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Abstract: This study employed Soil and Water Assessment Tool (SWAT) to analyze the impacts
of climate variability and human activities on River Rwizi flows. Changes in land use and land
cover (LULC) types from 1997 to 2019 were characterized using remotely sensed images retrieved
from Landsat ETM/TM satellites. SWAT was calibrated and validated over the periods 2002–2008
and 2009–2013, respectively. Correlation between rainfall and river flow was analyzed. By keeping
the optimal values of model parameters fixed while varying the LULC maps, differences in the
modeled flows were taken to reflect the impacts of LULC changes on rainfall–runoff generation.
Impacts due to human activities included contributions from changes in LULC types and the rates
of water abstracted from the river as a percentage of the observed flow. Climate variability was
considered in terms of changes in climatic variables such as rainfall and evapotranspiration, among
others. Variability of rainfall was analyzed with respect to changes in large-scale ocean-atmosphere
conditions. From 2000 to 2014, the portion of River Rwizi catchment area covered by cropland
increased from 23.0% to 51.6%, grassland reduced from 63.3% to 37.8%, and wetland decreased from
8.1% to 4.7%. Nash–Sutcliffe Efficiency values for calibration and validation were 0.60 and 0.71,
respectively. Contributions of human activities to monthly river flow changes varied from 2.3% to
23.5%. Impacts of human activities on the river flow were on average found to be larger during
the dry (14.7%) than wet (5.8%) season. Using rainfall, 20.9% of the total river flow variance was
explained. However, climate variability contributed 73% of the river flow changes. Rainfall was
positively and negatively correlated with Indian Ocean Dipole (IOD) and Niño 3, respectively. The
largest percentages of the total rainfall variance explained by IOD and Niño 3 were 12.7% and 9.8%,
respectively. The magnitude of the correlation between rainfall and IOD decreased with increasing
lag in time. These findings are relevant for developing River Rwizi catchment management plans.

Keywords: climate variability; hydrological modeling; land-use or land cover (LULC) changes;
rainfall–runoff; River Rwizi catchment; SWAT; Uganda

1. Introduction

The hydrological cycle of a river basin comprises complex processes which may be
impacted upon by climate variability and human activities [1–4]. It is known that climatic
variables especially rainfall and evapotranspiration (ET) are the main determinants of the
rainfall–runoff volumes across a catchment. Dynamics of rainfall–runoff generation may
be influenced by human-induced changes in land use and land cover (LULC) types. For
instance, as explained in [5], anthropogenic influences such as deforestation, overgrazing,
and significant expansion of urbanized areas over a given catchment lead to changes in
the catchment behavior by (1) affecting the amount of infiltration into the soil, (2) altering
the amount and velocity of the overland rainfall–runoff, and (3) modifying the rate and
amount of evaporation. Therefore, analysis of the influence of climate variability and
human activities on river flow temporal variation is relevant for adaptive planning of water
resources management.
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The River Rwizi (which drains over 8000 km2 area and is used by communities in at
least 12 districts of Uganda, East Africa) has been reported to be undergoing decline in
its volume and subsequent drying of wetlands within the catchment [6–8]. Deposition of
eroded soil might have led to reduced river volume [8]. Concern on the declining River
Rwizi can be found reported on several occasions, for instance:

“In the early 1950’s the thick vegetation of papyrus and other wetland grasses around
River Rwizi acted as water filters, catchment and regulated flooding in the area. Today, the
river, which drains its water into Lake Victoria, is almost lost. Should government fail to
eject or prevent further encroachments on the river, the entire Mbarara district will run
out of water soon, . . . ” Daily Monitor [6], and “ . . . River Rwizi, a lifeline river for over
four million people in southwestern Uganda, has seen up to 80 percent of its water dry
up as a result of land taken by individual Ugandans. 200 people have illegally acquired
over 500 hectares of land along River Rwizi, destroying wetlands on its banks” Pulitzer
Center [9].

Additionally, the rapid urbanization, a condition that is leading to irresistible demand
for the water resource, seems to be putting an enormous strain on the River Rwizi flow
volume [7,8]. Industrial processes and other commercial activities which rely on the River
Rwizi for their water needs are being frustrated. For instance, Nile Breweries Limited
receives 10% instead of 75% of the planned water needs. This is likely to discourage
potential investors in the region, thereby curtailing economic transformation and efforts to
improve livelihoods of communities in the River Rwizi catchment [10].

Changes in river flow can also be influenced by climate variability. Several studies can
be found conducted on the variability of rainfall and ET in the region where the study area
is located (see e.g., [11–17]). Variability of rainfall across the tropics is believed to be largely
dependent on the latitudinal migration of the Inter-Tropical Convergence Zone (ITCZ). It is
also well known that rainfall variability over the equatorial region where the study area is
located is driven by the El Niño Southern Oscillation and the Indian Ocean Dipole (IOD)
(see e.g., [18–20]). Influences of the changes in large-scale ocean-atmosphere conditions
on the variability of temperature and PET can be inferred from the drivers of rainfall [21].
In East Africa, regional atmospheric dynamics and stability are also controlled by the
combined effects of the influences from the high mountains (Mount Rwenzori, Mount
Kenya, Mount Elgon, and Mount Kilimanjaro) and the Great Lakes (Lake Victoria, Lake
Tanganyika, and Lake Malawi) [22].

To the best of our knowledge, there has never been any study to specifically quantify
the contributions of climate variability and human activities to the variation on River Rwizi
flows or rainfall–runoff across the River Rwizi catchment. Eventually, the purpose of this
study was to fill the said knowledge gap. To do so, the specific objectives of this study were
to (i) characterize LULC changes in the River Rwizi catchment, (ii) model and simulate
River Rwizi flow changes using a semi-distributed model, (iii) quantify the amount of
change in River Rwizi flow attributable to the impacts of human activities, and (iv) quantify
the extent to which River Rwizi flow is driven by climatic variability.

2. Materials and Methods
2.1. Study Area

The River Rwizi catchment, which has a drainage area of 8554.7 km2 and lies between
longitudes of 30.21◦ E to 32.52◦ E and latitudes of 0.24◦ S to 0.92◦ S, is located in the south-
western Uganda. It has the River Rwizi, which flows through more than 12 districts in the
western region including Mbarara, Sembabule, and Ntungamo, among others [23]. River
Rwizi originates from the hills found in the western Uganda and has a series of tributaries
joining it as it flows in the southern direction (Figure 1a). The river flows eastward for about
57 km until the gauge at Mbarara water works before it joins the River Kagera. It finally
discharges its waters into the Lake Victoria. The gauged part of the catchment (gauge
station in Mbarara) is approximately 2100 km2 in catchment area (Figure 1a), encompassing
portions of six districts including Bushenyi and Mbarara, among others.
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Figure 1. (a) Location and (b) soil information for the River Rwizi catchment.

The altitude of the Rwizi catchment varies from 1166 to 2171 m above sea level.
River Rwizi is the source of water for livelihood for both people and animals covering
the Mbarara–Masaka dry corridor including Mbarara, Kiruhura, Lyantonde, Sembabule,
Lwengo, Kyotera, and Rakai districts in the eastern and northern sides. In the south, it
takes approximately half of Isingiro and three quarters of Rwampara districts towards
Tanzania [23]. On the western side, the catchment covers the districts of Ibanda, Buhweju,
Bushenyi, Mitooma, and Ntungamo. Rwizi catchment rainfall records show a bimodal
pattern with two rainy seasons which occur from March to May and from September to
November.

The LULC is highly dominated by agricultural lands (both subsistence and com-
mercial), grasslands due to national parks, forests (natural dense, moderate, sparse, and
planted forests), settlements (urban and rural setups), wetlands/swamps, and water bodies
(lakes and rivers). Most parts of the catchment are degraded by deforestation, overgraz-
ing and poor agricultural practices. There are several human activities across the River
Rwizi catchment and at riverbanks including cattle rearing, brick making, and agroforestry
(mainly eucalyptus) [23]. Since River Rwizi catchment experiences environmental changes
and, thus, it is important to evaluate variability in its river flows [23].

Based on properties such as clay content, sand content, loam content, and hydrological
group, soils in the Rwizi catchment are clay loam, sandy clay loam, loam, sandy loam,
and some peat loamy soils. According to Food and Agriculture Organization (FAO)
classifications, soils in the Rwizi catchment are the Alisol and Arenic with extremely low
base saturations. According to Soil and Water Assessment Tool (SWAT) database, soils
in Rwizi belong to Group A—Arenic qualifier (Swanton), Group B—Loamic qualifier
(Benson), and Group C—Clayic qualifier (Water) (Figure 1b).

2.2. Data
2.2.1. River Flow

Daily river flow time series running from 2000 to 2013 observed at Rwebikoona,
Mbarara Municipality along Mbarara–Ishaka road (River Gauging Station No. 81224) was
obtained from Directorate of Water Resources Management of Uganda.

2.2.2. Meteorological Series

To apply the Soil and Water Assessment Tool (SWAT), a number of climatic series,
such as temperature and solar radiation, are required. Due to lack of observed meteo-
rological series required by SWAT, the National Centers for Environmental Prediction’s
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(NCEP’s) Climate Forecast System Reanalysis (CFSR) daily series [24] including rain-
fall, maximum and minimum temperature, relative humidity, solar radiation, and wind
speed were obtained in a gridded (0.25◦ × 0.25◦) form for the period 2000–2013 via
http://globalweather.tamu.edu/ (accessed on 3 February 2020).

Other sources of data were also considered to determine the best rainfall series for
driving SWAT. In this line, daily rainfall (mm/day) series of the Japanese 55-year Reanalysis
(JRA-55) [25], and Climate Hazards group InfraRed Precipitation with Stations (CHIRPS)
version 2.0 (or CHIRPS v2.0) [26] were considered. The data for JRA-55 (1◦ × 1◦ grid) and
CHIRPS v2.0 (0.25◦ × 0.25◦ grid) were over periods 1958–2017, and 1979–2013, respectively.
Furthermore, we used monthly rainfall of the Climatic Research Unit (CRU) Version 4 time
series over the period 1901–2019 [27] and CenTrends v1.0 time series from 1900 to 2014 [28].

Observed daily rainfall at Mbarara Meteorological Station (ID 90300030) over the
period 1930–1995 was obtained from the Uganda National Meteorological Authority.

2.2.3. Spatial Data

Digital Elevation Model (DEM) at a resolution of 1 arc second (30 m × 30 m) was
retrieved from the United States Geological Surveys (USGS) via https://lta.cr.usgs.gov
(accessed on 5 January 2020). The DEM was used for: (i) automatic delineation of the
catchment, (ii) defining the stream network, and (iii) establishing sub-basin parameters
such as stream network, longest reaches, and drainage surfaces and slope.

LULC information was obtained from remotely sensed images retrieved from USGS
Landsat ETM/TM satellites via http://www.earthexplorer.usgs.gov/ (accessed on 18
January 2020) in Path 171 and Row 60 at a spatial resolution of 30 m. The images for the
years 1997, 2000, and 2008 were obtained from Landsat 7. Recent LULC types for years 2014
and 2019 were obtained from Landsat 8 (which is the now decommissioned Landsat 5).

The soil map was obtained from Land and Water Resource, FAO soil database [29] at a
scale of 1:5,000,000. Details on the soil map can be obtained via http://www.fao.org/soils-
portal/soil-survey/soil-maps-and-databases-FAOUNESCO-soil-mapoftheworld/en/ (ac-
cessed on 23 January 2020).

2.3. Methods
2.3.1. Analysis of the LULC Changes

Landsat images were classified into six LULC types. The LULC types included
agricultural or cropland, settlement (built-up areas including both urban and rural setups),
forests (dense, moderate, sparse, and planted), water (lakes and rivers), wetlands (swamps
and papyrus), and grasslands. We focused on the area covered by each LULC type from a
given classified map. This was important to determine which LULC type was increasing or
decreasing over time.

2.3.2. SWAT Modeling and Quantification of Human Impacts

I. Selection of rainfall series to use for modeling

The observed river flow and rainfall were over different periods 2002–2013 and
1930–1995, respectively. Thus, observed rainfall could not be used for the hydrological
modeling. Correlation between the observed river flow and reanalysis rainfall was analyzed
to determine the most suitable rainfall series for driving SWAT. Climatic data from the study
area was found to exhibit strong seasonality and this would affect results of correlation
analysis. Thus, to avoid the influence of the seasonality, correlation was analyzed separately
for each month. In other words, coefficients of correlation between river flow and reanalysis
or satellite-based rainfall over the period 2002–2013 was computed separately for the sub-
series of each month.

http://globalweather.tamu.edu/
http://globalweather.tamu.edu/
https://lta.cr.usgs.gov
http://www.earthexplorer.usgs.gov/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases-FAOUNESCO-soil-mapoftheworld/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases-FAOUNESCO-soil-mapoftheworld/en/
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II. SWAT model build-up and sensitivity analysis

Rainfall–runoff was modeled using SWAT 2012 version based on the water balance
equation [30].

SWi = SWo + ∑n
i=1

(
Rday,i + Qsur f ,i − ETi − Wseep,i − Qgw,i

)
(1)

where, n = sample size, SWi = final soil water content (mm) for the ith day or month
depending on the time scale used for modeling, SWo = initial soil water content (mm),
Rday = rainfall (mm), Qsurf = surface runoff (mm), Qgw = amount of return flow (mm),
ET = evapotranspiration (mm), and Wseep = amount of water (mm) entering the vadose
zone from the soil profile (soil interflow).

The procedure for the model build-up comprised catchment delineation using DEM,
division of sub-basins into smaller units called hydrologic response units (HRUs) based on
both DEM and soil information, and importing weather data into the model. The model
was run on a monthly scale over the period 2000–2008. The first two years were used
as the warm-up period. SWAT has so many model parameters and it would be arduous
to simultaneously change all of them during a single calibration. Thus, a few sensitive
parameters were required to be identified for calibration. In this study, sensitivity analysis
was performed using the global approach in semi-automated Sequential Uncertainty Fitting
(SUFI2) algorithm [31]. The most sensitive parameters were selected based on Student
t-statistics and p-values from the sensitivity analysis. Finally, SWAT inputs and outputs
were assessed based on the information from Arnold et al. [32].

III. SWAT model calibration and validation

Calibration and validation were performed over the periods 2002–2008 and 2009–2013,
respectively. Calibration and validation of SWAT was based on the LULC map for 1997.
Evaluation of model performance during calibration and validation was performed both
graphically and statistically. Graphically, plots of observed versus modeled series were
made. Statistically, model performance was assessed using Nash–Sutcliffe Efficiency
(NSE) [33], coefficient of determination (R2), and percentage of bias (Pbias) such that

NSE = 1 − ∑n
i=1(xi − mi)

2

∑n
i=1(xi − x)2 (2)

R2 =
(∑n

i=1 (xi − x)(mi − m))2

∑n
i=1 (xi − x)2∑n

i=1(mi − m)2 (3)

Pbias(%) =
∑n

i=1(xi − mi)

∑n
i=1 xi

× 100 (4)

where n is the sample size, xi denotes the ith observed value, mi represents the ith modeled
value, while x and m are the mean values of the observed and modeled series, respectively.
NSE varies from negative infinity to one. Values of R2 occur from zero to 1. Application of
R2 is based on the assumption that observed and modeled series are linearly related [34].

IV. Simulations and LULC change impacts

There are a number of ways to investigate impacts of LULC changes on hydrology.
In case of a step jump in flow mean, analysis is conducted on whether changes in LULC
types before and after the change point can be linked to the respective flow characteristics
(see, e.g., Pirnia et al. [4]). We can also apply the hydrological sensitivity elasticity-based
method to investigate river flow sensitivity to rainfall and ET. To do so, we make use of
the dryness index and plant available water coefficient (see e.g., [35,36]). In some cases,
we focus on rainfall elasticity or relating the amounts of change in rainfall to that of river
flow (see e.g., [37,38]). In a scenario analysis, changes can be made to the LULC type(s)
while the hydrometeorological model inputs over the study period are kept unaltered.
With such a scenario analysis, we can determine the amount by which river flow will
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change when, for instance, a given percentage of forest is converted to cropland while
other LULC types remain unaffected. In another approach, the study period is divided into
a number of sub-periods. Over each sub-period, we can have a separate LULC map. The
(semi)distributed model is run over each sub-period. Note is taken on whether changes in
some relevant parameters like the curve number over the various sub-periods can explain
the variation in flow property. This approach was applied to investigate impacts of LULC
changes on water availability of Tons River Basin, Madhya Pradesh, India [39]. Without
LULC maps, a conceptual model can be run over the various sub-periods, and changes in
each of the relevant parameters related to LULC information can be analyzed (see e.g., [40]).

It becomes too complex to quantify impacts of LULC types on hydrology if the
synergistic influences from other factors (such as limitation of the model, and climate
variability) are not controlled during the simulation experiment. Thus, it is expected that
the simulated river flow series obtained when the model is driven by LULC maps for 2000,
2008, 2014, and 2019 would be the same so long as:

(1) The optimal set of model parameters is kept constant during each simulation;
(2) The same hydrometeorological series (such as rainfall and potential ET series) are

used as model inputs over the given study period; and
(3) There are no differences among the LULC maps (in other words, the spatial informa-

tion from LULC maps for 2000, 2008, 2014, and 2019 are totally the same).

To determine the impacts of LULC changes on hydrology, we assume that condi-
tions (1) and (2) are true while (3) is false. Thus, there were four simulations, one based
on the LULC map of 2000 and the others using LULC maps for 2008, 2014, and 2019.
During each simulation, soil information remained spatially the same as that used during
calibration and validation. The absolute difference between the means of model outputs
over the period 2002–2013 based on LULC maps 1997 and 2000 (as a percentage of the
mean of modeled series based on LULC map 1997) was considered to be due to the changes
in LULC types from 1997 to 2000. The same procedure was taken to determine impacts of
LULC changes for the periods 1997–2008, 1997–2014, and 1997–2019.

V. Impacts of human activities and climate variability

The procedure to quantify impacts of human activities and climate variability was as
follows:

(a) As explained shortly above, the differences in the model results based on LULC
map of 1997 and the simulations of LULC maps for 2000, 2008, 2014, and 2019 were
taken to reflect the impacts of LULC changes on rainfall–runoff generation across the
catchment.

(b) To the differences in the means of the model results from (a), water diverted from the
river through other human activities especially abstraction to supply several towns
and industries within the catchment was added and the overall result was expressed
as a percentage of the mean of observed flow.

(c) The amount of total variance in river flow explained by the rainfall was computed.
It is worth noting that rainfall–runoff generation is also controlled by other factors
such as infiltration, percolation, and variation in evapotranspiration. Thus, if we
assume that the model is perfect (or nearly so), the percentage of total variance in the
observed flow explained by the simulated river flow indicates the influence of the
other factors (like infiltration and percolation) and variation of climatic conditions
(including changes in rainfall, temperature, and evapotranspiration) on rainfall–runoff
generation.

(d) The remaining percentage after deducting the total contribution from human activities
(or LULC changes and river flow abstraction) and the percentage of the total river
flow variance explained by the simulated flow (or an indicator of the influence of
climate variability) was attributable to other factors such as reduced capacity of the
hydrological model to capture complexities in rainfall–runoff generation processes,
and possible flow returns into the river through discharge of effluents from industries.
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2.3.3. Analysis of the Rainfall Variability

Insight on the linkage of variability of river flow and rainfall to the changes in large-
scale ocean-atmosphere conditions was investigated using correlation analysis. Coefficients
of correlation between river flow or catchment-wide averaged rainfall and two climate
indices including Niño 3 index [41,42] and the IOD index were analyzed. The IOD index
refers to the anomalous sea surface temperature (SST) difference between the western
(50◦ E to 70◦ E and 10◦ S to 10◦ N) and the southeastern (90◦ E to 110◦ E and 10◦ S to
0◦ N) equatorial Indian Ocean. The Niño 3 refers to the SST across the tropical Pacific
region (90◦–150◦ W and 5◦ N–5◦ S). Before correlation analysis, seasonal components of
the rainfall and river flow were removed. The steps to remove seasonality from the series
involved [43] (a) extracting rainfall or flow for each month, (b) computing the long-term
mean of the series extracted in (a) for each month, (c) taking the long-term monthly mean
pattern as the seasonal model for each year of the data record, and (d) subtracting the
long-term mean of a given month from the corresponding original data value.

3. Results and Discussion
3.1. LULC Changes in Rwizi Catchment

Figure 2 shows the results of the LULC classifications. Visually, the two dominant
LULC types based on each map were grassland and cropland (Figure 2a–e). Results of
computed areas of the various LULC types can be seen in Tables 1 and 2. The smallest
portion of the catchment area in each year was taken up by settlement. Graphical results
on the transition in the LULC types can be seen in Figure 2f. It is important to note that the
vertical axis was plotted on a logarithmic scale to reduce the large disparity in the orders of
magnitudes for clarity. From 1997 to 2019, grassland was characterized by a decreasing
trend. However, forest and settlement areas exhibited increasing trends at rates of 2187
and 1332 ha/year, respectively. This means that the decrease in grassland was due to the
population increase. While grassland was decreasing at a rate of −9260 ha/yr, cropland
was characterized by a positive trend with magnitude of 3083 ha/yr. Due to the population
increase, large areas of grassland were converted to farmlands or grazing lands.

In 1997, LULC comprised grassland (54.7%), cropland (38.2%), forest (1.7%), wetland
(3.5%), water (1.8%), and settlement (0.1%) of the catchment area (Table 1). Generally, it is
noticeable that some LULC types were increasing while others were decreasing over time.
By 2019, grassland and cropland had reduced to 36.6% and 31.6%, respectively. However,
forest increased to 9.8%. Settlement increased from 0.1% to 4.8% over the period 1997–2019.
From 2000 to 2014, wetland reduced in area from 8.1% to 4.7%. One main reason for the
decrease in wetland was due to the massive illegal acquisition of land along the River
Rwizi [9].

Generally, the amount by which a particular LULC type changed depended on the
selected period (Table 2). For instance, the largest increase in cropland was over the period
2014–2019 followed by 1997–2000. However, grassland increased and decreased over the
periods 1997–2000 and 2000–2019, respectively. The differences in the changes of LULC
types over the periods reflect the influences of the various key land laws of the Republic of
Uganda [44–47].
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Table 1. Proportion of total catchment area under various LULC types.

LULC
Area (%)

1997 2000 2008 2014 2019

Cropland 38.2 23.0 39.1 51.6 31.6
Forest 1.7 3.7 1.3 3.7 9.8

Grassland 54.7 63.3 52.3 37.8 36.6
Settlement 0.1 0.1 0.4 0.4 4.8

Water 1.8 1.8 1.7 1.7 1.6
Wetland 3.5 8.1 5.2 4.7 15.6

Table 2. LULC change summary for the River Rwizi catchment.

LULC Type
Change in LULC Area (Ha)

1997–2000 2000–2008 2008–2014 2014–2019

Cropland −126,495 134,144 103,496 −165,811
Forest 17,244 −20,010 19,959 50,232

Grassland 71,322 −91,235 −120,202 −10,468
Settlement −31 2222 266 35,939

Water −1034 −3 709 −533
Wetland 38,992 −25,117 −4229 90,641

3.2. SWAT Modeling
3.2.1. Correlation Analysis

Table 3 shows results of the correlation between river flow and rainfall. For all the
rainfall products, negative correlation was found for the sub-data of at least one month.
CRU data was negatively correlated with river flow for most of the months. Except for July,
CFSR rainfall was positively correlated with river flow of the various months. Negative
correlation coefficients were in the sub-series of July and August (for CHIRPS) or February,
April, and August (in JRA55). CenTrends exhibited negative correlation with river flow
sub-series of October.

Table 3. Correlation between observed river flow and reanalysis or satellite rainfall.

Data Jan Feb March April May June July Aug Sept Oct Nov Dec

No lag
CFSR 0.12 0.62 0.44 0.58 0.25 0.06 −0.34 0.15 0.68 0.64 0.46 0.54
CRU −0.58 −0.19 −0.50 −0.25 −0.14 −0.34 −0.11 0.03 −0.06 0.20 0.18 0.36

CHIRPS 0.23 0.45 0.61 0.31 0.60 0.33 −0.13 −0.15 0.76 0.18 0.27 0.22
JRA55 0.01 −0.06 0.16 −0.08 0.25 0.04 0.00 −0.22 0.35 0.26 0.01 0.00

CenTrends 0.14 0.48 0.38 0.50 0.16 0.51 0.15 0.18 0.30 −0.13 0.24 0.29
1-month lag

CFSR 0.36 0.38 −0.13 0.30 −0.04 0.04 −0.40 0.39 0.30 0.49 0.52 −0.25
CRU −0.04 −0.60 −0.08 −0.06 −0.12 −0.02 −0.17 −0.46 −0.08 0.28 0.28 −0.10

CHIRPS 0.11 0.44 −0.47 0.13 −0.22 0.28 −0.68 0.34 0.20 0.21 0.26 −0.31
JRA55 −0.24 −0.15 −0.20 −0.13 −0.04 0.26 −0.41 0.14 0.23 0.10 −0.35 −0.33

CenTrends 0.22 0.35 0.09 −0.23 0.27 0.37 −0.06 0.70 −0.05 0.07 0.08 −0.38
2-month lag

CFSR 0.41 0.07 −0.42 0.04 −0.12 −0.06 −0.36 0.14 0.60 0.28 −0.23 −0.04
CRU −0.54 0.11 −0.09 0.16 0.45 0.34 −0.44 −0.05 −0.11 0.61 −0.27 0.78

CHIRPS 0.42 −0.30 −0.42 −0.04 −0.10 −0.37 −0.34 −0.34 0.34 −0.12 −0.14 −0.07
JRA55 −0.14 −0.03 0.15 0.03 −0.17 −0.46 −0.36 −0.13 0.11 −0.65 −0.25 −0.11

CenTrends 0.21 0.22 −0.03 0.55 −0.22 −0.27 0.15 0.09 0.10 −0.15 −0.28 0.06
3-month lag

CFSR 0.43 −0.24 −0.25 −0.08 −0.15 0.01 −0.02 0.35 0.34 −0.05 0.26 0.21
CRU 0.44 0.32 −0.10 0.24 0.37 0.00 0.31 0.02 0.58 −0.39 0.67 0.38

CHIRPS −0.02 −0.47 −0.08 −0.24 −0.42 −0.21 0.14 0.39 −0.14 −0.16 0.16 −0.56
JRA55 0.14 0.04 0.25 −0.37 −0.35 −0.23 0.25 0.21 −0.35 −0.22 0.18 −0.22

CenTrends 0.40 0.04 0.10 −0.16 −0.47 0.01 0.56 0.13 −0.03 −0.34 0.26 −0.26
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Without considering the influence of lag in time, the amount of variance in flow,
which could be explained by the CFSR rainfall, varied from 0.35% (in June) to 45.62% (for
September). For other rainfall products, the explained percentages of the total river flow
variance varied over the ranges 0.08–34.17%, 1.63–58.44%, 0.00–12.50%, and 1.58–26.14%,
for CRU, CHIRPS, JRA55, and CenTrends, respectively. Considering all the months, the
averaged percentages of the total variance in river flow explained by CFSR, CRU, CHIRPS,
JRA55, and CenTrends were 20.94%, 8.69%, 16.36%, 2.84%, and 10.26%, respectively. This
meant that CFSR was the best rainfall product for possible hydrological modeling over the
study period.

Considering 1-month lag, coefficients of correlation between CFSR and river flow
were higher in magnitude for January, July, and November than in the case with zero lag.
For the other months, correlation coefficients were less in magnitude when 1-month lag
was considered than in the case with zero lag. This indicates that the speed with which the
catchment as a system responds to the rainfall input is moderate. How fast a catchment
responds to rainfall input depends on a number of factors such as catchment area, influence
of human activities, geology and soil, etc.

Figure 3 shows monthly rainfall in the study area. Observed data was based on
observations from Mbarara meteorological station (ID 90300030). For other datasets (Cen-
Trends, CRU, CHIRPS, CFSR, and JRA55), catchment-wide averaged rainfall was used.
It is noticeable that the observed bimodal pattern of rainfall was adequately reproduced
by data from various sources (Figure 3a–e) although there are some under-estimations or
over-estimations.

For the CFSR data (Figure 3a), the rainfall total of each month was larger over the
recent (2002–2013) than that of the long-term (1979–2015) period. For the CenTrends and
CRU data, it is for the sub-series of October, November, and December that the recent
(2002–2013) rainfall totals were greater than those of the long-term (1901–2015) period
(Figure 3b,c). For the CHIRPS data, recent (2002–2013) rainfall totals were greater than
those for the long-term (1981–2019) period in the months of February, March, April, May,
June, August, and September. Results obtained using the JRA55 (Figure 3e) contrasted those
for other datasets (Figure 3a–d). In other words, JRA55 showed that recent (2002–2013)
rainfall totals were less than those for the long-term (1958–2017) period. Nevertheless, all
the datasets from the various sources generally show that the study area’s rainfall is of a
bimodal pattern or there are two wet sub-periods in each year including March–April–May
(MAM) and September–October–November–December (SON) rainy seasons. January–
February (JF) and the June–July–August–September (JJA) months are the short and long
dry seasons, respectively.

3.2.2. SWAT Model Results

There were 1145 HRUs in 29 sub-basins obtained following the watershed delineation.
The smallest and largest sub-basins in the catchment were 13.2 km2 and 840.4 km2, respec-
tively. After LULC reclassification based on SWAT database, six classes were obtained,
namely, FRST—Forest, AGRL—Cropland, WATR—Water, URBN—Settlement, WETL—
Wetland, and PAST—Pasture and Grasslands.

There were eight sensitive parameters which yielded p-values less than α = 0.05
(Table 4). The top four most sensitive parameters were ALPHA_BF (base flow alpha
factor, days), HRU_SLP (average slope steepness, m/m), CN2 (moisture condition II curve
number), and GWQMN (threshold water level in shallow aquifer for base flow to occur,
mm).
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Table 4. Sensitivity rankings of river flow parameters in the River Rwizi catchment.

S/N Parameter Name Description t-Stat p-Value

1 v__ALPHA_BF Base flow alpha factor (days) 10.49 2.53 × 10−23

2 v__HRU_SLP Average slope steepness (m/m) 6.43 3.00 × 10−10

3 r__CN2 Moisture condition II curve number 5.11 4.49 × 10−7

4 v__GWQMN Threshold water level in shallow aquifer for
base flow to occur (mm) −4.49 9.00 × 10−6

5 v__SOL_BD Moist bulk density (g/cm3) 4.074 5.40 × 10−5

6 v__CH_K2 Effective hydraulic conductivity of main
channel alluvium (mm/hr) −3.32 9.49 × 10−4

7 v__SLSUBBSN Average slope length (m) −3.14 1.77 × 10−3

8 r__SOL_AWC Available water capacity of the soil layer (mm
H2O/mm soil) 2.48 1.34 × 10−2

9 v__REVAPMN
Threshold depth of water in the shallow

aquifer for percolation to the deep aquifer to
occur (mm. H2O).

1.65 9.82 × 10−1

10 r__SOL_K Saturated hydraulic conductivity (mm/h) 1.62 1.06 × 10−1

11 v__ESCO Plant uptake compensation factor 1.41 1.60 × 10−1

12 r__GW_REVAP Groundwater evapotranspiration coefficient −1.24 2.13 × 10−1

13 v__CH_N2 Manning’s “n” value for the main channel −0.93 3.55 × 10−1

v__ means to multiply by original value, and r__ means replace original value.

The values of NSE, R2, and Pbias for calibration were 0.60, 0.68, and −0.18%, re-
spectively. For validation, NSE, R2, and Pbias were 0.71, 0.71, and −0.04%, respectively.
Considering the full time series (combining both calibration and validation data), the
statistical metrics NSE, R2, and Pbias were 0.71, 0.73, and −0.10%, respectively. From
these statistical performance measures, it can be noted that the model was satisfactory for
further application to estimate impacts of the LULC changes and climate variability on
rainfall–runoff across the study area.

Figure 4 shows comparison of observed and modeled series. The time series (Figure 4a)
and scatter (Figure 4b) plots show that the variation in observed flow was comparable
with that in modeled series. However, there was a large mismatch between observed and
modeled flow especially at the beginning of the calibration period especially before 2003.
Such a large mismatch indicated reduced capability of the CFSR data in reproducing the
rainfall, which led to the peak river flows in 2003.

3.3. Possible Large-Scale Drivers of Rainfall Variability

Figure 5 shows variation of correlation between river flows or catchment-wide aver-
aged CFSR rainfall and climate indices at various lags in time. Coefficients of correlation
between river flow and CFSR rainfall were positive at all considered lags. However, the
highest correlation (0.47) was obtained when there was no lag in time. This, as mentioned
before, indicates that the response of the River Rwizi catchment to the rainfall input may
range from fast to moderate. Apart from rainfall, other climatic factors such variation
in evapotranspiration rates are important in determining river flow variation. Like flow,
rainfall was positively and negatively correlated with IOD and Niño 3, respectively. The
magnitude of the correlation between rainfall and IOD decreased with increasing lags. The
highest correlation between rainfall and IOD was also obtained when there was no lag
in time. However, the largest magnitude of the correlation between rainfall and Niño 3
was obtained at the 8-month lag. The largest percentages of the total rainfall variance
explained by IOD and Niño 3 were 12.7% and 9.8%, respectively. When IOD and Niño 3
were used as predictors in a combined way through multiple linear regression, up to about
40% of the total variance in rainfall across the equatorial region (where the study area is
located) could be explained [48]. Thus, synergies among suitable indicators of large-scale
ocean-atmosphere conditions should be considered in investigating predictability of the
rainfall variability across the equatorial region. Given that (i) rainfall is correlated with
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climate indices, and (ii) rainfall is positively correlated with river flow, it means that river
flow variability can be inferred from the drivers of temporal changes in rainfall.
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3.4. Influence of Human Activities and Climate Variability

Figure 6 shows rainfall and results of simulations. The differences among the simu-
lations from the various LULC maps were not large (Figure 6a). This was an indication
that contribution of human activities to the rainfall–runoff variation in the study area
was not large. Rainfall especially for the rainy season was characterized by an increasing
trend over the study period (Figure 6b). River flow also exhibited an increasing trend
over time. This also suggested that the increasing trend in river flow could be due to the
increasing rainfall (Figure 6a,b). What cannot escape a quick notice is that, during dry
seasons, rainfall remained low. For each year, the river flows during the dry season were
much reduced compared to those from wet seasons. These results indicate that the River
Rwizi is characterized by large intermittency in river flows. In other words, the difference
between flows during rainy and dry seasons in each year is large.
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Correlation between CFSR rainfall and river flow was 0.47. However, correlation
between modeled and observed flow was 0.85. In other words, the percentage of the total
river flow variance that was explained by the modeled flow (considering both calibration
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and validation results using LULC map of 1997) was 73%. This indicated that river flow
variation is influenced not only by rainfall but also other factors which affect infiltration
rate, percolation rate, and variation in temperature or evapotranspiration, among others.

Figure 7 shows the response of rainfall–runoff to impacts of human activities based
on the various LULC maps. Amount of influence of human activities on rainfall–runoff
varied from one month to another. This reflected the variation in the human activities, for
instance, with rainfall season. For instance, some activities such as planting of crops are
ceased during the rainy season. Bush clearing and burning tends to occur during the dry
season.
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Generally, contributions of human activities to rainfall–runoff variation went up to
23.5% in August. For wet seasons (March–April–May, and October–November–December,
amounts of contributions of human activities to river flow variation remained low. On
average, the contributions from human activities to the monthly river flow variation over
the periods 1997–2000, 1997–2008, 1997–2014, and 1997–2019 were 7.5%, 10.5%, 11.4%, and
9.9%, respectively.

The River Rwizi has been reported to be dwindling due to impacts of human activities
on the hydrology of the catchment [6–10]. A research study was required to determine
whether the impacts of human activities could be as substantial as reported by the media.
Our study indicated that the mean River Rwizi flow over the study period exhibited an
increasing trend. Positive trend in each month was found to be positive. River flows of
January, April, June, August, October, and November as well as that of the annual time
scale exhibited significant (p < 0.05) increasing trends. Increasing trends were also found
for the rainfall of each month. These results indicated that, given the increasing rainfall,
the impacts of human activities across the River Rwizi catchment did not alter the direction
of trends in the flows over the period 2000–2013. At least 73% of the variation in the
mean rainfall–runoff across the study area could be attributable to the impacts of climate
variability on hydrology. The amounts of contribution of human activities (especially
from changes in LULC types and river flow abstraction) to variation of the River Rwizi
flow over the period 1997–2019 varied over the range 2.3–23.5%. However, the impacts
of human activities on the river flow were on average found to be larger during the dry
(14.7%) than wet (5.8%) season. Considering both dry and wet seasons, the contributions
of the human activities to the variation in river flow was 9.8% on average. The increasing
pressure from the rapidly growing population in terms of activities such as encroachment
of wetlands (through planting of eucalyptus in wetlands and sand mining), and massive
water abstractions especially during the dry season could be responsible for making the
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River Rwizi catchment hydrologically drier than it would be if it was minimally impacted
upon by human activities or when allowed to exist under natural conditions.

Explanation of why there is reduced effect of human activities on the river flow of wet
period could be given in terms of information theory and content in the forcing (rainfall).
It is worth noting that a system can be defined in its internal and external components.
Significant external force on a system (which is a catchment in this case), for instance
through heavy rainfall over longer period (wet period), suppresses the effect of internal
processes in the system output. However, when the system forcing is much reduced in
magnitude (for instance, dry period or minimal amount of rainfall), the system’s internal
processes (such as infiltration rates which can easily be affected by human activities like
deforestation) will have a more pronounced effect on the output. Some of the relevant
literature on concepts regarding analysis of the effect of forcing on the systems in the
context of hydrological modeling can be obtained from [49–52].

The impacts of human activities on the rainfall–runoff variation was larger based on
the LULC map of 2014 than that of 2019. This suggests that that there was some reduc-
tion in the rate of vegetation and wetland degradation especially after 2014. This could
have followed the constant concerns on the need to stop further degradation and wetland
encroachment along the River Rwizi. We think that drastic steps by the National Environ-
ment Management Authority with the support of Ministry of Water and Environment and
Government of Uganda in line with the need for restoration of the River Rwizi especially
after 2014 could have reduced the negative impacts of human activities on the hydrology
of the catchment.

Notably, our results are based on flows aggregated to a monthly scale. We think that
more realistic results could be obtained by modeling rainfall–runoff using data of high
temporal resolution such as daily or hourly series. This requires high quality observed data
for the study area and this, as we found during our study, is still a challenge.

Regulations on water abstractions especially during dry season should be carefully
enforced to ensure sustainability of the water resources in the catchment. One way would
be to set and maintain a threshold water abstraction rate that ensures that the catchment
hydrology supports functionality of the various water-related or water-based systems.
Currently, the regulation of the Ministry of Water and Environment of Uganda ensures
that Q90 (or the flow which is exceeded 90% of the times the flows is recorded over a
stipulated period) or Q95 is used as the environmental flow especially in absence of a
relevant study. The question would be whether water abstractors or users adhere to the
environmental flow given the disproportionate volumes of water abstracted by the various
permitted and unpermitted water users. As opposed to the use of Q90 or Q95, the threshold
for water abstraction could be set while taking into account (i) the dynamics of rainfall–
runoff generation in the various sub-flows (baseflow, interflow, and overland flow) given
the variation in rainfall and ET across the study area, and (ii) level of adherence to the
environmental flow by the various water abstractors.

Contributions from human activities and climate variability to river flow changes
were 9.9% and 73%, respectively. Contributions from other factors to the variation in river
flow totaled 17.1% (i.e., 100–9.9–73). The remaining or unexplained 17.1% of the total
variability in river flow could be due to (i) limited capacity of the hydrological model,
and (ii) extra impacts of human activities such as flow returns into the river through
discharge of effluents from industries, and unpermitted water abstractions not included
in the abstraction data used in this study. Reduced capacity of the hydrological model
can be due to a number of reasons including (a) inaccuracies in parameters of the model,
(b) imperfection of model structure, (c) observation errors on the river flow against which
calibration is to be made, and (d) measurement errors on meteorological model inputs
(such as rainfall), and (e) deficiency in characterization and procession of spatial model
inputs. In some cases, the factors which reduce the model’s efficacy interrelate with one
another. For instance, the best performing parameter vector can be significantly affected by
observational or measurement errors [49].
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4. Conclusions

This study quantified contributions of climate variability and human activities to
the rainfall–runoff variation in the River Rwizi catchment. Changes in LULC types were
characterized using Landsat images for 1997, 2000, 2008, 2014, and 2019. SWAT was driven
by CFSR-based hydro-meteorological series including rainfall, maximum and minimum
temperature, relative humidity, solar radiation, and wind speed. SWAT was built up,
calibrated, and validated using the LULC map of 1997. Calibration and validation of
SWAT were performed on a monthly time scale over the periods 2002–2008 and 2009–2013,
respectively. To depict the transition in LULC changes, SWAT was parameterized using
optimal parameter values obtained during calibration and this was followed by simulations
based on LULC maps of 2000, 2008, 2014, and 2019.

Over the study period (1997–2019), there was an increase in cropland and settlement
by 26.09% and 0.35% of the catchment area, respectively. Wetland reduced by 1.62%.
However, grassland decreased by 25.81% of the catchment area. The percentages of the
catchment area covered by cropland in 2000 and 2014 were 23.0% and 51.6%, respectively.
Grassland covered 63.3% and 37.8% of the catchment area in 2000 and 2014, respectively.

However, wetland covered 8.1% and 4.7% of the catchment area by 2000 and 2014,
respectively. These results depicted the pressure of the increasing population on the
catchment environment.

Performance of SWAT was deemed to be satisfactory with Nash–Sutcliffe Efficiency
values of 0.60 and 0.71 for calibration and validation periods, respectively. Rainfall variabil-
ity explained 20.9% of the total river flow variance over the period 2002–2013. Contributions
of human activities in terms of LULC changes and water abstractions to the river flow
variability varied among months and ranged from 2.3% to 23.5%. On average, human
activities contributed to the monthly river flow variability by 7.5%, 10.5%, 11.4%, and 9.9%
over the periods 1997–2000, 1997–2008, 1997–2014, and 1997–2019, respectively. Impacts
of human activities on the river flow were on average found to be larger during the dry
(14.7%) than wet (5.8%) season. Therefore, water abstraction (and other human activities
which reduce water volumes) during the dry season as well as wetland encroachment
should be regulated to ensure normal functionality of various water-related or water-based
systems.

Contributions from climate variability to river flow changes was up to 73%. Other
factors contributed 17.1% of the river flow variance. For the River Mpanga catchment
within the same region where the study area is located, flow variance was due to LULC
(8%), climate variability (70%), and other factors (22%) [53]. These findings show that river
flow temporal changes in the study area are substantially driven by climate variability.
In this study, rainfall was found to be positively and negatively correlated with IOD
and Niño 3, respectively. However, correlation between rainfall and IOD decreased in
magnitude with increasing lags in time. IOD and Niño 3 explained up to 12.7% and 9.8%
of the total rainfall variance, respectively.

In this study, rainfall–runoff generation was simulated using different LULC maps
while keeping values of optimal model parameters fixed and the differences in the resulting
simulations were taken to reflect impacts of LULC changes on river flow. However, since
rainfall can, to some extent, be impacted by characteristics of land surface, we recommend
a future study to investigate possible inconsistencies among model fields introduced in
results of simulations due to changing LULC maps while using the same rainfall input.
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