM Students. Innov. High. Educ. 2020, 45, 509–531. [Google Scholar] [CrossRef]
- Villarejo, M.; Barlow, A.E.; Kogan, D.; Veazey, B.D.; Sweeney, J.K. Encouraging Minority Undergraduates to Choose Science Careers: Career Paths Survey Results. CBE—Life Sci. Educ. 2008, 7, 394–409. [Google Scholar] [CrossRef] [Green Version]
- Lopatto, D. Undergraduate Research Experiences Support Science Career Decisions and Active Learning. CBE—Life Sci. Educ. 2007, 6, 297–306. [Google Scholar] [CrossRef]
- Thoman, D.B.; Brown, E.R.; Mason, A.Z.; Harmsen, A.G.; Smith, J.L. The role of altruistic values in motivating underrepresented minority students for biomedicine. BioScience 2015, 65, 183–188. [Google Scholar] [CrossRef] [Green Version]
Project | Location | Contributions to ILEK | Skill Sets |
---|---|---|---|
Geologic field mapping | U | Geologic map of URW, including identification of potentially active faults and landslide hazards | 4-dimensional thinking, integration of Spanish language geology terms, cross-cultural collaborations in the field |
Digitizing geologic map | U | Spatially oriented geologic map | GIS skills, interpreting field notes, 4-dimensional thinking |
Drone flight plan and data collection | U | 1-m digital elevation model of URW, videos of groups working in the field and of the landscape | UAV pilot license, flight experience at high elevation, structure from motion data analyses |
Geophysical Analysis | U | Application of geophysical methods to determine the subsurface structure and inform aquifer storage and hydrologic flow pathways | Field survey design, team management, data processing analysis, and interpretation, AGU poster presentations |
Slope stability analysis | U | Identification of landslide hazards above Zurite | Application of published model, geospatial skills, interpretation of model sensitivity to model parameters |
Installation of hydrologic monitoring equipment | U | Continuous recording of precipitation and temperature, discharge distributed throughout the URW | Identification of suitable sites, rating curve construction, cross-cultural learning, data analysis and quality control, AGU presentation |
Installation of deep monitoring wells | U | Continuous measurements of groundwater resources beneath hillslope and in bofedal (2019–2021) | Contract work, interdisciplinary learning, cross-cultural learning, language practice |
Distributed discharge measurements | U | Spatiotemporally distributed discharge at 1–3-month intervals (2019–2021) to identify connections between landscape structure and hydrologic productivity | Interdisciplinary learning, field skills and technology to apply to senior theses, contract-based employment, cross-cultural learning, language practice |
Estimates of seasonally dynamic water storage in URW | U | Connection of geology and puna landscape structure, including geophysics, to rainfall-runoff metrics and total water yield | Application of mathematical analysis presented in recent literature to URW stream data, processing data in R, experience teaching other students |
Soil characteristics and plant water status in the URW | U | Characterization of the URW within the puna biome, soil classification, plant water availability and source water identification | Application of research methods to a new environment, opportunity to teach others in the classroom and field |
Distributed evapotranspiration model Zurite | U | Development of model to predict ET | Geologic field mapping, ground-truthing of a remotely sensed model, cross-cultural learning, language practice |
Hydrologic modeling using MODFLOW | U | Identification of wet, low gradient regions (bofedales) and springs, guided future hydrologic field measurements | MODFLOW, model sensitivity analyses, teamwork through the integration of datasets (geologic, hydrologic, seismic) through collaborations with student colleagues |
Quantification of water storage in bofedales | U | Hydraulic properties of bofedales, estimation of dynamic storage and contributions to streamflow | Collection of data in the field over two seasons, interpretation of multiple methods, spatial analyses, and the connection of results to broader project and community needs |
Stage-discharge rating curve for diversion weir at outlet of URW | D | Relationship to quantify continuous discharge from URW and connect to water demand downstream | Application of engineering skills for community benefit, analysis of existing data, connection to necessary field measurements |
Irrigation needs: current and under future climate scenarios | D | Quantification of total irrigation water demand, projections of changes to supply (small) and demand (large increase under a warming climate water use and identification of opportunities to boost local resiliency | Application of engineering skills to the benefit of the local community, cultural humility, interpretation of risk to community, and potential resiliency |
Hydraulic modeling of existing and proposed canal network HEC-RAS, and estimated cost | D | Design of proposed canal, including material and labor cost estimates | Application of engineering skills for community benefit, cross-cultural learning, and cultural humility |
Water Quality in Zurite | D | Distributed tests in new potable water system showed good water quality in 2018 | Application of engineering coursework, communication with the community, cultural humility |
Film—interviews of project participants and community | D | Zuriteños empowered to voice their concerns to outside scientists, opportunity to learn across the community and from the Bonanza group | Constructing narrative arc, developing questions, Spanish Quechua language, data management, empathy, cultural humility |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oshun, J.; Keating, K.; Lang, M.; Miraya Oscco, Y. Interdisciplinary Water Development in the Peruvian Highlands: The Case for Including the Coproduction of Knowledge in Socio-Hydrology. Hydrology 2021, 8, 112. https://doi.org/10.3390/hydrology8030112
Oshun J, Keating K, Lang M, Miraya Oscco Y. Interdisciplinary Water Development in the Peruvian Highlands: The Case for Including the Coproduction of Knowledge in Socio-Hydrology. Hydrology. 2021; 8(3):112. https://doi.org/10.3390/hydrology8030112
Chicago/Turabian StyleOshun, Jasper, Kristina Keating, Margaret Lang, and Yojana Miraya Oscco. 2021. "Interdisciplinary Water Development in the Peruvian Highlands: The Case for Including the Coproduction of Knowledge in Socio-Hydrology" Hydrology 8, no. 3: 112. https://doi.org/10.3390/hydrology8030112
APA StyleOshun, J., Keating, K., Lang, M., & Miraya Oscco, Y. (2021). Interdisciplinary Water Development in the Peruvian Highlands: The Case for Including the Coproduction of Knowledge in Socio-Hydrology. Hydrology, 8(3), 112. https://doi.org/10.3390/hydrology8030112