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Abstract: The spatial characteristics and patterns of snow accumulation and ablation inform the
amount of water stored and subsequently available for runoff and the timing of snowmelt. This
paper characterizes the snow accumulation phase to investigate the spatiotemporal snow water
equivalent (SWE) distribution by fitting a function to the trajectory plot of the standard deviation
versus mean SWE across a domain. Data were used from 90 snow stations for a 34-year period across
the Southern Rocky Mountains in the western United States. The stations were divided into sub-sets
based on elevation, latitude, and the mean annual maximum SWE. The best function was a linear fit,
excluding the first 35 mm of SWE. There was less variability with SWE data compared to snow depth
data. The trajectory of the accumulation phase was consistent for most years, with limited correlation
to the amount of accumulation. These trajectories are more similar for the northern portion of the
domain and for below average snow years. This work could inform where to locate new stations, or
be applied to other earth system variables.

Keywords: standard deviation versus mean; trajectory plots; SNOTEL

1. Introduction

Across the western United States, human existence and economic activity are defined
by the availability or scarcity of water [1]. With persisting climate change, water resources
are becoming more in one of the two extreme states: drought or flood [2]. Urban areas are
especially susceptible to both drought and flood [3]. Many of these areas are downstream
of mountains, where snow is persistent in the winter [4], with about 22% of the world’s
population living downstream of the mountains [5].

In the Southern Rocky Mountains (SRM; Southern Wyoming, Colorado, and Northern
New Mexico), the snowpack is the dominant contributor to surface water flows, and in
Colorado, surface water was estimated to comprise 85% of all water withdrawals [6].
Drought conditions have been identified over the southern portions of the SRM (Figure 1)
since the early 2000s [7], and these have persisted for the past two decades [8]. As well,
a decline in the snowpack has occurred over the past few decades across most of the
SRM [9–11]. The changing climate may not influence the snowpack accumulation, melt
and subsequent runoff uniformly [12].
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Figure 1. Location of the stations (a) as the study map illustrating the elevation group (high is 2800 
m in the north and low is 2900 m in the south), land cover (evergreen/non-evergreen) and mean 
peak SWE (mm) of 90 SNOTEL stations across the Southern Rocky Mountains. The latitudinal divi-
sion is noted by the dashed line. The study area is (b) located in the Western United States. The 
number of stations in each group (Section 3.1) is presented in (a). 

Since these drier conditions are leading to a more uncertain future [13,14], an under-
standing of the spatial distribution of the snowpack is vital for management of water re-
sources [15]. Spatial patterns of snow distribution have been considered at various scales 
[16] from local [17] to regional [18]. The distribution of snow dictates the rate and timing 
of snowmelt and the subsequent streamflow. Evaluation of the distribution of snow and 
terrain and land cover/canopy data has often focused on small domains (km) at fine reso-
lution (m) [19–24], with fewer studies examining medium [25] or larger scales [26]. A va-
riety of approaches exist to estimate SWE spatially [27]. 

Egli and Jonas [18] characterized the dynamics of spatiotemporal snow depth distri-
bution for both accumulation and ablation phases based on six years of data from 77 
weather stations across the Swiss Alps. They applied analytical methods originally devel-
oped in the field of statistical physics by Barabási and Stanley [28] to describe snowpack 
depth as a growing then diminishing surface over time. To visualize and analyze snow 
depth and variability across the domain, a statistical technique was adapted from Crow 
and Wood [29] and soil analyses by Famiglietti et al. [30] to present snow depth distribu-
tion, as the standard deviation, as a function of mean snow depth. The technique allowed 
for the identification and parameterization of mean snow depth distributions for accumu-
lation and ablation phases.  

This study applied the assumptions and methods developed by Egli and Jonas [18] 
for the Swiss Alps to the headwaters region in the Southern Rocky Mountains (SRM) in 
the western United States, considering several adaptations. Across the SRM region (Figure 
1), there are different snow climatologies [31], with large spatial and elevation variability 
[32], but a lower spatial density of snow measurement stations compared to the Alps 
study. While Egli and Jonas [18] used snow depth, this work focuses on snow water equiv-
alent (SWE) data due to their length of record across the SRM. Specifically, the inter-an-
nual variability in accumulation characteristics could be characterized due to the length 

Figure 1. Location of the stations (a) as the study map illustrating the elevation group (high is 2800 m
in the north and low is 2900 m in the south), land cover (evergreen/non-evergreen) and mean peak
SWE (mm) of 90 SNOTEL stations across the Southern Rocky Mountains. The latitudinal division is
noted by the dashed line. The study area is (b) located in the Western United States. The number of
stations in each group (Section 3.1) is presented in (a).

Since these drier conditions are leading to a more uncertain future [13,14], an un-
derstanding of the spatial distribution of the snowpack is vital for management of water
resources [15]. Spatial patterns of snow distribution have been considered at various
scales [16] from local [17] to regional [18]. The distribution of snow dictates the rate and
timing of snowmelt and the subsequent streamflow. Evaluation of the distribution of snow
and terrain and land cover/canopy data has often focused on small domains (km) at fine
resolution (m) [19–24], with fewer studies examining medium [25] or larger scales [26].
A variety of approaches exist to estimate SWE spatially [27].

Egli and Jonas [18] characterized the dynamics of spatiotemporal snow depth distribu-
tion for both accumulation and ablation phases based on six years of data from 77 weather
stations across the Swiss Alps. They applied analytical methods originally developed in
the field of statistical physics by Barabási and Stanley [28] to describe snowpack depth
as a growing then diminishing surface over time. To visualize and analyze snow depth
and variability across the domain, a statistical technique was adapted from Crow and
Wood [29] and soil analyses by Famiglietti et al. [30] to present snow depth distribution, as
the standard deviation, as a function of mean snow depth. The technique allowed for the
identification and parameterization of mean snow depth distributions for accumulation
and ablation phases.

This study applied the assumptions and methods developed by Egli and Jonas [18]
for the Swiss Alps to the headwaters region in the Southern Rocky Mountains (SRM)
in the western United States, considering several adaptations. Across the SRM region
(Figure 1), there are different snow climatologies [31], with large spatial and elevation
variability [32], but a lower spatial density of snow measurement stations compared to
the Alps study. While Egli and Jonas [18] used snow depth, this work focuses on snow
water equivalent (SWE) data due to their length of record across the SRM. Specifically,
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the inter-annual variability in accumulation characteristics could be characterized due to
the length of record; as well, the latitudinal and elevational differences could be assessed.
The objectives are as follows: (1) compare the statistical fit of snow depth versus SWE
trajectories, (2) identify regression models and parameters to approximate the accumulation
phase of SWE trajectories over the period of analysis, and (3) identify characteristics and
patterns across the SRM by sub-dividing the domain by latitude and elevation. A method
is evaluated to automatically differentiate between accumulation at all locations and mixed
accumulation–ablation. The maximum peak SWE of each snow year was also considered.
The focus in this paper is the accumulation phase across all stations; the inter-annual
differences in the mean rate of accumulation as a function of snowpack variability provide
insight into snowfall patterns and how established stations measure those.

2. Study Area and Data

This work, in the SRM region, builds upon previous snow hydrology studies using
the same dataset, in particular the derivation of snow-cover depletion curves [33], the
spatiotemporal variability of snowmelt factors [34], the evaluation of snowmelt rates
compared to precipitation as potential for flood risk [32], and snowmelt modeling [35].

This paper examined 34 water years (1 October 1981–30 September 2015) of SWE data
across the SRM. This time series contains 90 Snow Telemetry (SNOTEL) operated by the
Natural Resources Conservation Service (NRCS) [32] (Figure 1). Stations within the study
domain stretch from approximately 36 to 42.5 degrees North and 105 to 108.5 degrees West
within the states of Colorado, northern New Mexico and southern Wyoming and across
the elevation range of 2268 to 3536 m (Figure 1). Mean daily SWE values recorded between
water years 1982 and 2015 were obtained from the NRCS <wcc.nrcs.usda.gov> (accessed
on 16 August 2021). For these years, the available period of record for the stations was
between 28 and 34 years. Quality-controlled SWE data were obtained from Fassnacht
and Records [32]. Snow depth data have been available at most of these stations since
the late 1990s to late 2000s; thus, there is only about half of the period of record. A 30 m
digital elevation model (DEM) and the 2011 land use and land cover (LULC) map were
obtained from the U.S. Geological Survey National Map <nationalmap.gov> (accessed on
16 August 2021). For each station, the elevation and land cover type were extracted from
the DEM and LULC map, respectively, using the station coordinates obtained from the
NRCS. Due to the potential for snow cover canopy interception, land cover was classified
as either evergreen forest (50 stations) or non-evergreen forest [34]. The non-evergreen
land cover types were predominantly deciduous forest (12 stations), mixed forest (7), or
grassland/herbaceous (15).

3. Methodology
3.1. Station Sub-Classification by Latitude, Elevation and Snow Year

Quality-controlled water year data yielded a daily SWE value for each calendar day
for each of the 34 water years [32]. The mean SWE and standard deviation of SWE were
computed for the entire domain and the two groups divided by latitude (north and south).
Each of the two latitude groups was further divided by elevation yielding north-high, north-
low, south-high, and south-low (Figure 1a), resulting in a total of seven unique mean and
standard deviation SWE values for each calendar day. The latitude-based group divided
the SNOTEL stations across the SRM at 38.75 degrees (see Figure 1a) north latitude into
north and south sub-sets, based on regions of homogeneity identified with self-organizing
map analyses [31] and correlogram analyses of accumulation slopes [36]. The latitude- and
elevation-based group further subdivided the north–south SNOTEL station sub-sets by
an elevation threshold of 2800 m in the north and 2900 m in the south; the “high” group was
above this threshold elevation. Elevation thresholds were selected to the nearest 100 m and
to have a similar proportional distribution of low and high elevation stations for the north
and south sub-sets, to ensure that there were enough stations in each sub-domain so that
statistics could be adequately computed. For each spatial sub-set, all 34 snow years were

wcc.nrcs.usda.gov
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classified according to the annual maximum daily SWE measurement into three groups:
above average (AA, more than 1/2 standard deviation deeper than the mean), average
(AVG, within (±) 1/2 standard deviation of the mean) or below average (BA, less than
1/2 standard deviation shallower than the mean) (Figure 2). For assessing the regression
model, seven characteristic snow years were selected (above average: 1993, 1995, 2011;
average: 2010; below average: 2002, 2012, 2013; highlighted in Figure 2). Since the main
purpose is to evaluate the inter-annual variability of accumulation slopes across the entire
domain and sub-domains, the seven years were assumed to be representative of snowpack
conditions; only one average snow year was selected for the evaluation, as above and
below the average year represent the outliers, which tend to be more difficult to adequately
fit with statistics.
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Figure 2. Mean annual peak SWE across the entire domain highlighting the above average (blue),
average (green), and below average (red) snow years. The seven characteristic snow years that were
used to assess the regression model are identified by the bold outline and peak SWE is labeled (above
average: 1993, 1995, 2011; average: 2010; below average: 2002, 2012, 2013).

3.2. Derivation of SWE Standard Deviation versus Mean Trajectories

For each station (i) in the study domain, and day (t) in the snow year, the daily SWE
value was represented by xi(t). Averaging these values across a single sub-set yielded xi(t),
or the mean daily SWE. For each sub-set of mean SWE values, the daily standard deviation
σ(xi,t) was computed, as per Egli and Jonas [18]. Thus, for each calendar day (t) from 1982
to 2015, and each sub-set of SNOTEL stations, the mean and standard deviation SWE were
plotted, yielding 238 unique instances over the 34-year period of analysis.

Egli and Jonas [18] utilized this methodology “to describe the evolution of the snow cover
as a growing surface”, based on work by Barabási and Stanley [28] and Löwe et al. [37].
When the snow cover (xi(t), SWE) is considered to be a growing/diminishing surface over
the snow year, the standard deviation σ(xi,t) within the data set reflects the magnitude
of spatial variability. A unique standard deviation SWE value was correlated to each
mean SWE value. Each plot of σ(xi,t) versus xi(t) has three components: All stations
are accumulating (growing surface), all stations are melting (diminishing surface), and
a mixture of accumulation and melting stations, with inflection points in between each
set (see Figure 3 as an example). The approach enabled the seasonal SWE distribution, or
snow depth, to be modeled across multiple spatiotemporal scales, independent of time.
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Figure 3. Standard deviation versus mean SWE trajectory across the full domain for an average
snow year 2010, high snow year 2011, and low snow year 2012, with accumulation start (non-
linear) as a dashed arrow, and the accumulation/melt inflection points identified. The approximate
accumulation phase at all stations (square symbol), accumulation at some stations & melt at others
(triangles symbol) and melt at all stations (round symbol). The three solid arrows show evolution
over time, illustrating the direction of accumulation, accumulation & melt, and melt periods.

3.3. SWE versus Snow Depth Trajectories

Egli and Jonas [18] used snow depth to model the trajectories. Here, SWE data were
used since those data were available for a longer period of record and at a higher spatial
density than snow depth for the SRM study domain. SWE and snow depth data were
evaluated across the full domain for three years (2010 as an average snow year, 2011 as
a high snow year, and 2012 as a low snow year) to compare accumulation phase regression
statistics and slope coefficients between SWE and snow depth trajectories. For all three
snow years, the daily standard deviation data over 90 (87) SWE (snow depth) stations across
the full domain were plotted against the daily mean over all 90 (87) stations to develop
both SWE and snow depth trajectories. The inflection point between accumulation and
mixed periods (called hysteresis by Egli and Jonas [18]) was identified visually and used as
an upper bound for regression models. Linear regression equations were applied to the
accumulation phase, regression statistics (slope coefficients, coefficients of determination)
were extracted, and differences between the regression data were evaluated.

3.4. Accumulation Trajectory Models

To characterize and describe snowpack as a singular growing surface, both the regres-
sion model (e.g., linear, power) and inflection point parameters (e.g., slope threshold) were
investigated. Standard deviation versus mean trajectories from seven characteristic snow
years in the full domain sub-set were evaluated to identify the optimal regression model
and inflection point parameters. Of the seven characteristic snow years, one to three years
of data were obtained from each snow year magnitude category to represent BA (2002,
2012, 2013), AVG (2010) and AA (1993, 1995, 2011) snow years (Figure 2). Snow years were
selected based on the presence or absence of distinct trajectory characteristics, such as the
curvature and shape of the transition between accumulation, mixed, and ablation phases,
and the relationship between the maximum standard deviation SWE and maximum mean
SWE. Special consideration was given to select trajectories with distinct behavior.

A sensitivity analysis (Appendices A and B) was conducted to identify parameters
that enable automated detection of the accumulation phase inflection point, i.e., the point
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between accumulation and mixed accumulation (Figure 3; Appendix A). For the seven
sample years (Figure 2), this inflection point was manually identified for comparison to
the automated method. A moving-slope difference approach was used, and three different
variables were tested: indicator position, magnitude difference in slope, and last feasible
calendar date that all stations could be in accumulation phase. For every data point (day) in
the domain, linear regression variables were calculated based on the adjacent data points to
determine the 10-day or 11-day average accumulation slope. A 10-day linear regression was
conducted for the leading (9 days prior, present day) and lagging (present day, future 9 days)
indicator positions, and an 11-day linear regression was conducted for the central indicator
position (5 days prior, present day and future 5 days). The difference in slopes between
consecutive days was calculated. Large differences in slope were assumed to correlate with
the end of the quasi-linear accumulation phase. Two thresholds (0.3 and 0.5) were tested to
calculate the difference in slope, compared to the manually extracted inflection. Multiple
dates for the feasible calendar date for all stations to be in the accumulation phase were
also tested. The feasible calendar date was included to maintain data quality.

Inflection points obtained from all six permutations of slope difference threshold
and indicator position variables were compared to the ideal inflection point, which was
identified by visual inspection for the seven characteristic snow years (Appendix A). The
Nash–Sutcliffe efficiency coefficient (NSE) was calculated to measure the ability of each set
of model parameters to replicate the ideal inflection point. Linear regression was applied to
the observed ideal inflection point versus the modeled inflection point, and the coefficient
of determination (R2) was calculated.

After the optimal inflection point parameters were identified, three regression methods
were applied to the same seven years’ standard deviation versus mean SWE domain data.
Linear, truncated linear, and power regression models were considered (Appendix B),
based on prior work by Egli and Jonas [18] and Pomeroy et al. [38]. For both the linear and
power regressions, the entire accumulation data set from initial non-zero values through
the inflection point were considered, and coefficients M and B and α and β were identified
by the following equations:

σ(xi, t) = M × xi(t) + B (1)

σ(xi, t) = α × xi(t)
β

(2)

A truncated linear regression model was developed specifically to exclude SWE data
from the beginning of the accumulation phase, characterized by non-linear patterns and
significant moving-average slope variability. The non-zero initial point (first occurrence
of mean SWE ≥ 35 mm) was selected by reviewing the standard deviation versus mean
SWE trajectories trends visible on all seven characteristic years, with a focus to exclude the
initial non-linear snowfall accumulation phase (Figure 3).

3.5. Evaluation of Accumulation Trajectories and Best-Fit Equations

After the ideal regression model and parameters were identified, both were applied
to the accumulation phase of 238 standard deviation versus mean SWE trajectories (one
trajectory per year in seven sub-sets). The iterative analysis was conducted with Python
code, leveraging SciPy [39] and pandas [40] packages. For each trajectory, slope and coeffi-
cient of determination regression statistics were obtained. Within each sub-set, maximum,
minimum, average and standard deviation statistics based on the 34 slope values were
calculated and each snow year was identified as BA, AVG and AA. The upper and lower
boundaries used to categorize the snow year were developed uniquely for each sub-set as
described above in Section 3.2 based on the mean and standard deviation of the sub-set.

4. Results
4.1. Evaluation of SWE versus Snow Depth Trajectories

The standard deviation versus mean snow depth and SWE trajectories for the three
characteristic snow years (2010, 2011, and 2012) have similar shapes (Figure 4). Within
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the accumulation phase, the trajectory can be broken into two distinct sections for both
SWE and snow depth: a non-linear, hysteretic section for low mean snow depth/SWE
values (typically less than 35 mm mean SWE), and a linear section with a positive average
slope (Figure 4). Snow depth values have a higher degree of scatter along the trajectory
than SWE (Figure 4). The degree of scatter is reflected in the regression statistics of the
accumulation phase; coefficient of determination values for SWE are consistently close to
1 (linear), while coefficient of determination values for snow depth values are consistently
lower (Figure 4). Snow depth trajectories exhibit abrupt changes in the magnitude and
direction of slope that are not seen for SWE during the accumulation phase. The linear
accumulation slopes for SWE were greater than snow depth by 24% in 2010 and 2012, and
31% in 2011 (Figure 4).
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Figure 4. Mean and standard deviation of mean daily data for snow depth (87 SNOTEL stations) and
SWE (90 SNOTEL stations) for (a) 2010 (average snow year), (b) 2011 (above average snow year) and
(c) 2012 (below average snow year). The slope and R2 values listed in the lower right of each figure
are for the accumulation phase.

4.2. Optimal Accumulation Trajectory Model

The linear, truncated linear, and power regression models each fit the measured accu-
mulation phase data (three characteristic years across the full domain shown in Figure 4;
Table A1) effectively. Coefficient of determination values are reported to three decimal
places to differentiate the fit (Table 1). The R2 values for the two linear models are closer
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to a perfect fit (1) than for the power function. By excluding SWE data below 35 mm, the
linear model fit improves, and the average R2 is 0.994 for the seven characteristic years.

Table 1. Comparison of coefficient of determination values from three accumulation phase regression
models for the seven study years (full domain) (see Figure 4). The type of snow year (Figure 2) is
listed as above average (AA), average (AVG) or below average (BA).

Snow Year Linear Linear Truncated at 35 mm Power

1993 (AA) 0.998 0.997 0.983
1995 (AA) 0.980 0.991 0.959
2002 (BA) 0.986 0.989 0.986

2010 (AVG) 0.977 0.994 0.984
2011 (AA) 0.987 0.997 0.995
2012 (BA) 0.980 0.997 0.971
2013 (BA) 0.987 0.995 0.991
average 0.985 0.994 0.981

The slope difference threshold value of 0.5 did not lead to detection of an inflection
point for the 2010 snow year (AVG), influencing the negative NSE and low R2 values for
linear regression between observed and modeled inflection points (Tables 2 and A2). In
contrast, the slope difference threshold of 0.3 led to the detection of an inflection point
for all seven years (Table A3). With a slope difference threshold value of 0.3, both the
central 11-day and lagging 10-day indicator position parameters reflected the observed
inflection point (NSE of 0.85, 0.81, respectively), and exhibited a more linear relationship
between observed and modeled mean SWE (R2 of 0.86, 0.87, respectively), than the leading
10-day indicator position parameter. The central 11-day (0.3 slope difference threshold)
was utilized in regression model identification with the truncated linear equation, since this
combination of parameters yielded the most accurate results for the seven characteristic
snow years.

Table 2. Accumulation phase inflection point model parameter comparison.

Slope Difference Threshold Indicator Position NSE R2

0.3
leading 10-day 0.71 0.76
central 10-day 0.85 0.86
lagging 10-day 0.81 0.87

0.5
leading 10-day −1.97 0.01
central 10-day −0.31 0.55
lagging 10-day −0.42 0.44

4.3. Accumulation Trajectories and Best-Fit Models

Out of the 238 trajectories, the model did not yield an inflection point or a realistic
inflection point for nine trajectories (3.7%): full domain for 2000, south for 2000 and 2012,
north-high for 1984 and 2001, south-high for 1987 and 2000, and south-low for 2000 and
2008 (Appendix C). For these cases, the inflection point was obtained by visual inspection.
Realistic accumulation inflection points were assumed to occur prior to May 15th.

The 34-year average of SWE accumulation slopes across all seven sub-sets range from
0.36 (south-low) to 0.40 (full domain) (Table 3). The maximum slope was observed in the
full domain sub-set in 2006 (slope = 0.59), and the minimum slope was observed in the
south-low elevation sub-set in 2007 (slope = 0.12). Across the four latitude and elevation
based sub-sets, a slight decreasing trend in average slope was observed (0.01 change per
sub-set), from highest and northernmost (north-high = 0.39) to lowest and southernmost
(south-low = 0.36). However, average slopes were fairly consistent across all seven sub-sets.
The largest range between maximum and minimum slopes was observed in the south-low
sub-set (0.40), while the smallest range was observed in the north sub-set (0.18).
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Table 3. Full domain and six sub-sets summary of accumulation phase slope statistics (maximum, mean, minimum, standard
deviation) plus the mean R2 of all truncated linear fits over the entire 34-year period of analysis, and mean slope for above
average (AA), average (AVG), and below average (BA) snow years. See Figure 5 for specific years.

Group Sub-Set
Slope

Mean R2 AA AVG BA
Max. Mean Min. Std. Dev.

summary full domain 0.59 0.40 0.26 0.062 0.98 0.37 0.39 0.33

latitude-based
North 0.47 0.39 0.29 0.042 0.99 0.36 0.37 0.33
South 0.50 0.37 0.23 0.077 0.97 0.37 0.37 0.33

latitude and
elevation-based

north-high 0.49 0.39 0.28 0.053 0.98 0.34 0.37 0.34
north-low 0.47 0.38 0.26 0.049 0.99 0.36 0.36 0.28
south-high 0.57 0.37 0.23 0.083 0.97 0.39 0.34 0.29
south-low 0.52 0.36 0.12 0.097 0.95 0.35 0.36 0.25
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The 34-year average R2 and standard deviation values of slope were employed to
assess the degree of inter-annual variability (or scatter) on the accumulation phase of the
standard deviation versus mean SWE trajectories (Table 3). The south-low sub-set exhibits
a high degree of scatter (Figure 5) and had the lowest coefficient of determination (0.95),
and highest slope standard deviation (0.097) of the slopes across all sub-sets. Conversely,



Hydrology 2021, 8, 124 10 of 17

the north and north-low sub-sets exhibited the highest coefficient of determination (0.99),
but the north sub-set exhibited the lowest variation (slope standard deviation of 0.042).

Little to no correlation between scatter and elevation was observed, since separating
the south and north sub-sets by elevation into high and low sub-sets yielded equal or
slightly lower (0.01–0.02) coefficient of determination values. Conversely, the magnitude
of scatter and elevation appear to be correlated, because separating the south and north
sub-sets by elevation into high and low sub-sets increased the standard deviation for all
four sub-sets. The largest increase in standard deviation was observed in the south-low
sub-set, as standard deviation increased 0.020 (from 0.077 (south) to 0.097 (south-low)),
while the increase in standard deviation for the other three sub-sets was observed between
0.006 (south to south-high) and 0.011 (north to north-high).

When the accumulation phase data are discretized by snow year magnitude (BA,
AVG, AA) and sub-set, several characteristics become apparent (see Figures 2 and 5a for
type of snow year). Generally, below average (BA) snow years exhibited lower average
accumulation slopes than average (AVG) or above average (AA) snow years (six out
of seven sub-sets); the lowest average accumulation slope—regardless of snow year—
was observed in the south-high region in the BA snow year category. The standard
deviation values were fairly similar within each sub-set, except the south-low sub-set
where accumulation slopes were much more variable in BA snow years than AVG or AA
snow years.

Between the north and south sub-sets, the average accumulation slopes for BA and
AA snow years were fairly consistent, but a large difference in average accumulation slope
was observed for AVG snow years. When elevation was considered in the north sub-set
(splitting into north-high and north-low sub-sets), no significant impact from snow year
category was observed, since the average slope and standard deviation values were fairly
consistent. However, when elevation was considered in the south sub-set (south-high and
south-low), significant fluctuations in average slope and standard deviation were observed.
For example, average slopes for BA snow years decreased, AVG snow years increased, and
AA snow years both increased (high elevation) and decreased (low elevation). Discretizing
the south sub-set data by elevation revealed standard deviation (scatter) increased for all
snow years and both elevation sub-sets, except BA snow years in the south-high sub-set
(Figure 5 and Table 3).

The largest difference in average accumulation slope within a sub-set was observed
in the south-high sub-set, where the range between the largest (AA snow year = 0.42)
and smallest (BA snow year = 0.32) average slopes was 0.10 (Table 3). The smallest
difference in average accumulation slope within a sub-set was observed in the south-low
sub-set, with a range of 0.02, between AVG (0.37) and BA (0.35) snow years. The range
between the largest and smallest accumulation slopes in south-low and south-high sub-sets
were in contrast to the ranges observed in the other five sub-sets, between 0.04 and 0.06.
Collectively, the results suggest that average accumulation slope values are correlated
strongly, moderately, or weakly with the annual peak SWE; south-low has little to no
correlation, south-high has strong correlation, and the other five sub-sets have moderate
correlation. Stated differently, average accumulation values are fairly consistent for the
south-low sub-set, regardless of snow year. Conversely, for the south-high sub-set, average
accumulation slopes vary greatly, based on the snow year. For the remainder of the sub-sets,
accumulation slopes vary some with the amount of snow each year.

5. Discussion
5.1. Applicability of SWE and Snow Depth for Trajectories

An initial objective of this study was to assess whether SWE or snow depth was better
for the trajectory evaluation. The use of SWE instead of snow depth data was motivated
by the robustness of the available data. In the SRM, SWE data are available for a longer
period of record and higher spatial extent than snow depth data. A second motivation was
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variability in the trajectory data. Most importantly, from a hydrology and water resources
perspective, we ultimately care about SWE [27].

SWE data are a good substitute for and provide several advantages over snow depth
data (Figure 4). For the three snow years where regression was applied to snow depth
and SWE data (2010, 2011, 2012), the R2 values were closer to 1 for SWE data (Figure 4).
The regression fit parameters confirm visual observations from the trajectories (Figure 4);
the standard deviation varies less with SWE data than with snow depth data. In the
accumulation phase, snow depth data lead to a trajectory with multiple standard deviation
values for a given SWE value, which was not observed for trajectories based on SWE
data (Figure 4). Egli and Jonas [18] observed the same behavior—high variability and
frequent changes in snow depth standard deviation; this behavior was attributed to the
physical processes of settling and/or densification, which are measured by snow depth.
The SWE trajectory does not exhibit abrupt changes in magnitude/direction or multiple
values of standard deviation for a given SWE value, because SWE measures the mass
of accumulated water rather than snow depth and decreases in SWE are smaller due to
sublimation. The SWE trajectories do not decrease, i.e., the value of the mean SWE, until
the start of ablation phase at some stations, because mid-winter (accumulation phase) melt
events are rare across the SRM [41]. The use of SWE data eliminated variability due to the
physical processes of settling and densification (Figure 3), resulting in an accumulation
trajectory to which regression can be applied with greater accuracy than snow depth data
(Figure 4).

5.2. Regression Model and Parameters Applied to SWE Trajectories

Although the original work on growing surfaces by Barabási and Stanley [28] and
Egli and Jonas [18] elected to model the accumulation phase of the trajectory with a power
function, the truncated linear model most accurately fit the accumulation phase in the
SRM. For the seven characteristic years in the full domain sub-set, the truncated linear
model yielded a coefficient of determination equal to or greater than the linear or power
models (Table 1). However, all three models yielded high coefficient of determination
values, confirming prior findings by Egli and Jonas [18] and Pomeroy et al. [38] that
both power and linear models can be applied to the accumulation phase across different
snow measurement variables (snow depth/SWE) and snow hydrology regions (SRM,
Swiss Alps).

The truncated linear regression model improves the fit over the non-truncated linear
model by excluding mean SWE values below 35 mm from the regression. For all seven years
analyzed in depth, the trajectory data below 35 mm were highly variable and had multiple
standard deviation values for a given SWE value. The 35 mm threshold was selected to
eliminate the majority of the variability and duplicate standard deviation values by visual
analysis from the seven snow year trajectories studied in depth (Figure 3). The driver of this
behavior is likely caused by both individual SNOTEL stations shifting from accumulation
to ablation, and the 90-station aggregate including stations in both accumulation and
ablation phases at the onset of the winter season. Similar behavior can be observed during
the mixed period between purely accumulation and ablation phases (Figure 4).

Whether generated from snow depth or SWE data, average accumulation slope values
are a measure of spatial variability; larger slope values indicate snowpack data are more
heterogenous, while lower slopes indicate snowpack data are more homogenous. Both
SWE and snow depth accumulation slopes in the SRM were generally lower than the
linear regression slopes for snow depth observed by Egli and Jonas [18] in the Swiss Alps.
In the SRM, snow depth accumulation slopes ranged from 0.29 to 0.38 (the average over
2010, 2011, 2012 was 0.32), and 34-year average SWE accumulation slopes ranged 0.36
(south-low sub-set) to 0.40 (full domain) (Table 3). Egli and Jonas [18] reported six-year
average accumulation slopes between 0.41 and 0.54. Physical processes, such as snow
settling, account for the difference in slope between snow depth and SWE data, but do not
account for the difference in snow depth slope observed between the SRM and Swiss Alps.
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The smaller accumulation slopes in the SRM could be due to differences in data density,
period of record analyzed, or snowpack climatology. Differences in snow hydrology
between the Swiss Alps and SRM may contribute as well. For example, the annual peak
station-averaged snow depth observed by Egli and Jonas [18] in the Swiss Alps was between
1.53 and 2.42 m, while the annual peak station-average snow depth in the SRM was between
0.75 and 3.0 m <wcc.nrcs.usda.gov> (last accessed on 16 August 2021). Egli and Jonas [18]
used six snow years that had some variability. In this paper, three years of snow depth
data illustrated larger inter-annual variability (Figure 4). In total, 34 years of SWE were
considered for the SRM, illustrating much variability (Table 3, Figure 5). Finally, the
SRM domain in this paper is an order of magnitude larger than the Swiss Alps region
examined by Egli and Jonas [18]. Egli and Jonas [18] utilized data from 77 stations located
over approximately 30,000 km2 (390 km2/station), while this study utilized data from
90 stations spread out over approximately 300,000 km2 (3330 km2/station). As such, there
is much difference in snowpack accumulation patterns across the SRM [36] that are not
seen in the Swiss Alps study domain. These differences across the SRM [31] are especially
pronounced between the northern and southern portions of the area (Figure 1). The
SRM domain is large enough (>700 km north to south) that snowfall usually arrives from
different storm systems across the domain.

5.3. Accumulation Slope Dynamics across the Southern Rocky Mountains

The 34-year average accumulation slopes of standard deviation versus mean trajecto-
ries illustrate that similar snowpack accumulation patterns exist across the SRM, which has
previously been detailed by Sturm and Wagner [17]. Unique snowpack accumulation pat-
terns were observed across the distinct snow climatologies of the SRM previously identified
and characterized by Fassnacht and Derry [31]. The snowpack across the south region was
more spatially homogenous than in the north region for individual years, since the 34-year
average accumulation slope is lower in the south region than in the north (Table 3 and
Figure 5). However, the higher standard deviation for the 34-year average accumulation
slope in the south region indicated more inter-annual variability of the snow surface than
in the north region (Table 3).

The most numerically significant impact of elevation was observed when the north
and south sub-sets were split into high and low sub-sets, because the 34-year average
standard deviation values increased for all elevation- and latitude-based sub-sets. While
the relatively small number of data points within the twice-divided sub-sets may account
for a portion of this change, the results may also suggest substantial snowpack variability
exists across sites within similar elevation and latitude ranges. However, the accumulation
slopes from the same elevation- and latitude-based sub-sets are very similar to the latitude-
based sub-sets. Consistency in the average accumulation slope between elevation- and
non-elevation-based sub-sets suggests that for larger spatial scales and data sets, elevation
does not dramatically impact spatial or inter-annual snowpack accumulation patterns.

When annual maximum daily SWE for each snow year is discretized into BA, AVG and
AA snow years, clear correlations between slope, peak annual SWE, elevation and latitude
were observed across the 34-year accumulation phase trajectories. Average accumulation
slopes differ somewhat for BA, AVG and AA snow years for the north sub-set, and those
differences are amplified in the north-high and north-low sub-sets (Table 3). The consistency
suggests that distinct snowpack accumulation patterns exist for different annual maximum
SWE categories, and that elevation does not impact snowpack accumulation behavior.
BA snow years exhibit the lowest average slope, corresponding to the lowest degree of
spatial heterogeneity, followed by AA snow years, and then, AVG snow years with the
highest degree of spatial snowpack variability. Within the south-low region, there is more
variability in the southern stations and thus, less consistency (Figure 5c). This also suggests
peak annual SWE has no impact on the spatial distribution of SWE. However, the large
range of standard deviation values in the south-low sub-set reflects a unique characteristic
of BA peak SWE snow years—a high degree of spatial variability in snowpack.

wcc.nrcs.usda.gov
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5.4. Other Applications

This paper examined 34 years of SWE data (Figure 2) and the difference between high
and low snow years can be seen (Figure 5). In the future, if there is less snow in a warmer
climate [42], as has been the case in the southern domain since about 2000 [7,8], the
application of the rate of snow accumulation trajectory shown herein (Figure 3) can provide
insight into accumulation variability across large domains (1000s of km2). It can also be
used at finer scales [37], provided the proper balance of spatial and temporal measurements
is available. This methodology can easily be extended beyond the United States [43] and
used anywhere time series of snowpack (SWE or depth; Figure 4) are available.

Most earth system properties have systematic spatiotemporal variability that is diffi-
cult to assess due to a lack of measurements, as is seen with snow [27,44]. We use remote
sensing, but in most cases, the resolution is too coarse spatially or temporally to fully assess
the dynamic nature of an earth system property [16]. New approaches are combining
multiple data sources, such as field measurements, remote sensing, and modeling [27,44].
To extend the approach shown here (Figure 3), more data are needed at finer spatial and
temporal resolutions, as well as better models. We must also start to consider how the
earth system has been changing [45], how humans interact with the earth [46], how our
actions influence it [47], and how policy will impact future changes [48]. For water resource
systems, this could provide insight into the occurrence and persistence of droughts and
floods [2]. Examining the trajectory models of systematic spatiotemporal hydro-climatic
variables could help assess where more monitoring is necessary and where models need to
be improved.

6. Conclusions

Linear accumulation slopes for standard deviation versus mean for SWE were greater
than snow depth by 24% in 2010 and 2012, and 31% in 2011. Multiple values of standard
deviation for a given mean value were more likely on the snow depth trajectory. This
hysteretic behavior was attributed to snow depth capturing the physical processes of
settling. Snow water equivalent data did not exhibit the same behavior and do not measure
these physical processes. While the linear fit to depth was quite good, it was better for SWE.

From seven characteristic snow years, the average coefficient of determination for lin-
ear and power models was equal (0.98). Eliminating the initial period (mean SWE < 35 mm)
from the linear model yielded an R2 of 0.99. Using the slope difference method, an 11-day
moving average and slope difference threshold of 0.3 most accurately predicted the end of
the accumulation phase, compared to visual observation.

Across all seven sub-sets, the 34-year average accumulation slopes ranged from 0.36 for
the south-low sub-domain to 0.40 for the full domain, suggesting some snowpack variability
is different based on latitude. There is less inter-annual variability north of 38.75 degrees
(north subsets) and more variability in the south sub-sets, especially below 2900 m in
elevation (south-low). For all sub-sets, below-average snow years exhibited lower average
accumulation slopes than above average snow years, illustrating that snowpack variability
is correlated with maximum annual peak SWE. The differences in the slopes for two regions
(north versus south), two elevation subsets (high versus low), and in three magnitudes
of snow years (AA, AVG, versus BA) illustrate the nature of spatiotemporal variability
in accumulation across the study domain; this can help indicate the transferability of
accumulation patterns from one location to another. The approach presented in this paper
can be applied to other regions to determine coarser resolution snow accumulation patterns,
as well as possible applications to other related datasets.
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Appendix A. Regression Methodology

Three best-fit regression methods were fit to the accumulation data: linear, truncated
linear (excluding mean SWE < 35 mm), and power for seven snow years with unique
accumulation phase characteristics. The 11-day moving-average breakpoint method identi-
fied in the Methods section was used to identify the end of the accumulation phase. The
truncated linear model yielded the largest coefficient of determination values in 6 of 7 years
(Table A1).

Table A1. Regression parameters and coefficients of determination for three regression methods
based on data from seven characteristic snow years.

Snow Year
Linear (Equation (1)) Linear Excluding

SWE < 35 mm
Power Function
(Equation (2))

R2 b m R2 b m R2 α β

1993 0.998 3.48 0.432 0.997 6.58 0.425 0.983 0.809 0.715
1995 0.980 9.26 0.459 0.991 23.43 0.393 0.959 0.680 0.753
2002 0.986 7.26 0.431 0.989 9.13 0.419 0.986 1.260 0.608
2010 0.977 16.52 0.405 0.994 28.01 0.364 0.984 1.412 0.614
2011 0.987 11.23 0.495 0.997 29.90 0.435 0.995 1.086 0.702
2012 0.980 8.36 0.359 0.997 14.79 0.326 0.971 1.229 0.592
2013 0.987 7.56 0.450 0.995 16.64 0.406 0.991 1.257 0.623

Appendix B. Inflection Point Identification

A variety of approaches were tested to determine a replicable method to identify the
inflection point between the purely accumulation and mixed accumulation/ablation phases,
independent of the regression model applied to the accumulation phase. Three time periods
were tested to determine the inflection point: leading, lagging and centralized daily linear
regression methods were tested, with date ranges varying between 10 (leading/lagging)
and 11 days (central). Preliminary attempts to implement this method resulted in many
false positives—changes in slope above the threshold, but much earlier than the measured
accumulation phase terminated. To mitigate false positives, a minimum date threshold of
15 February was included to disallow pre-emptive terminations of the accumulation phase.

After a series of preliminary analyses, two slope difference thresholds were identified
for larger-scale analyses. The two slope difference thresholds (0.3 and 0.5) were tested with
leading 10-day, lagging 10-day, and central 11-day methods for seven snow years. The
seven years selected for testing exhibited unique characteristics on the plot of standard
deviation versus mean SWE. Results were compared to the observed inflection point, which
was determined through visual inspection. Based on the observed inflection point, the
Nash–Sutcliffe model coefficient of efficiency was calculated to assess how accurately the
predicted inflection point aligned with the observed inflection point (Tables A2 and A3).

https://www.wcc.nrcs.usda.gov/
https://nationalmap.gov/
https://nationalmap.gov/
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Table A2. Comparison of breakpoint prediction values of mean SWE for slope difference threshold
of 0.5.

Snow Year
Observed Mean

SWE [mm]
Modeled

Leading 10-Day Central 11-Day Lagging 10-Day

1993 629 235 628 526
1995 411 348 347 342
2002 262 259 261 256
2010 343 0 0 1
2011 445 455 454 445
2012 317 313 316 316
2013 295 294 302 297

NSE 0.706 0.847 0.810
R2 0.757 0.855 0.870

Table A3. Comparison of breakpoint prediction values of mean SWE for slope difference threshold
of 0.3.

Snow Year
Observed Mean

SWE [mm]
Modeled

Leading 10-Day Central 11-Day Lagging 10-Day

1993 629 527 624 526
1995 411 348 347 342
2002 262 174 261 253
2010 343 414 444 391
2011 445 455 454 445
2012 317 313 316 316
2013 295 296 303 296

NSE 0.706 0.847 0.810
R2 0.757 0.855 0.870

Appendix C. Evaluation of Accumulation Slopes

The process of identifying inflection points, and executing a linear regression for
each trajectory (34 years of data, 7 sub-sets) was simplified with development of a num-
ber of Python scripts. However, the method and parameters were not able to identify
a point of inflection for 1 one instance out of 238 (0.42%). For this trajectory (north-low
sub-set, 1987, Figure 1), the inflection point was easily identified visually, but was not
detected numerically.

After reviewing the raw data obtained through Python scripts, nine specific instances
with false inflection points were discovered. False inflection points were defined as occur-
ring after day 250 of the water year (i.e., June, well after melt phase should have begun),
and often were characterized by a coefficient of determination substantially lower than 0.7.
This occurred throughout all sub-sets, over a variety of years (1 in the summary sub-set
(2000), 2 in the south sub-set (2000, 2012), 2 in the north-high sub-set (1984, 2001), 2 in the
south-high sub-set (1987, 2000), 2 in the south-low sub-set (2000, 2008)). The local slope
near the visually observed breakpoints ranged from 0.286 to 0.465 (0.391, 0.384, 0.292, 0.322,
0.371, 0.286, 0.391, 0.465, 0.402, respectively). The issue appeared to be more prevalent in
non-average snow years (5 in low, 3 in high and 1 in mid).
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