Spatial–Temporal Patterns of Historical, Near-Term, and Projected Drought in the Conterminous United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. PDSI Computation
- Evapotranspiration (ET) losses from the soil occur if potential evapotranspiration (PE) > precipitation (P) for the month.
- The surface layer (Ls) contains 1 inch of the available moisture at field capacity.
- The underlying layer (Lu) has an available capacity that depends on soil characteristics and the depth of the effective root zone.
- Moisture can only be removed from Lu after available moisture from Ls is all removed.
- Recharge to Lu can only occur after Ls has been brought to field capacity.
- ET losses from Ls occur at the potential rate.
- Losses from Lu depend on the depth of the effective root zone, initial moisture content in Lu, PE, and the combined AWC in both soil layers.
- Runoff occurs only if both layers reach their combined field capacity.
2.2. Spatial–Temporal Analysis
2.3. Local Spatial Heterogeneity
3. Results
3.1. Temporal Patterns
3.2. Spatial–Temporal Patterns
3.3. Spatial Patterns of Local Heterogeneity
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harto, C.B.; Yan, Y.E.; Demissie, Y.K.; Elcock, D.; Tidwell, V.C.; Hallett, K.; Macknick, J.; Wigmosta, M.S.; Tesfa, T.K. Analysis of Drought Impacts on Electricity Production in the Western and Texas Interconnections of the United States; Argonne National Laboratory (ANL): Argonne, IL, USA, 2012.
- Poch, L.; Conzelmann, G.; Veselka, T. An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States; Rep. DOE/NETL-2009/1365, Morgantown, WV; Argonne National Laboratory (ANL): Argonne, IL, USA, 2009.
- Ray, R.L.; Fares, A.; Risch, E. Effects of Drought on Crop Production and Cropping Areas in Texas. Agric. Environ. Lett. 2018, 3, 170037. [Google Scholar] [CrossRef] [Green Version]
- Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. Environ. Res. Lett. 2016, 11, 94021. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Sylvester, L.M.; Omitaomu, O.A.; Parish, E.S. Analyzing the Implications of Climate Data on Plant Hardiness Zones for Green Infrastructure Planning: Case Study of Knoxville, Tennessee and Surrounding Region; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2016.
- Wang, W.; Ertsen, M.W.; Svoboda, M.D.; Hafeez, M. Propagation of drought: From meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 2016, 6547209. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Peña-Angulo, D.; Salinas, C.; Tomas-Burguera, M.; Beguería, S. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 2018, 66, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Svoboda, M.; Wood, A.; Schubert, S.; Peters-Lidard, C.; Wood, E.; Pulwarty, R.; Mariotti, A.; Barrie, D.; United States National Oceanic and Atmospheric Administration; et al. Research to Advance National Drought Monitoring and Prediction Capabilities; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2014; p. 28. [CrossRef]
- Van Loon, A.F.; Stahl, K.; Di Baldassarre, G.; Clark, J.; Rangecroft, S.; Wanders, N.; Gleeson, T.; Van Dijk, A.I.J.M.; Tallaksen, L.M.; Hannaford, J.; et al. Drought in a Human-Modified World: Reframing Drought Definitions, Understanding, and Analysis approaches. Hydrol. Earth Syst. Sci. 2016, 20, 3631–3650. [Google Scholar] [CrossRef] [Green Version]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Tannehill, I.R. Drought Its Causes and Effects; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 1–10. [Google Scholar] [CrossRef]
- Lu, L.; Yang, H.; Jonathan, L.; Rachel, R.; Bin, Y.; Zengxin, Z.; James, H.; Mark, S. Climatological Drought Analyses and Projection Using SPI and PDSI: Case Study of the Arkansas Red River Basin. J. Hydrol. Eng. 2013, 18, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Duffy, P.B.; Brando, P.; Asner, G.P.; Field, C.B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 2015, 112, 13172–13177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future global meteorological drought hot spots: A study based on CORDEX data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Steinhaeuser, K.; Chawla, N.V.; Ganguly, A.R. Complex Networks In Climate Science: Progress, Opportunities And Challenges. In Proceedings of the CIDU, Mountain View, CA, USA, 5–6 October 2010; pp. 16–26. [Google Scholar]
- Tsonis, A.A.; Swanson, K.L. Topology and predictability of El Nino and La Nina networks. Phys. Rev. Lett. 2008, 100, 228502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirabassi, G.; Masoller, C. Unravelling the community structure of the climate system by using lags and symbolic time-series analysis. Sci. Rep. 2016, 6, 29804. [Google Scholar] [CrossRef]
- Scarsoglio, S.; Laio, F.; Ridolfi, L. Climate dynamics: A network-based approach for the analysis of global precipitation. PLoS ONE 2013, 8, e71129. [Google Scholar] [CrossRef] [Green Version]
- Vejmelka, M.; Pokorná, L.; Hlinka, J.; Hartman, D.; Jajcay, N.; Paluš, M. Non-random correlation structures and dimensionality reduction in multivariate climate data. Clim. Dyn. 2015, 44, 2663–2682. [Google Scholar] [CrossRef]
- Fan, J.; Meng, J.; Ashkenazy, Y.; Havlin, S.; Schellnhuber, H.J. Network analysis reveals strongly localized impacts of El Niño. Proc. Natl. Acad. Sci. USA 2017, 114, 7543–7548. [Google Scholar] [CrossRef] [Green Version]
- Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J. Characterizing the evolution of climate networks. Nonlinear Process. Geophys. 2014, 21, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Donges, J.F.; Schultz, H.C.H.; Marwan, N.; Zou, Y.; Kurths, J. Investigating the topology of interacting networks. Eur. Phys. J. B 2011, 84, 635–651. [Google Scholar] [CrossRef] [Green Version]
- Fountalis, I.; Bracco, A.; Dovrolis, C. Spatio-temporal network analysis for studying climate patterns. Clim. Dyn. 2014, 42, 879–899. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce: Washington, DC, USA, 1965; p. 58.
- Naz, B.S.; Kao, S.-C.; Ashfaq, M.; Rastogi, D.; Mei, R.; Bowling, L.C. Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations. Glob. Planet. Chang. 2016, 143, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, J.; Perrone, D.; Duncan, L.L.; Hornberger, G. A tool for calculating the palmer drought indices. Water Resour. Res. 2013, 49, 6086–6089. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Yuan, S.; Quiring, S.M. Drought in the U.S. Great Plains (1980–2012): A sensitivity study using different methods for estimating potential evapotranspiration in the Palmer Drought Severity Index. J. Geophys. Res. Atmos. 2014, 119, 911–996. [Google Scholar] [CrossRef]
- Dai, A. The Climate Data Guide: Palmer Drought Severity Index (PDSI). Available online: https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi (accessed on 1 September 2021).
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, S.K.; Pranuthi, G.; Dubey, S.K. Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. J. Agrometeorol. 2014, 16, 164. [Google Scholar]
- Pohlert, T. trend: Non-Parametric Trend Tests and Change-Point Detection. 2020. Package Version 1.1.4. Available online: https://CRAN.R-project.org/package=trend (accessed on 7 September 2021).
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Roebber, P.J. The architecture of the climate network. Phys. A Stat. Mech. Appl. 2004, 333, 497–504. [Google Scholar] [CrossRef]
- Steinhaeuser, K.; Chawla, N.V.; Ganguly, A.R. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat. Anal. Data Min. ASA Data Sci. J. 2011, 4, 497–511. [Google Scholar] [CrossRef]
- Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. Complex networks in climate dynamics. Eur. Phys. J. Spec. Top. 2009, 174, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, M.; Tan, P.-N.; Kumar, V.; Klooster, S.; Potter, C. Discovery of Climate Indices Using Clustering. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 446–455. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 26113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.; Gudmundsson, L.; Seneviratne, S.I. Drought persistence errors in global climate models. J. Geophys. Res. Atmos. 2018, 123, 3483–3496. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of Palmer Drought Severity Index for 1870--2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2013, 5, 1117–1130. [Google Scholar] [CrossRef]
- Dai, A. Dai Global Palmer Drought Severity Index (PDSI). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2017. Available online: https://doi.org/10.5065/D6QF8R93 (accessed on 7 September 2021).
- Cook, E.R.; Seager, R.; Heim, R.R., Jr.; Vose, R.S.; Herweijer, C.; Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 2010, 25, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Stott, P.A.; Herring, S. Explaining extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc. 2012, 93, 1041–1067. [Google Scholar] [CrossRef] [Green Version]
- Fannin, B. Updated 2011 Texas agricultural drought losses total $7.62 billiolwn. In AgriLife Today; Texas A&M AgriLife Extension: College Station, TX, USA, 2011; Available online: https://agrilifetoday.tamu.edu/2012/03/21/updated-2011-texas-agricultural-drought-losses-total-7-62-billion/ (accessed on 7 September 2021).
- Alley, W.M. The Palmer Drought Severity Index: Limitations and Assumptions. J. Clim. Appl. Meteorol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information State of the Climate: Drought for June 2012. NOAA National Centers for Environmental Information. 2012. Available online: https://www.ncdc.noaa.gov/sotc/drought/201207 (accessed on 7 September 2021).
- Rippey, B.R. The US drought of 2012. Weather Clim. Extrem. 2015, 10, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. “Climate Change 2007: The Physical Science Basis”. Agenda 6, no. 07. 2007. Available online: https://www.slvwd.com/sites/g/files/vyhlif1176/f/uploads/item_10b_4.pdf (accessed on 7 September 2021).
- Burke, E.J. Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2. J. Hydrometeorol. 2011, 12, 1378–1394. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435. [Google Scholar] [CrossRef] [PubMed]
- Troin, M.; Velázquez, J.A.; Caya, D.; Brissette, F. Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: A case study of two Canadian catchments. J. Hydrol. 2015, 520, 268–288. [Google Scholar] [CrossRef]
Model | Center | AtmRes | VL in Atm | Model Components | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | ||||
ACCESS1-0 | Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Australia | 1.25*1.88 | 38 | ✓ | ✓ | ✓ | ✓ | |||
BCC-CSM1-1 | Beijing Climate Center, China | 2.79*2.81 | 26 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
CCSM4 | National Center for atmospheric Research, USA | 0.94*1.25 | 26 | ✓ | ✓ | ✓ | ✓ | ✓ | ||
CMCC-CM | Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate | 0.75*0.75 | 31 | ✓ | ✓ | ✓ | ✓ | |||
FGOALS-g2 | State Key Laboratory Numerical Modeling for atmospheric Sciences and Geophysical Fluid Dynamics (LASG)—Institute of Atmospheric Physics, China | 1.66*2.81 | 26 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
MPI-ESM-MR | Max Planck Institute Earth System Model | 1.87*1.88 | 95 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
MRI-CGCM3 | Meteorological Research Institute, Japan | 1.12*1.13 | 48 | ✓ | ✓ | ✓ | ✓ | ✓ | ||
NorESM1-M | Norwegian Earth System Model | 1.89*2.5 | 26 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
IPSL-CM5A-LR | Institut Pierre Simon Laplace | 1.89*3.75 | 39 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Models | Clustering Coefficient | Density | Modularity | |
---|---|---|---|---|
1. | CCSM4 | 0.5665 | 0.0432 | 0.4142 |
2. | ACCESS | 0.5554 | 0.0238 | 0.6118 |
3. | BCC | 0.5653 | 0.0323 | 0.6334 |
4. | CMCC | 0.5707 | 0.0117 | 0.7633 |
5. | FGOALS | 0.5244 | 0.0195 | 0.5943 |
6. | IPSL | 0.5964 | 0.0547 | 0.5115 |
7. | MPI | 0.5627 | 0.0208 | 0.7274 |
8. | MRI | 0.5601 | 0.0242 | 0.6629 |
9. | NorESM | 0.5686 | 0.0314 | 0.6267 |
ACCESS | BCC | CCSM4 | CMCC | FGOALS | IPSL | MPI | MRI | NorESM | ||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | p1 | 2.90 | 2.99 | 2.94 | 2.76 | 2.98 | 2.80 | 2.87 | 2.80 | 2.90 |
p2 | 3.36 | 3.39 | 3.20 | 3.05 | 3.41 | 3.45 | 3.31 | 3.36 | 3.45 | |
p3 | 3.33 | 3.23 | 3.39 | 3.44 | 3.51 | 3.49 | 3.41 | 3.48 | 3.49 | |
p4 | 20.13 | 20.16 | 20.13 | 20.10 | 20.12 | 20.19 | 20.14 | 20.13 | 20.14 | |
MAE | p1 | 2.33 | 2.39 | 2.33 | 2.22 | 2.39 | 2.24 | 2.30 | 2.24 | 2.34 |
p2 | 2.65 | 2.70 | 2.56 | 2.40 | 2.69 | 2.72 | 2.63 | 2.61 | 2.74 | |
p3 | 2.65 | 2.58 | 2.69 | 2.74 | 2.81 | 2.77 | 2.72 | 2.78 | 2.77 | |
p4 | 3.09 | 3.28 | 3.16 | 3.20 | 3.17 | 3.36 | 3.30 | 3.28 | 3.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotikot, S.M.; Omitaomu, O.A. Spatial–Temporal Patterns of Historical, Near-Term, and Projected Drought in the Conterminous United States. Hydrology 2021, 8, 136. https://doi.org/10.3390/hydrology8030136
Kotikot SM, Omitaomu OA. Spatial–Temporal Patterns of Historical, Near-Term, and Projected Drought in the Conterminous United States. Hydrology. 2021; 8(3):136. https://doi.org/10.3390/hydrology8030136
Chicago/Turabian StyleKotikot, Susan M., and Olufemi A. Omitaomu. 2021. "Spatial–Temporal Patterns of Historical, Near-Term, and Projected Drought in the Conterminous United States" Hydrology 8, no. 3: 136. https://doi.org/10.3390/hydrology8030136
APA StyleKotikot, S. M., & Omitaomu, O. A. (2021). Spatial–Temporal Patterns of Historical, Near-Term, and Projected Drought in the Conterminous United States. Hydrology, 8(3), 136. https://doi.org/10.3390/hydrology8030136