Hydrological Modeling in Agricultural Intensive Watershed: The Case of Upper East Fork White River, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watershed Description
2.2. Land Use
2.3. Streamflow Data
2.4. SWAT Model
2.5. Agricultural Practices Data
2.6. Water Abstraction
2.7. Calibration and Validation Approach
3. Results
3.1. Streamflow Calibration Results
3.2. Precipitation—Snowmelt
3.3. Water Balance
4. Discussion
4.1. Model Performance
4.2. Land Cover Dynamics in the Sub-Basins
4.3. Precipitation—Actual Evapotranspiration
4.4. Surface Runoff—Percolation—Tile Drainage
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Population Prospects 2019; Nations United: San Francisco, CA, USA, 2019; ISBN 9789211483161. [Google Scholar]
- FAO Aquastat—Water Use Thematic Assessment. Available online: http://www.fao.org/aquastat/en/overview/methodology/water-use (accessed on 1 July 2021).
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K. Estimated Use of Water in the United States in 2015; U.S. Geological Survey: Reston, VA, USA, 2018.
- NCEI U.S. Agricultural Belts. Available online: https://www.ncdc.noaa.gov/monitoring-references/maps/us-ag-belts.php#winter-wheat (accessed on 1 July 2021).
- Socolar, Y.; Goldstein, B.R.; De Valpine, P.; Bowles, T.M. Biophysical and policy factors predict simplified crop rotations in the US Midwest. Environ. Res. Lett. 2021, 16, 054045. [Google Scholar] [CrossRef]
- ISDA: About Indiana Agriculture. Available online: https://www.in.gov/isda/about/about-indiana-agriculture/ (accessed on 1 July 2021).
- USDA. Census of Agriculture. Available online: https://www.nass.usda.gov/AgCensus/index.php (accessed on 1 July 2021).
- David, M.B.; Drinkwater, L.E.; McIsaac, G.F. Sources of Nitrate Yields in the Mississippi River Basin. J. Environ. Qual. 2010, 39, 1657–1667. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Van Scoyoc, G.E.; Monke, E.J.; Oates, K.M.; Pask, W. Pesticide and Nutrient Movement into Subsurface Tile Drains on a Silt Loam Soil in Indiana. J. Environ. Qual. 1991, 20, 264–270. [Google Scholar] [CrossRef]
- Valayamkunnath, P.; Barlage, M.; Chen, F.; Gochis, D.J.; Franz, K.J. Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach. Sci. Data 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Elosegi, A.; Díez, J.; Mutz, M. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 2010, 657, 199–215. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Pacheco, F.A.L.; Pereira, V.R.; Santos, C.F.; Cortes, R.M.V.; Sanches Fernandes, L.F. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 2015, 43, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 8077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoropoulos, C.; Iliopoulou-Georgudaki, J. Response of biota to land use changes and water quality degradation in two medium-sized river basins in southwestern Greece. Ecol. Indic. 2010, 10, 1231–1238. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 2000, 403, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Faust, D.R.; Kröger, R.; Moore, M.T.; Rush, S.A. Management Practices Used in Agricultural Drainage Ditches to Reduce Gulf of Mexico Hypoxia. Bull. Environ. Contam. Toxicol. 2018, 100, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.E.; Rabalais, N.N.; Justic, D. Gulf of Mexico hypoxia: Alternate states and a legacy. Environ. Sci. Technol. 2008, 42, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, G.; Barnhart, B.L.; Srinivasan, R.; Arnold, J.G. Cost of areal reduction of gulf hypoxia through agricultural practice. Sci. Total Environ. 2015, 505, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Worku, T.; Khare, D.; Tripathi, S.K. Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environ. Earth Sci. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Myers, D.N.; Metzker, K.D.; Davis, S. Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin-Ohio, Michigan, and Indiana. In Water-Resources Investigation Report; U.S. Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
- Meshesha, T.W.; Wang, J.; Melaku, N.D. Modelling spatiotemporal patterns of water quality and its impacts on aquatic ecosystem in the cold climate region of Alberta, Canada. J. Hydrol. 2020, 587, 124952. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, A.F.; Rangecroft, S.; Coxon, G.; Naranjo, J.A.B.; Van Ogtrop, F.; Van Lanen, H.A.J. Using paired catchments to quantify the human influence on hydrological droughts. Hydrol. Earth Syst. Sci. 2019, 23, 1725–1739. [Google Scholar] [CrossRef] [Green Version]
- Aryal, Y.; Zhu, J. Effect of watershed disturbance on seasonal hydrological drought: An improved double mass curve (IDMC) technique. J. Hydrol. 2020, 585, 124746. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the impact of land use and climate change on surface runoff response using gridded observations and swat+. Hydrology 2021, 8, 48. [Google Scholar] [CrossRef]
- Rajib, A.; Kim, I.L.; Golden, H.E.; Lane, C.R.; Kumar, S.V.; Yu, Z.; Jeyalakshmi, S. Watershed modeling with remotely sensed big data: MODIS leaf area index improves hydrology and water quality predictions. Remote Sens. 2020, 12, 2148. [Google Scholar] [CrossRef]
- Rajib, M.A.; Merwade, V.; Yu, Z. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 2016, 536, 192–207. [Google Scholar] [CrossRef] [Green Version]
- Yifru, B.A.; Mitiku, D.B.; Tolera, M.B.; Chang, S.W.; Chung, I.M. Groundwater Potential Mapping Using SWAT and GIS-Based Multi-Criteria Decision Analysis. KSCE J. Civ. Eng. 2020, 24, 2546–2559. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W. Evaluating efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using integrated SWAT and cost evaluation tool. J. Hydrol. 2019, 577, 123965. [Google Scholar] [CrossRef]
- Oh, H.C.; Shimizu, Y.; Kim, S.K. Effect Analysis Regarding Different Scenarios to Improve Water Quality of the Lake Paldang Basin in Korea. KSCE J. Civ. Eng. 2018, 22, 3246–3253. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Starks, P.J.; Steiner, J.L.; Zhang, X.C.; Garbrecht, J.D.; Glasgow, S. An overview of research into conservation practice effects on soil and water resources in the Upper Washita Basin, Oklahoma, United States. J. Soil Water Conserv. 2020, 75, 330–339. [Google Scholar] [CrossRef]
- Carvalho-Santos, C.; Marcos, B.; Nunes, J.P.; Regos, A.; Palazzi, E.; Terzago, S.; Monteiro, A.T.; Honrado, J.P. Hydrological impacts of large fires and future climate: Modeling approach supported by satellite data. Remote Sens. 2019, 11, 2832. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D.W. A review of the integrated effects of changing climate, land use, and dams on Mekong river hydrology. Water 2018, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Stephenson, S.R.; Qu, S. Quantifying the relationship between streamflow and climate change in a small basin under future scenarios. Ecol. Indic. 2020, 113, 106251. [Google Scholar] [CrossRef]
- White, M.J.; Beiger, K.; Gambone, M.; Haney, E.; Arnold, J.; Gao, J. Development of a hydrologic connectivity dataset for SWAT assessments in the US. Water 2017, 9, 892. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Wang, H.; Shi, C.; Wu, Y.; Ji, X. Establishment and evaluation of the China meteorological assimilation driving datasets for the SWAT model (CMADS). Water 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Vaghefi, S.A.; Yang, H.; Srinivasan, R. Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rajib, A.; Merwade, V. Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st century. Hydrol. Process. 2017, 31, 3645–3661. [Google Scholar] [CrossRef]
- Parshotam, A. An evaluation of Climate Forecast System Reanalysis (CFSR) data for use in models that require meteorological weather station data in New Zealand. Agron. N. Z. 2019, 49, 51–62. [Google Scholar]
- Ali, Y.S.A.; Crosato, A.; Mohamed, Y.A.; Abdalla, S.H.; Wright, N.G. Sediment balances in the Blue Nile River Basin. Int. J. Sediment Res. 2014, 29, 316–328. [Google Scholar] [CrossRef]
- Haimann, M.; Liedermann, M.; Lalk, P.; Habersack, H. An integrated suspended sediment transport monitoring and analysis concept. Int. J. Sediment Res. 2014, 29, 135–148. [Google Scholar] [CrossRef]
- Yen, H.; White, M.J.; Jeong, J.; Arabi, M.; Arnold, J.G. Evaluation of alternative surface runoff accounting procedures using the SWAT model. Int. J. Agric. Biol. Eng. 2015, 8, 54–68. [Google Scholar] [CrossRef]
- Freund, E.R.; Abbaspour, K.C.; Lehmann, A. Water resources of the Black Sea Catchment under future climate and landuse change projections. Water 2017, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Farjad, B.; Gupta, A.; Razavi, S.; Faramarzi, M.; Marceau, D.J. An integrated modelling system to predict hydrological processes under climate and land-use/cover change scenarios. Water 2017, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; White, M.J.; Allen, P.M.; Gassman, P.W.; Bieger, K. Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. J. Am. Water Resour. Assoc. 2021, 57, 154–169. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Fidelis, T.; Roebeling, P. Water resources and land use planning systems in Portugal—Exploring better synergies through Ria de Aveiro. Land Use Policy 2014, 39, 84–95. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Zeiger, S.J. A case-study application of the experimental watershed study design to advance adaptive management of contemporary watersheds. Water 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- UNSD. System of Environmental-Economic Accounting, Central Framework; ST/ESA/STAT/Ser.F/109; UNSD: New York, NY, USA, 2012. [Google Scholar]
- Zal, N.; Bariamis, G.; Zachos, A.; Baltas, E.; Mimikou, M. Use of Freshwater Resources in Europe 2002–2014; EEA: København, Copenhagen, 2017. [Google Scholar]
- Bariamis, G.; Paschos, G.; Baltas, E. Land Accounts in the River Basin Districts of Greece. Environ. Process. 2018, 5. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Ancona, Z.H.; Hass, J.; Glynn, P.D.; Wentland, S.; Vardon, M.; Fay, J. Integrating physical and economic data into experimental water accounts for the United States: Lessons and opportunities. Ecosyst. Serv. 2020, 45, 101182. [Google Scholar] [CrossRef]
- USGS Watershed Boundary Dataset. Available online: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/watershed-boundary-dataset?qt-science_support_page_related_con=4#qt-science_support_page_related_con (accessed on 1 July 2021).
- NASA Shuttle Radar Topography Mission. Available online: https://www2.jpl.nasa.gov/srtm/cbanddataproducts.html (accessed on 1 July 2021).
- USDA United States General Soil Map (STATSGO2). Available online: https://data.nal.usda.gov/dataset/united-states-general-soil-map-statsgo2 (accessed on 1 July 2021).
- USDA Description of STATSGO2 Database | NRCS Soils. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053629 (accessed on 1 July 2021).
- NOAA. 1991–2020 Climate Normals Indiana; NOAA: Washington, DC, USA, 2021.
- USGS National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datasets (accessed on 1 July 2021).
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- USGS Indiana National Land Cover Dataset 1992. Available online: https://maps.indiana.edu/previewMaps/Environment/Land_Cover_1992.html (accessed on 18 July 2021).
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Yang, L. Thematic accuracy of the 1992 National Land-Cover Data for the western United States. Remote Sens. Environ. 2004, 91, 452–468. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Fry, J.A.; Smith, J.H.; Homer, C.G. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Remote Sens. Environ. 2010, 114, 1286–1296. [Google Scholar] [CrossRef]
- USDA CropScape-NASS CDL Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 1 July 2021).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resour. Inst. 2011, 1–647. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface-groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-Time Water and Sediment-Routing Model for Large Basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Srinivasan, R.; Ramanarayanan, T.; Arnold, J.G.; Bednarz, S. Large area hydrologicl modelling and assessment Part II: Model application. J. Am. Water Resour. Assoc. 1998, 34, 91–101. [Google Scholar] [CrossRef]
- SWAT ArcSWAT Interface Version 24 October 2012. Available online: https://swat.tamu.edu/software/arcswat/ (accessed on 1 July 2021).
- USDA NASS. Indiana Corn County Estimates 2019; USDA NASS: Washington, DC, USA, 2020; Volume 48823.
- USDA NASS. Indiana Soybeans County Estimates 2019; NASS: Washington, DC, USA, 2020; Volume 48823.
- Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A refined regional modeling approach for the Corn Belt-Experiences and recommendations for large-scale integrated modeling. J. Hydrol. 2015, 524, 348–366. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.-K.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resour. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- DNR Significant Water Withdrawal Facility Data. Available online: https://www.in.gov/dnr/water/water-availability-use-rights/significant-water-withdrawal-facility-data/ (accessed on 1 July 2021).
- Solley, W.B.; Chase, E.B.; Mann, W.B.I. Estimated Use of Water in the United States in 1980; U.S. Geological Survey Circular: Reston, VA, USA, 1983.
- Solley, W.B.; Merk, C.F.; Pierce, R.R. Estimated Use of Water in the United States in 1985; U.S. Geological Survey Circular: Reston, VA, USA, 1988.
- Solley, W.B.; Pierce, R.R.; Perlman, H.A. Estimated Use of Water in the United States in 1990; U.S. Geological Survey Circular: Reston, VA, USA, 1993.
- Hutson, S.S.; Barber, N.L.; Kenny, J.F.; Linsey, K.S.; Lumia, D.S.; Maupin, M.A. Estimated use of water in the United States in 2000; U.S. Geological Survey Circular: Reston, VA, USA, 2004; ISBN 060797818X.
- Kenny, J.F.; Barber, N.L.; Hutson, S.S.; Linsey, K.S.; Lovelace, J.K.; Maupin, M.A. Estimated Use of Water in the United States in 2005; U.S. Geological Survey Circular: Reston, VA, USA, 2005; Volume 1344, ISBN 9781411326002.
- Maupin, M.A.; Kenny, J.F.; Hutson, S.S.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2010; U.S. Geological Survey Circular: Reston, VA, USA, 2010; ISBN 9781411338623.
- Coast, G.; Catahoula, T.; Counties, G.; Counties, J.; County, W.; County, J.; County, H.; Water, T.; Board, D.; District, H.C.S. Estimated Use of Water in the United States in 1995; U.S. Geological Survey Circular: Reston, VA, USA, 1998; ISBN 060790075X.
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zo. J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Du, L.; Rajib, A.; Merwade, V. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. J. Hydrol. 2018, 562, 84–102. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.; Ryu, J. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecol. Eng. 2018, 125, 50–67. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Stengel, V.; Rendon, S.; Banta, J. The importance of parameterization when simulating the hydrologic response of vegetative land-cover change. Hydrol. Earth Syst. Sci. 2017, 21, 3975–3989. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Gassman, P.W.; Kling, C.L.; Cibin, R.; Chaubey, I. Water Quality Assessment of Large-scale Bioenergy Cropping Scenarios for the Upper Mississippi and Ohio-Tennessee River Basins. J. Am. Water Resour. Assoc. 2017, 53, 1355–1367. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models PART I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- ASABE. Guidelines for Calibrating, Validating, and Evaluating Hydrologic and Water Quality (H/WQ) Models. Trans. ASABE 2017, 61, 1–15. [Google Scholar]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. Hydrologic response in an urban watershed as affected by climate and land-use change. Water 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, M.; Hamlet, A.; Byun, K.; Robeson, S.; Baldwin, M.; Staten, P.; Huber, M. Indiana’s Past & Future Climate: A Report from the Indiana Climate Change Impacts Assessment; Purdue Climate Change Research Center, Purdue University: West Lafayette, IN, USA, 2018; pp. 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gowda, P.; Steiner, J.L.; Olson, C.; Boggess, M.; Farrigan, T.; Grusak, M.A. Impacts, Risks, and Adaptation in the United Stated: Fourth National Climate Assessment, Volume II: Agriculture and Rural Communities; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II.
- Angel, J.R.; Swanson, C.; Boustead, B.M.; Conlon, K.; Hall, K.R.; Jorns, J.L.; Kunkel, K.E.; Lemos, M.C.; Lofgren, B.M.; Ontl, T.; et al. Midwest. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II.
- USDA. Agricultural Census; USDA: Washington, DC, USA, 2012; Volume 1, pp. 196–209.
- USDA. Agricultural Census; USDA: Washington, DC, USA, 2017; pp. 192–205.
SWAT Parameter | Physical Explanation | Range |
---|---|---|
CN2 (.mgt) | Initial SCS runoff curve number for moisture condition II | [−20%, +20%] |
SOL_AWC(1) (.sol) | Available water capacity of first soil layer (mm/mm) | [−20%, +20%] |
ALPHA_BF (.gw) | Baseflow alpha factor (days) | 0–1 |
GW_DELAY (.gw) | Groundwater delay (days) | 0–300 |
GWQMN (.gw) | Threshold depth of water in shallow aquifer for return flow (mm H2O) | 0–300 |
GW_REVAP (.gw) | Groundwater “revap” coefficient | 0–0.2 |
RCHRG_DP (.gw) | Deep aquifer percolation fraction | 0–0.5 |
ESCO (.hru) | Soil evaporation compensation factor | 0.7–1 |
C1 | C2 | C3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sugar Crk | Flatrock | Columbus | Seymour | Sugar Crk | Flatrock | Columbus | Seymour | Sugar Crk | Flatrock | Columbus | Seymour | |
CN2.mgt | −19.2% | −6.5% | 1.6% | −16.4% | 2.0% | −2.0% | −13.3% | −16.4% | 2.3% | 1.6% | −18.8% | 4.6% |
ALPHA_BF.gw | 0.06 | 0.06 | 0.06 | 0.65 | 0.81 | 0.16 | 0.06 | 0.65 | 0.97 | 0.06 | 0.71 | 0.93 |
RCHRC_DP.gw | 0.43 | 0.21 | 0.05 | 0.09 | 0.83 | 0.10 | 0.03 | 0.09 | 0.38 | 0.05 | 0.10 | 0.09 |
GW_DELAY | 12.74 | 20.70 | 20.70 | 22.50 | 14.25 | 56.10 | 32.70 | 22.50 | 9.90 | 20.70 | 38.70 | 18.90 |
GWQMN.gw | 58.00 | 128.70 | 164.70 | 191.70 | 130.35 | 249.30 | 255.90 | 191.70 | 62.70 | 164.70 | 3.30 | 112.50 |
GW_REVAP.gw | 0.07 | 0.06 | 0.13 | 0.03 | 0.15 | 0.19 | 0.17 | 0.03 | 0.17 | 0.13 | 0.18 | 0.11 |
ESCO.hru | 0.99 | 0.83 | 0.90 | 0.98 | 0.98 | 0.70 | 0.93 | 0.98 | 0.98 | 0.90 | 0.74 | 0.99 |
SOL_AWC.sol | −3.4% | −16.4% | 8.4% | −19.7% | −13% | −17% | 19.6% | −19.7% | −14.9% | 8.4% | −7.3% | −11.4% |
Calibration | Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Station | p | R2 | NSE | PBIAS (%) | Station | R2 | NSE | PBIAS (%) | ||
C1 (1983–1989) | Sugar Crk | 0.39 | 0.66 | 0.63 | 13.5 | C1 (1990–1992) | Sugar Crk | 0.84 | 0.66 | 33.00 |
Flatrock | 0.86 | 0.88 | 0.87 | 6.00 | Flatrock | 0.84 | 0.82 | 14.00 | ||
Columbus | 0.69 | 0.88 | 0.88 | 5.20 | Columbus | 0.88 | 0.83 | 16.50 | ||
Seymour | 0.46 | 0.89 | 0.88 | 9.20 | Seymour | 0.90 | 0.87 | 14.50 | ||
C2 (1993–1999) | Sugar Crk | 0.73 | 0.92 | 0.89 | 15.30 | C2 (2000–2002) | Sugar Crk | 0.83 | 0.83 | −4.30 |
Flatrock | 0.89 | 0.90 | 0.90 | −2.30 | Flatrock | 0.82 | 0.54 | −40.20 | ||
Columbus | 0.76 | 0.94 | 0.94 | 5.20 | Columbus | 0.91 | 0.87 | −11.60 | ||
Seymour | 0.69 | 0.94 | 0.92 | 7.70 | Seymour | 0.89 | 0.88 | −6.90 | ||
C3 (2003–2011) | Sugar Crk | 0.71 | 0.88 | 0.88 | 1.00 | C3 (2012–2015) | Sugar Crk | 0.83 | 0.83 | 3.20 |
Flatrock | 0.77 | 0.86 | 0.86 | 0.20 | Flatrock | 0.85 | 0.65 | −13.40 | ||
Columbus | 0.62 | 0.90 | 0.90 | 3.70 | Columbus | 0.85 | 0.84 | 5.40 | ||
Seymour | 0.53 | 0.90 | 0.88 | 6.50 | Seymour | 0.89 | 0.88 | −2.80 | ||
Proposed ranges of model evaluation criteria | ||||||||||
R2 | NSE | PBIAS (%) | ||||||||
Satisfactory | 0.7–0.8 | 0.55–0.7 | ±(10–15) | |||||||
Good | 0.8–0.85 | 0.7–0.85 | ±(3–10) | |||||||
Very good | 0.85–1 | 0.85–1 | ±(0–3) |
Sugar Crk | Flatrock | Columbus | Seymour | ||
---|---|---|---|---|---|
Low flow season | NSE | 0.77 | 0.75 | 0.84 | 0.93 |
PBIAS (%) | 14% | −5% | 4% | 4% | |
R2 | 0.69 | 0.87 | 0.88 | 0.88 | |
High flow season | NSE | 0.87 | 0.92 | 0.94 | 0.94 |
PBIAS (%) | 6% | 2% | 5% | 8% | |
R2 | 0.73 | 0.93 | 0.91 | 0.94 |
Water Balance Components Ratios | C1 | C2 | C3 |
---|---|---|---|
Streamflow/Precipitation | 27% | 31% | 35% |
Baseflow/Total flow | 39% | 41% | 28% |
Surface runoff/Total flow | 61% | 59% | 72% |
Percolation/Precipitation | 11% | 13% | 11% |
Deep recharge/Precipitation | 2% | 1% | 1% |
Evapotranspiration/Precipitation | 64% | 58% | 54% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bariamis, G.; Baltas, E. Hydrological Modeling in Agricultural Intensive Watershed: The Case of Upper East Fork White River, USA. Hydrology 2021, 8, 137. https://doi.org/10.3390/hydrology8030137
Bariamis G, Baltas E. Hydrological Modeling in Agricultural Intensive Watershed: The Case of Upper East Fork White River, USA. Hydrology. 2021; 8(3):137. https://doi.org/10.3390/hydrology8030137
Chicago/Turabian StyleBariamis, George, and Evangelos Baltas. 2021. "Hydrological Modeling in Agricultural Intensive Watershed: The Case of Upper East Fork White River, USA" Hydrology 8, no. 3: 137. https://doi.org/10.3390/hydrology8030137
APA StyleBariamis, G., & Baltas, E. (2021). Hydrological Modeling in Agricultural Intensive Watershed: The Case of Upper East Fork White River, USA. Hydrology, 8(3), 137. https://doi.org/10.3390/hydrology8030137