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Abstract: Groundwater management of alluvial aquifers facing the northern Italian Apennines is an
important issue that is becoming more complicated due to ongoing climate changes and increased
water demands. The large groundwater withdrawals, coupled with an overall worsening of the
water quality, require detailed knowledge of the recharge mechanisms of these aquifers that can
be useful for further adaptation measures. We have focused our attention on a selected alluvial
fan in which 49 slug injections of hyperconcentrated solutions of NaCl allowed river discharges to
be estimated in seven different hydraulic sections. Consequently, losses from the streambed were
assessed for the six river reaches along with the corresponding uncertainties in the estimates. The
study confirms the suitability of such tests for identifying sectors in which streambed losses are
promoted and for quantifying the total recharge conveyed to underlying aquifers. In addition, it
has been demonstrated that the total streambed losses can be further linked to river discharges in
any gauge upstream of the alluvial fan thanks to linear regression. Once obtained, the latter makes
monitoring groundwater recharge by stream losses in real time possible if a permanent measurement
device (such as the common telemetry used for river discharge monitoring) is available.

Keywords: dilution gauging; tracing test; groundwater; aquifer; alluvial fan; northern Apennines; Italy

1. Introduction

Alluvial fans facing the northern Italian Apennines are pivotal for the water man-
agement of the most densely populated areas in the Emilia-Romagna region. Due to the
simultaneous presence of a limited number of high-yield springs in the mountainous
areas and rivers in which hydrological behavior closely follows the precipitation patterns
(with marked low flow at the end of the summer period), the aquifers from the alluvial
fans host the most important groundwater resources to ensure water supply. Here, wells
provide hundreds of millions of m3/y of water for both human consumption and agricul-
tural/industrial purposes (about 740 Mm3/y in the period 2002–2006 [1]). The northern
Italian Apennines chain bedrock is made up of impermeable clayey materials (no subsur-
face flow from the adjacent mountains can take place) and groundwater recharge of the
aquifers hosted in these alluvial fans is focused in reduced areas at the foothills of the moun-
tain chain (i.e., apices of their alluvial fans), where coarser sediments such as sands and
gravels are widespread [2,3]. Being characterized by the highest permeabilities, these sedi-
ments allow for both zenithal infiltration of meteoric water and streambed dispersion [3–5].
Thus, from the hydrogeological point of view, apices of the alluvial fans represent sensitive
areas; the qualitative status and quantitative balance of these areas can be altered by both
anthropogenic activities and variations in rainfall/river discharges. Indeed, the ongoing
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monitoring of qualitative and quantitative status of groundwater from the apical part
of these alluvial aquifers has indicated an overall worsening of some indicators such as
deepening of groundwater levels (that in several cases has induced a drop in the order of
several meters; see, for instance, [6]) and increase of pollutants (for instance, nitrates linked
to zootechnical activities; [3,7]). In detail, the qualitative aspects of the groundwater hosted
in the alluvial fans facing the northern Italian Apennines have been extensively studied in
the literature [3,8–11] and have demonstrated that the origin of the impacts here is limited
to point source or diffusive pollution phenomena conveyed to the groundwater directly
through the streambed or by anthropic activities on the ground. Conversely, the worsening
of the quantitative status could mainly be related to three factors.

First, an overexploitation of these aquifers with respect to the actual recharge rate
by streambed dispersion and/or rainfall percolation from the topsoil may have led to
an overall decrease in the groundwater levels that has been already highlighted [12,13].
Second, [14,15] reported that, starting from the 1970s, significant land use changes in the
mountainous sector of catchments (such as dam constructions, river diversion develop-
ments, torrent control works, and extensive bed material mining) have occurred. The latter
caused important sediment budget changes, which have in turn led to significant alter-
ations of the channel morphologies in the apical part of the alluvial fans. Here, reduction
and deepening (even of tens of meters) of the streambeds have been observed for almost all
the rivers, with the consequent change in river morphology from braided to single channel.
In some cases, streambeds currently lie over the impermeable formations composing the
foothills of the northern Apennines [16,17]. As already speculated by [17], this may have
caused a deficit in the recharge of the aforementioned aquifers because of the reduced
water losses through the streambeds. Third, the slight reduction of precipitations detected
in the upper parts of the catchments [18] as well as the land use change (i.e., catchments
renaturalization with a subsequent increase in evapotranspiration processes) have led
to a reduction in mean annual river flow rates [15]. In turn, this fact causes recharge to
groundwater through streambed losses to be remarkably reduced.

Although apical parts of the alluvial fans have always been considered as the main
zones for aquifer recharge, quotas from streambed dispersions have never been quantified
except with the exclusive use of modeling approaches [4,19,20].

In this work, we present the first attempt to estimate the recharge of these alluvial
aquifers by means of an inexpensive direct method (salt tracing tests). We have focused
our attention on the alluvial fan of the Tresinaro River, which represents an ideal test
site for estimating the streambed dispersion of a river and whose outcomes may also
have implications for other case studies worldwide. Here, the river enters the lowlands
starting from a clayey streambed allowing us to estimate the runoff of the watercourse
before entering the apical part of its alluvial fan. Then, the river flows through its alluvial
fan almost exclusively in a single channel permitting the evaluation of flow rates with
reduced estimate errors. Moreover, the river is not affected by mining of sands and
gravels from the riverbed and has, in the apical part of its alluvial fan, a continuous flow
measurement station.

This leads tracing test techniques to be potentially useful in identifying the sectors
of the Tresinaro alluvial fan in which the streambed dispersion is larger, as well as trying
to quantify the amount of recharge conveyed to the underlying aquifers even at an in-
continuous way (by linking the total stream losses to the continuous measurement station).

2. Study Area
2.1. Climatic and Hydrological Settings

The study area is represented by the alluvial fan of the Tresinaro River (Figure 1),
which is located at the foothills of the northern Italian Apennines close to the town of Scan-
diano (Emilia-Romagna region). The altitudes gently decrease toward NE from 150 m a.s.l.
to approximately 50 m a.s.l. The authors of [18] provided an overview of the climatic
settings of the area by processing a long-term time series of daily precipitations and tem-
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peratures from all meteorological stations included in the Emilia-Romagna region. The
mean annual rainfall distribution over the period 1990–2015 was approximately 900 mm/y.
The rainfall distribution during the year is characterized by two marked positive peaks
in autumn and springs seasons, when cumulative amounts may account for 400 mm and
500 mm, respectively (in the summer months precipitations are reduced as well as during
the winter ones). Moreover, potential evapotranspiration is particularly active during
the summer period (cumulative values of up to 650 mm in the northernmost part of the
alluvial fan).
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wells (from [21]) are added along with the thickness of the poorly permeable silty-clayey deposits (measured from the 
surface) and the hydrogeological complexes (readers are referred to Section 2.2 for further details). Track line of the sim-
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Figure 1. Sketch map of the Tresinaro alluvial fan (dashed purple line) along with river sections in
which salt slug injections were carried out (yellow points from S1 to S7), river and rain gauge (red
point R1), well within the continuous monitoring of the groundwater level and temperature (green
triangle W1) and other wells (coded from W2 to W10) in which a measure of the groundwater level
was available (see Supplementary Material Table S1). Locations of the existing wells (from [21]) are
added along with the thickness of the poorly permeable silty-clayey deposits (measured from the
surface) and the hydrogeological complexes (readers are referred to Section 2.2 for further details).
Track line of the simplified hydrogeological cross section (dashed brown line; see Figure 2 for the
corresponding cross section) is also reported.

The Tresinaro River originates at about 956 m a.s.l. The discharge starts to be sustained
at about 420 m a.s.l., where the confluence with an important group of springs provides up
to several hundred L/s to the river (Mulino delle Vene springs, [22]). There are no dams or
diversion/branch canals nor sand and gravel mining in the River Tresinaro as far as the
start of its alluvial fan. Instrumentation consisting of stream and rain gauges is located a
few dozens of meters upstream of Scandiano (R1, see Figure 1) measuring water levels and
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precipitations every 15 min for civil protection purposes (flood events). Data have been
made available by [23]. The water levels could be converted into discharges by means of a
rating curve. Unfortunately, control works after a flood occurred in February 2014, have
made the above-mentioned rating curve useless. By considering the period 2003–2014, the
Tresinaro river showed perennial discharges with mean annual values between 9 m3/s
(2003) and 40 m3/s (2005).

In the mountainous part of the catchment, the wide spread of clay-rich sediments and
rocks leads river discharge to closely follow the rainfall distribution during the year [24].
This means that the Tresinaro River shows a marked pluvial discharge regime in which low
flows take place in the summer–early autumn periods (August, September, and October)
with minimum values of discharges that can be in the order of few tens of L/s. Floods
usually occur in autumn (October and November) and spring (March and April), with
discharge peaks that can be higher than 70 m3/s. It is worth noting that the time lag of
peak discharges after the most extreme precipitation events is usually less than 24 h in
these two wet periods.
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Figure 2. Simplified hydrogeological cross-section of the Tresinaro river alluvial fan along with hydrogeological complexes
composing Aquifer Group A (modified after [21,25]; blue parts identify gravels and coarse sand deposits while white ones
those areas in which clays and silts are dominant) and river sections in which salt slug injections were carried out (from S2
to S7). Due to a limited number of deep wells, hydrogeological complexes belonging to Aquifer groups B and C are not
reported. Readers are referred to Figure 1 for the track line.

2.2. Hydrogeological Features

The alluvial fan of the Tresinaro River started from the inside of the mountain chain
and is oriented almost SW–NE. A geological cross-section can be drawn thanks to several
wells that were drilled for oil exploration and water supply during the last 70 years
over the area and were accompanied by detailed stratigraphic reconstructions (available
from [21,25]).

Akin to the other alluvial fans facing the northern Italian Apennines, the alluvial fan
of the Tresinaro River has developed over a basal aquiclude made up of overconsolidated
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marine clays deposited during the Pliocene (see Figure 2). The alluvial fan is made up of
sedimentary particles (grain size ranging from clays to gravels) that were made available
by the continuous dismembering of the bedrock forming the mountainous part of the
river catchment. The long-term variations in the river discharge and in the sea levels
that had occurred during the Pleistocene have implied a change in its solid transport.
As a consequence, lenses of gravelly deposits (in form of widespread braided-river sed-
imentation) have propagated northward (distal parts can be located up to about 10 km
from the foothills) in the most humid periods (concurrent to lowstand sea levels of the
Adriatic Sea). On the contrary, in the driest periods (concurrent to highstand sea levels
of the Adriatic Sea), the coarsest deposits have stopped in the vicinity of the foothills of
the northern Apennines and were followed, toward the north, by finer deposits made up
of silty-clayey materials (Figure 2). As a result, the alluvial fan is characterized, in the
vicinity of the mountain foothills, by an almost undifferentiated gravelly pack (apical part)
that, by moving northward, evolves into an overlay of poorly permeable (aquitards and
aquicludes composed of clayey and silty materials, or even peats of a swamp environment)
and permeable materials (aquifers made up of gravels and sands). With the exception
of the initial portion of the apical part closest of the Tresinaro River, the low permeable
silty-clayey deposits dominate most of the top-soils of the alluvial fan (see Figure 1, with
the overall predominance of wells in which the thickness of silts and clays measured from
the surface is greater than 5 m).

Due to the above-mentioned hydrogeological features, the apical part of the alluvial
fan acts as a monolayer aquifer hosting unique groundwater whose flow paths move
slowly toward the north into compartmentalized groundwater flow systems hosted in
several aquifer lenses. The latter have been grouped by [2] into three main Aquifer Groups
(namely A, B, C). Aquifer Group A and Aquifer Group B are made up of sediments younger
than 450 ka and 650 ka, respectively; Aquifer Group C is much more older (up to 3.9 Ma).
All groups are multilayered (as hydrogeological complexes from the top to the bottom
of each group; A1 to A4, B1 to B4, C1 to C5) and interconnected in the vicinity of the
mountain foothills (apical part of the alluvial fan; see Figure 2). From the hydrogeological
point of view, [2] resumed the lithological characteristics of the hydrogeological complexes
belonging to Aquifer Group A. Such data were based on a large number boreholes, which
in turn confirmed the highest hydraulic conductivity (k) values in the apical part of the fan
(maximum k in the order of 8 × 10−3 ms−1) and lower values moving northward (distal
part of the fan; minimum k in the order of 10−8–10−9 ms−1):

- A0 (aquitard/aquiclude): unconfined or locally semiunconfined aquitard/aquiclude
that mainly consists of floodplain filling silts and clays covering the majority of the
fan (see Figures 1 and 2). In the apical part of the alluvial fan, lenses of gravels and
coarse sands with likely-aquifer behavior. In the middle/distal part of the alluvial fan,
lenses of sands and fine sands of reduced extension with the possibility of hosting
perched groundwater during the winter and spring months (i.e., unconfined ground-
water separated from underlying groundwater in A1 by an unsaturated zone; [25]).
Maximum thickness is reached in the distal part of the fan (about 10 m);

- A1: along the Tresinaro River and in the vicinity of the apical part, gravels (channel
deposits) amalgamated with the underlying hydrogeological complex A2. In the
outcrops at the foothills of the northern Apennines, the hydrogeological complex is
dominated by silty clays materials. Toward the distal part of the fan, grain size passes
through silty clays with gravelly lenses (interchannel deposits). Lenses of coarse sands
can be found in the middle/distal part of fan; their hydraulic interconnection with
gravels and coarse sands from the apical part is reduced. Maximum thickness is in
the order of 30 m (distal part of the fan);

- A2: coarse gravels in the apical part of the fan with greater prograding northward
of the braider-river deposits than the above-mentioned A1. The few outcrops from
the hillslope facing the city of Scandiano are composed of fine sands with a silty
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matrix. Good interconnection among the coarser lenses along the entire fan (maximum
thickness of about 35 m);

- A3: along with A4, it is characterized by the larger longitudinal extension of braided-
river deposits with respect to all the other hydrogeological complexes composing the
Aquifer Group A. Maximum thickness is 35 m. Medium sands widely outspread also
in the middle part of the fan. No outcrops in the study area;

- A4: well-developed aquifer-like behavior up to the middle part of the alluvial fan
(maximum thickness is 55 m) with a mixture of sands and gravels. In the distal part of
the fan, a sandy aquifer with a remarkable lateral extension is localized at more than
200 m in depth. As in the case of A3, there are no outcrops in the study area.

Groundwater recharge is recognized to be mainly supplied in the apical part of the
alluvial fan both by rainfall percolation from the topsoil and the streambed dispersions;
as a result, groundwater levels change remarkably during the years (up to more than 3 m
in W1, located in the vicinity of S2; see the recharge period focused on February–March
2016 reported in Figure 3 linked to the increased flow rates in the Tresinaro River). In more
detail, groundwater level in the vicinity of the S2 (well W1) is at about 119 m a.s.l., while
in S3 and S4, it is at 96 m a.s.l. (well W3) and S4 (well W4), respectively. Downstream
of the apical part, aquifers (from A1 to the bottom) become multicompartmentalized as
they are superimposed to aquitards and aquicludes; there, potentiometric heads change
little during the year and are pressurized (groundwater levels close to 80 m a.s.l. in the
middle part of the alluvial fan and 68 m a.s.l in the distal part (see W5, W6, and W7 in
Supplementary Material S1 as well as [25]).

It should be pointed out that the dynamics of water consumption here are related to
both water supply for human purposes (4 water wells located 1 km north of Scandiano are
under the control of the local authorities that supply water for more than 35,000 inhabitants
at a mean flow rate of 115 L/s from hydrogeological complexes A2 and A3; [26]) and
agriculture (dozens of wells whose screens are mainly slotted within Aquifer Group A).
With reference to the agriculture, it must be stressed that volumes of groundwater extracted
by the wells change greatly from year to year, mainly depending on soil moisture deficits,
but are in the order of that for human supply [20]. In case of prolonged dry periods, the
groundwater pumping from the aquifers can double, causing generalized decreases of the
piezometric levels over the whole alluvial fan, which are more pronounced in the deep and
confined aquifers from the distal part.

In the apical part of the alluvial fan, a number of hydrochemical features also indicate
direct and fast recharges. First, in the period 2002–2008, several wells were characterized by
a relatively high content of nitrates (up to 70 mg/L in the period 2002–2008; [26]). The latter
were mainly driven by intensive agriculture practices that occurred in the past (manure
spreading and synthetic fertilizer; [9]). Second, as in the case of nitrates, total dissolved
solids also change during the year (Ca (Mg)-HCO3 facies with total dissolved solids (TDS)
up to about 500 mg/L in the apical part) with decrements concentrated in the recharge
period (from November to April; [27]). Third, the redox potential (Eh) in the groundwater
from the apical parts is always high (up to 350 mV), indicating the recent exposure of these
water to atmospheric oxygen [28].
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3. Material and Methods
3.1. River Discharge Estimates

In order to assess streambed dispersion along the alluvial fan of the Tresinaro River,
49 river discharges measurements involving seven river sections (from upstream to down-
stream: S1, S2, S3, S4, S5, S6, S7) were carried out over the period 26 May 2013 to
27 September 2013, a time window in which the river flow rates progressively decrease
being almost exclusively fed by the saturated portion of the mountainous aquifers (i.e., re-
cession curve). The above-mentioned 49 rivers discharges measurements were carried out
through seven different campaigns (campaign 1: 26 May 2013; campaign 2: 15 June 2013;
campaign 3: 22 June 2013; campaign 4: 27 July 2013; campaign 5: 10 August 2013; campaign
6: 15 September 2013; campaign 7: 27 September 2013; see Figure 4).
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Although several techniques for river discharge assessment are available in the litera-
ture (readers are referred to [29,30] for a comprehensive review such methods), we selected
the artificial method consisting of slug injection of a hyperconcentrated solution (NaCl) for
several reasons. First, the irregular shape of the sections coupled with the frequent low wa-
ter depth make the use of direct measurement methods such as current meters (immersed
in different points of a river cross-section to acquire the mean flow velocity) inconvenient.
Second, NaCl has been widely used in the literature and is one of the most used chemical
tracers in tracing hydrology having almost no (or low) environmental impact [29]. Third,
the Tresinaro River at the beginning of its alluvial fan is characterized by low salinity
(total dissolved solids less than 500 mg/L during low flow period; [22,31]) while potential
sources of NaCl (such as confluence with sewages and purification systems) were not active
along the investigated reach of river when slug injections were carried out. This allows
a reduced amount of tracer to be used. Fourth, the injection of hyperconcentrated NaCl
solution in the event of water columns with a reduced content of suspended materials (i.e.,
clays) permits high precision in discharge estimates [30].

With reference to this last point, it must be recalled that low content of suspended
materials in water column is pivotal as the discharge assessment by the salt-tracing tech-
nique is based on the integration method proposed by [32]. This method requires the
slug injection of a solution with a known tracer content into the river and the subsequent
determination of the tracer concentration downstream by means of a conductivity probe.
From a mathematical point of view, if we consider Q as the river discharge, the initial
concentration of salt in the river water C0 (in the section where conductivity probe is placed)
can be written as follows:

C0 = Q
∫ ∞

0
cdt (1)

During a given time range, T, which is equal to the time needed for the tracer to be
transported downstream, an average value for the sample is found by sampling the tracer
concentration present in the measurement station at regular time intervals.

Then: ∫ ∞

0
cdt = c T (2)

Finally, the discharge is calculated as:

Q =
c0

c
V
T

(3)
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where c is the concentration of the sample in volume V.
The main assumption of this method is that all the injected amount of tracer must

be detected by the conductivity probe. Since suspended sediments in the water column
induce sodium adsorption, river water with high turbidity (such as those characterizing
the Tresinaro River after intense rainfall events) is characterized by larger error estimates.
For these reasons, our campaigns were focused on the period of recession of the river
flow-rates, i.e., when the waters were almost free of suspended sediments.

In order to find the proper amount of salt to be diluted into the water, at the campaign 1,
and for the only river section S7, a preliminary set of tracing tests were performed by testing
the amount of tracer (in the form of hyperconcentrated solution with larger amounts of
NaCl) in the river. We started from the assumption that the average tracer concentration
should be 10 times higher than the detection limit of the tracer itself [31]. The first trial
used the smallest quantity of salt (100 g in 5 L of water) while the subsequent ones tested
progressive increase of salt up to 700 g in 5 L of water (namely 200 g, 300 g, 500 g, and 700 g).
Each trial was repeated four times in order to estimate mean value and the corresponding
uncertainties (as±2σ) for each amount of tracer. Conductivity was measured in-continuous
100 m downstream of the injection point by using a conductivity probe (STS DL/70/N
MULTI); the acquisition time was set at 6 s while precisions of such instrumentations are
reported as equal to 2%. It is worth noting that the 100 m distance was selected following
the results by [22] for the same river to allow a well mixing between river flow paths and
the hyperconcentrated solution. Data were processed on-site for detecting the most useful
amount of tracer to be used also for slug injections in the other river sections in campaign.

All of the slug injections were carried out by going upstream (i.e., starting from S7
to S1) to avoid cross-contamination phenomena among the measures carried out in the
several sections. In detail, all the sections were selected to ensure constant and permanent
flow regimes along the 100 m between injection points and locations where conductivity
probes were placed (i.e., no pools or backwater areas were present), while changes in flows
are considered negligible. S1 was selected several tens of meters prior to the beginning of
the apical part of the alluvial fan; here, the riverbed is imposed on clayshales, hence, no
subsurface seepage was possible allowing the effective river discharges at each campaign
to be assessed before any streambed loss.

3.2. Streambed Losses Assessment

The streambed loss from each reach of river identified by two subsequent sections
was assessed by subtracting the corresponding discharge values obtained as anticipated
in Section 3.1. The calculation is affected by uncertainties related to each discharge value
(preliminary estimated through salt slug injection method); thus, the final errors associated
to streambed losses were assessed using the common error propagation methods reported
in [33]. As an example, and with reference to a specific campaign, if discharges from
Section 1 (QS1) and Section 2 (QS2) were obtained along with the corresponding ±2σ
uncertainties (here, renamed as ±dQS1 and ±dQS2, respectively), the corresponding errors
±dQS1–S2 associated to streambed loss QS1–S2 were calculated as follows:

dQS1−S2 =
√

dQS1 + dQS2 (4)

The acquisition of discharges from the seven campaigns permitted the development
of an interpolation model linking the discharge at the beginning of the alluvial fan to the
total streambed losses. In this way, total stream losses along the alluvial fan can be assessed
whenever a value of discharge from S1 is available. The interpolation linear regression
(ordinary least squares OLS model; see [34] for further detail) was selected after a goodness-
of-fit comparison and error bounds corresponding to a 95% confidence interval (±2σ) were
added. It must be stressed that the basic assumption of linear regression is that data are
time-invariant (i.e., stationary). Thus, the presence of outliers or heteroscedasticity (i.e.,
modeling errors have not the same variance over the alignment) or autocorrelation lead the
assumption of stationary to be violated; thus, slopes and intercepts from linear regression
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may not be meaningful. In this work, we exploited conventional statistical tests for verify-
ing normality (i.e., presence of outliers inducing non-normality; Doornik-Hansen test [35])
heteroscedasticity (Breusch-Pagan test [36]) and autocorrelation (Durbin–Watson [37]). All
of the above-mentioned tests are based on a comparison of the corresponding statistics’
p-values results with a threshold value (level of significance α set at 0.01) to decide whether
the null hypotheses have to be rejected (p < 0.01) or not (p > 0.01). The following null hy-
potheses were selected: normality (Doornik–Hansen), homoscedasticity (Breusch–Pagan),
no autocorrelation (at a lag of 1) in the residuals (Durbin–Watson).

4. Results

Tracing tests carried out in section S7 during campaign 1 and using different amounts
of tracers (here, we recall that we used the following quantities of salt for preparing
hyperconcentrated solutions: 100 g, 200 g, 300 g, 500 g, 700 g) were obtained as per formula
3 and summed up in Table 1. Results indicated that tests carried out using 200 g and 300 g
of NaCl provided the closest results (98 and 94 ls−1, respectively) as well as their reliability
(2σ obtained as per formula 4 and equal to 3.3% and 4.1%, respectively; corresponding
variances of ±4 ls−1 and ±7 ls−1). These errors were in the order of those reported by [30]
(about 3%) and [38,39] (4%–7%) for equivalent tests carried out in rivers from Italy and
New Zealand.

Table 1. Discharges (in ls−1 along with the corresponding uncertainties equal to ±2σ) as result of the salt injections tests
carried out during campaign 1 at Station S7.

Longitude (X) Latitude (Y)
Station Code
(Discharge

Code)

Number of
Tests

Amount of
Tracer (g) in
5 L of Water

Station
Code

Discharge
ls−1

Errors
(2 σ; %)

Errors
(2 σ; ls−1)

10◦42′51.69′′ E 44◦36′42.85′′ N S7 4 700 S7 111 ±12.8 ±15

10◦42′51.69′′ E 44◦36′42.85′′ N S7 4 400 S7 102 ±6.3 ±6

10◦42′51.69′′ E 44◦36′42.85′′ N S7 4 300 S7 94 ±4.1 ±4

10◦42′51.69′′ E 44◦36′42.85′′ N S7(QS7) 4 200 S7 98 ±3.3 ±3

10◦42′51.69′′ E 44◦36′42.85′′ N S7 4 100 S7 76 ±8.9 ±7

Thus, errors being slightly reduced for solution of 200 g of salt diluted into 5 L of
water, we used 200 g diluted in 5 L of water for all the remaining tests.

Results were reported in Table 2 along with the corresponding uncertainties (±2σ).
Discharges ranged between 324 ± 11 ls−1 (S1 in campaign 1) to 21 ± 1 ls−1 (S7 in cam-
paign 7). Except for the campaign 3, a slight decrease of discharges was observed for all
river sections from campaign 1 to campaign 7. Moreover, and without differences between
the different campaigns, the highest discharge values always characterized S1 whereas
river flow rates decreased from S1 to S5. On the contrary, river flow rates were substantially
constant or even increasing by going from S5 to S7. This fact allowed to identify a specific
river reach in which stream losses toward underlying aquifers were active, i.e., the reach
of river included between S1 to S5 (for a total length of approximately 4800 m out of the
investigated 6850 m).
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Table 2. Discharges (in ls−1 along with the corresponding uncertainties calculated as ±2σ) as result of the salt injection tests. Amount of salt used for preparing hyperconcentrated
solutions were always 200 gl−1 in 5 L of water. Values used as x-axis for obtaining regression line in Figure 5 are highlighted in bold.

Longitude (X) Latitude (Y) Progressive Distance
from S1 (in m)

Station Code
(Discharge Code)

Campaign

1 2 3 4 5 6 7

Discharge
(ls−1)

Discharge
(ls−1)

Discharge
(ls−1)

Discharge
(ls−1)

Discharge
(ls−1)

Discharge
(ls−1)

Discharge
(ls−1)

10◦42′51.69′′ E 44◦36′42.85′′ N 6868 S7 (QS7) 98 ± 3 99 ± 3 97 ± 3 68 ± 2 34 ± 1 43 ± 1 21 ± 1

10◦42′17.09′ ′ E 44◦36′27.55′ ′ N 5740 S6 (QS6) 99 ± 3 103 ± 3 96 ± 3 70 ± 2 35 ± 1 46 ± 1 35 ± 1

10◦41′35.25′ ′ E 44◦36′27.18′ ′ N 4804 S5 (QS5) 95 ± 3 98 ± 3 95 ± 3 72 ± 2 35 ± 1 45 ± 1 38 ± 1

10◦40′39.55′ ′ E 44◦35′46.54′ ′ N 3039 S4 (QS4) 104 ± 3 103 ± 3 106 ± 3 69 ± 2 48 ± 2 47 ± 2 37 ± 1

10◦40′21.38′ ′ E 44◦35′20.29′ ′ N 2116 S3 (QS3) 156 ± 5 144 ± 5 154 ± 5 86 ± 3 58 ± 2 76 ± 3 57 ± 2

10◦39′31.58′ ′ E 44◦34′42.16′ ′ N 456 S2 (QS2) 253 ± 8 162 ± 5 224 ± 7 109 ± 4 81 ± 3 94 ± 3 73 ± 2

10◦39′11.50′ ′ E 44◦34′18.91′ ′ N 0 S1 (QS1) 324 ± 11 214 ± 7 270 ± 9 154 ± 5 122 ± 4 104 ± 3 84 ± 3
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Table 3 reports the losses from the streambed obtained by subtracting the discharge
values from subsequent sections. We specified that some negative values (i.e., reduced
increment of discharge close to the errors of the estimates) occurring in the river reach
S5–S6 have been forced to 0 due to presence of some drainpipes conveying treated and
untreated wastewater (quantifiable in a couple of ls−1) from industrial and human activities
in Scandiano. Neither the amount of wastewater from pipes was quantified on site nor their
functionality as in most cases their exits are located directly in the riverbed. It can be noted
that most of the water losses occurred in the reach between sections S1 and S4, with evident
peaks of streambed losses in reach S1–S2 (up to 71 ± 14 ls−1 in campaign 1 equivalent to
156 ± 30 ls−1km−1) and reach S3–S4 (highest value of 52 ± 6 ls−1 in campaign 1 equivalent
to 56 ± 7 ls−1km−1) while there is a significant decrease in reach S2–S3 (losses between
58 ± 6 ls−1km−1 in campaign 1 to 10 ± 2 ls−1km−1).

Table 3. Losses from streambed (in ls−1 and ls−1 km−1 along with the corresponding uncertainties calculated with the error
propagation method presented by [33]). The losses from streambed that have been forced to 0 are in italics.

Losses from Streambed as per River
Reach (Distance between Subsequent

Sections in m)

Campaign 1
(Stream Losses)

Campaign 2
(Stream Losses)

Campaign 3
(Stream Losses)

Campaign 4
(Stream Losses)

Campaign 5
(Stream Losses)

Campaign 6
(Stream Losses)

Campaign 7
(Stream Losses)

(ls−1) (ls−1

km−1) (ls−1) (ls−1

km−1) (ls−1) (ls−1

km−1) (ls−1) (ls−1

km−1) (ls−1) (ls−1

km−1) (ls−1) (ls−1

km−1) (ls−1) (ls−1

km−1)

QS6–S7 (1128 m) 1 ± 5 1 ± 4 4 ± 2 4 ± 4 0 0 2 ± 3 2 ± 3 1 ± 2 1 ± 1 3 ± 1 3 ± 2 14 ± 2 12 ± 2

QS5–S6 (936 m) 0 0 0 0 0 0 4 ± 3 2 ± 4 0 0 0 0 3 ± 2 3 ± 1

QS4–S5 (1765 m) 9 ± 5 5 ± 3 5 ± 5 3 ± 3 6 ± 5 6 ± 3 0 0 7 ± 2 7 ± 1 1 ± 2 1 ± 1 0 0

QS3–S4 (923 m) 52 ± 6 56 ± 7 41 ± 6 44 ± 6 48 ± 6 52 ± 7 17 ± 4 18 ± 5 11 ± 2 11 ± 3 31 ± 2 31 ± 3 20 ± 2 22 ± 2

QS2–S3 (1660 m) 97 ± 10 58 ± 6 18 ± 7 11 ± 4 70 ± 9 42 ± 5 23 ± 5 14 ± 3 14 ± 3 14 ± 2 11 ± 3 11 ± 2 16 ± 4 10 ± 2

QS1–S2 (456 m) 71 ± 14 156 ± 30 52 ± 9 114 ± 19 46 ± 12 101 ± 25 45 ± 6 99 ± 14 41 ± 5 90 ± 11 10 ± 4 22 ± 10 11 ± 5 24 ± 8

This fact (decrease of stream losses in reach S2–S3) could be due to the presence of
clogging taking place for several dozens of meters upstream of a river dam. An important
increase in stream losses in the reach S2–S3 was observed in Campaign 3 (42 ± 5 ls−1km−1)
and provided further confirmations of the presence of clogging. In fact, Campaign 3 was
carried out during the rising limb of a reduced peak flow (see Figure 4b) that may have
promoted the removal of the finest sediment (clays and silts) clogging the streambed.

Table 4 sums up losses from streambed starting from river sections S1 to S5. As
mentioned above, almost all of the losses toward the underlying aquifers (i.e., total stream
losses QS1–S4) occurred between S1 and S4.
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Table 4. Losses from streambed (in ls−1 along with the corresponding uncertainties calculated with the error propagation
method presented by [33]). Values used as y-axis (i.e., total stream losses) for obtaining regression line in Figure 5 are
highlighted in bold.

Incremental Stream Losses
from S1

(Distances between Sections)
Campaign 1 Campaign 2 Campaign 3 Campaign 4 Campaign 5 Campaign 6 Campaign 7

QS1–S5 (4804) 229 ± 11 116 ± 8 175 ± 9 / 87 ± 4 59 ± 4 /

QS1–S4 (3039) 220 ± 11 111 ± 8 164 ± 10 85 ± 6 74 ± 4 57 ± 4 47 ± 3

QS1–S3 (2116) 168 ± 12 70 ± 9 116 ± 10 68 ± 6 64 ± 4 28 ± 4 27 ± 3

QS1–S2 (456) 71 ± 14 52 ± 9 46 ± 12 45 ± 6 41 ± 5 10 ± 5 11 ± 4

In detail, total stream losses were between 220 ± 11 ls−1 (Campaign 1) to 47 ± 3 ls−1

(Campaign 7). In the QS1–S4–QS1 plot (see Figure 5), dots lie on a straight line (see red line
in Figure 5 as well as blue continuous lines corresponding to the 95% confidence intervals)
that can be obtained through OLS regression (as reported in Section 3.2). This regression
line is characterized by the following equation:

QS1−S4 = 0.69QS1 − 16.9 (5)

with coefficient of determination (R2) and p-value equal to 0.97 and 0.00005, respectively.
Assumptions underlying the OLS linear regression are respected as all the three tests
(namely Breusch–Pagan, Doornik–Hansen, Durbin–Watson; see Section 3.1) were character-
ized by p-values higher than the selected threshold (α = 0.01; here, we recall that p-values
higher than α confirm that null hypotheses have to not be rejected). In detail, there were no
changes in variance along the alignment (i.e., homoscedasticity; Breusch–Pagan test with
p = 0.58) and no autocorrelation (at a lag of 1) in the residual (Durbin–Watson test with
p = 0.83). Furthermore, no point in the alignment represented an outlier as normality was
confirmed (Doornik–Hansen tests with p = 0.20).

5. Discussion
5.1. Streambed Dispersions and Relationships with Hydrogeological Features

The 49 slug injection tests have allowed us to clarify that almost all of the losses
towards the underlying aquifers (i.e., total stream losses QS1–S4) take place in a river
reach between S1 and S4. As clearly visible in Figure 2, the sector of river starting few
tens of meters northward of S1 and ending in S4 lies over the apical part of the alluvial
fan, where coarser deposits (gravels and sands) are directly connected to the streambed.
A hundred of meters downstream of S4, the streambed of the Tresinaro rivers lost its
connection with the underlying aquifers being imposed into the silty and clayey deposits
of the hydrogeological complex A0. There, we recall that also the terraces alongside the
main channel of river included between S2 and S4 are made up of a thick cohesive deposit
of A0 (thickness of more than 5 m; see wells W3 and W4 in Figure 1) that do not promote
rainfall percolation from the topsoils (see also [25]. The latter is enhanced in a reduced area
(<0.7 km2) upstream of S2, where the thickness of the above-mentioned deposits of A0 is
reduced or even nonexistent (see wells W2 and W1 in Figure 1). Thus, the majority of the
recharge of the aquifers belonging to the alluvial fan is driven by streambed dispersion.

Moreover, unlike what we would have expected, we found that streambed dispersion
is not constant over the apical part of the alluvial fan nor characterized by a progressive
decrease going downstream. In fact, a significant decrease of streambed dispersion always
affects reach S2–S3 if compared with the subsequent reach S3–S4. Such a fact may be related
to a river dam located in S3.

As mentioned in Section 4, it has been observed during the field activities that gravels
and sands of the streambed were clogged by the sedimentation of finest sediments (clays
and silts) for a 50 m long sector of river upstream from the river dam. We believe that such
clogging does not characterize all the hydrologic year as clays and silts are removed during
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the rising ling of peak flow events. Such fact may enhance the streambed dispersion when
river discharge is rising up to the peak flow; during the falling limb after the peak, and in
particular when velocity of the current is lower than that necessary to keep clays and silts
suspended, the streambed dispersion results furthermore hampered. Downstream of S4,
we found evidence of intermittent recharge (even with low flow rates; see Table 3) toward
the underlying aquifers that should be focused at the beginning of reach S4–S5, where
streambed still lies over the aquifer-like deposits of A0 (see Figure 2). Going downstream
of S5, no streambed losses were identified during the seven different campaigns as, in
some cases, discharges values slightly increase (even if losses from streambed per river
reaches between S5 and S7 were often included in the estimate errors; see Table 4). Being a
potentiometric surface there at about 15 m below ground level and slug injection campaigns
carried out during summer periods, we believe that such reduced increments of discharges
downstream of S5 have to be linked to draining pipes conveying treated and untreated
wastewater from the purifiers of Scandiano. Nonetheless, and as already highlighted in
Section 2.2, the presence of perched groundwater during the winter–spring months is
confirmed [25]. The latter are hosted in reduced lenses of sands and fine sands from A0
and may feed the river discharge with flow rates in the order of few ls−1 when intersected
by the river course.

By exploiting the groundwater levels data (see Supplementary Materials, Table S1)
involving the water wells alongside the Tresinaro River (i.e., W1, W2, W3, W4, W5), a
first approximation the water table below the stream course can be obtained and further
evidence of the different streambed dispersion rates is provided above. The first reach
S1–S2 is characterized by the highest hydraulic gradient (0.015), which progressively
decreases downstream (0.011 in reach S2–S3; 0.009 in reach S3–S4 and 0.004 in reach S4–S5;
about 0.000008 northward). These data confirm the presence of a remarkable groundwater
ridge below the river reach of river between S1 and S4 that is recharged continuously by
streambed dispersion with the highest rates during flood events.

5.2. Overall Considerations on the Tested Approach: In-Continuous Recharge Assessment and
Possible Implications for Other Case Studies

It is evident that such approach can be usable in other alluvial fans facing the northern
Italian Apennines and, more in general, whenever rivers entering the lowlands start to
release a quota of their discharges to the underlying aquifers. In particular, the afore-
mentioned results demonstrated the effectiveness in carrying out NaCl slug injections for
identifying river reaches along which stream losses are promoted as well as quantifying the
total amount of water recharging the underlying aquifers with reduced errors in estimates.

Moreover, once total stream losses have been quantified for a proper number of times,
groundwater river recharge can be monitored in real time if a permanent measurement
device (such as the common telemetry used for river discharge monitoring) is installed
before the alluvial fan starts (in the case of the Tresinaro River, the current instrumentation
shall be replaced in S1 as the current location R1 falls within an area in which dispersion is
almost inactive).

The usefulness of such results is twofold. First, defining river reaches in which stream
losses are promoted helps planning of draining pipes conveying treated and/or untreated
wastewater (as well as storm water runoff from streets and service areas) to river in order
to avoid any qualitative impact to groundwater. With reference to the Tresinaro river, such
confluences should be placed downstream of section S5. Furthermore, all civil settlements
and/or industrial activities and the corresponding purifiers located in the mountainous
sector of the Tresinaro catchment should be suitably designed in order to avoid high
concentrations of pollutants which then, starting from the apical part of the alluvial fan,
could be conveyed into the porous aquifers. It must be highlighted that some confined
aquifers from the alluvial fan of the Tresinaro River have already experienced pollution
phenomena in the last decades. Among the most serious case, tetrachloroethylene (a
toxic chlorocarbon used for dry cleaning of fabrics that in groundwater behaves as dense
nonaqueous liquid phase) was found in the water pumped from several wells. Although the
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source of the pollution has not been recognized yet, it is plausible that tetrachloroethylene
had been released into aquifers through stream losses.

Second, and as already stated in the Introduction, aquifers hosted in the alluvial
fans are currently facing climate change and are subjected to large withdrawals for both
aqueduct and agricultural uses which have led to a lowering of the piezometric surface;
hence, it is important to continuously monitor stream losses recharging these aquifers
to calibrate in advance the volumes of water that can be pumped without altering the
qualitative status and quantitative balance of the groundwater resources.

Although such an approach has allowed us to characterize and in-continuous quantify
the quota of recharge linked to stream losses, the other quota due to zenithal infiltration
from precipitation should be added. In the case of Tresinaro alluvial fan, the amount
of recharge provided by zenithal infiltration has already been confirmed as secondary if
compared to that of riverbed dispersion ([25]). Being affected by significant alterations of
the channel morphologies in the apical part of the alluvial fans (with current streambed
laying on impermeable formations), several other rivers outflowing from the northern
Italian Apennines are characterized by a prevalent recharge made by zenithal infiltration [5].
In such a case, the splitting of the two recharge quotas (i.e., zenithal precipitation and stream
losses) is particularly difficult since increases in river discharges usually occur a few hours
after rain events (due to the wide outcrop of impermeable material in the mountainous part
of the catchment). As already reported in [5], a possible way to quantify each component
should be based on in-continuous monitoring network involving both river discharge,
precipitations and groundwater. With reference to groundwater, instrumentation must be
able to collect both groundwater levels and some selected physical–chemical parameters
(such as TDS and temperature). Such an approach will first have to be tested at each
recharge event to differentiate those related to the recharge by stream dispersion alone
(river flood generated by rainfall in the upper part of the catchments) from those due to
zenithal recharge by precipitation alone (occurring only on the apical part of the alluvial
fan and with river fed by base flow).

Furthermore, the implementation of an in-continuous monitoring network would
pose the foundation for the application of a suite of environmental tracers (such as isotopes
of water) to be obtained at the event scale (that of flood and or rainfall with, at least, hourly
sampling activities). This allows end-member mixing analysis to be carried out at the event
scale, and aquifer recharge quotas from each component to be better constrained (see, for
instance, the recent paper by [40], which exploited the same approach for depicting three
end-members feeding a pumping well located in an alluvial aquifer in France).

6. Conclusions

This study has demonstrated that developing an appropriate number of NaCl slug
injections in rivers characterized by stream losses represents a valid and inexpensive ap-
proach for defining reaches in which groundwater recharge is promoted and to quantify the
amount (and the corresponding uncertainties) of stream water conveyed to the underlying
aquifers. With reference to the proposed case study (the Tresinaro River and its alluvial
fan facing the northern Italian Apennines), results of 49 NaCl slug injections carried out
over seven campaigns indicated that the apical part of the alluvial fan is characterized
by the highest values of stream losses (up to 156 ± 30 ls−1 km−1 in the reach of river
between S1 and S2), whose values decreased almost progressively down to nil at about
3 km downstream of S1. Moreover, we found that total stream losses were directly pro-
portional to river flow rates at the beginning of the alluvial fan. This fact allowed us to
build a rating line linking river discharge at the beginning of the alluvial fan to the total
stream losses; in this way, the placement of a permanent measurement device aimed at
continuously monitoring river discharge in S1 would also provide the recharge conveyed
to the underlying aquifers.

This information is needed by stakeholders in charge of surface and groundwater
management for further adaptation plans, among others (i) placing reaches downstream of
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the river, characterized by streambed dispersion the conveying of treated and/or untreated
wastewater (as well as storm water runoff from streets and service areas); (ii) developing
mitigation measures aimed at reducing the risk of pollutant spills in all civil settlements
and/or industrial activities from the mountainous sector of the catchment as well as
improving the corresponding purifiers; (iii) development of agricultural best practices
capable of inducing an increase in groundwater levels and water quality; (iv) contrasting the
overall lowering of the piezometric surface (due to both climate change and withdrawals)
by calibrating the volumes of water that can be pumped to the in-continuous monitoring
of total stream losses, without altering the qualitative status and quantitative balance of
the groundwater resources.

This approach, aiming at evaluating the percentage of aquifer recharge due to stream
losses, must be coupled to the classical assessment of the zenithal infiltration, as the majority
of rivers flowing out of the mountainous zones toward plains are affected by huge recharge
from precipitations. This in-continuous monitoring network should thus also comprise
rainfall amount, evapotranspiration, surface discharge, and groundwater. In this context,
salt-tracing tests are a rapid and valid tool that can integrate knowledge and provide
additional information about the groundwater balance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/hydrology8030118/s1, Table S1: Groundwater level from wells numbered from W2 to W10.
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