An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with Pollutant Transport
Abstract
:1. Introduction
2. Mathematical Model
2.1. 2D Surface Flow Model
2.2. 1D Pipe Flow Model
2.3. Water Exchange between Models
3. Test Cases
3.1. Case 1: UK Environmental Agency Case 8b
3.2. Case 2: Storm Drainage Capacity Test
3.3. Case 3: Pollutant Transport in a Mixed Environment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Barredo, J.I. Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth Syst. Sci. 2009, 9, 97–104. [Google Scholar] [CrossRef]
- Paoli, C. Integrated Flood Management. Guidelines and Study Cases; Technical Report; European Commission, Joint Research Centre, Institute for Environment and Sustainability, European Union: Ispra, Italy, 2015. [Google Scholar]
- Schomwandt, D.; Lucioni, N.; Andrade, M. Flooding risk maps and the representation of vulnerability in Gran La Plata, Buenos Aires. Rev. Geol. Apl. Ing. Ambiente 2016, 36, 15–28. [Google Scholar]
- Teng, J.; Jakeman, A.; Vaze, J.; Croke, B.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Etulain, J.; López, I. Urban flooding: Risk maps and territorial urban planning guidelines. Theoretical-methodological background and purposes. Estud. Del Habitat 2017, 15, 1–21. [Google Scholar]
- Guo, K.; Guan, M.; Yu, D. Urban surface water flood modelling—A comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 2021, 25, 2843–2860. [Google Scholar] [CrossRef]
- Zhou, Q.; Panduro, T.; Thorsen, B.; Arnbjerg-Nielsen, K. Verification of flood damage modelling using insurance data. Water Sci. Technol. 2013, 68, 425–432. [Google Scholar] [CrossRef]
- Bernet, V.; Prasuhn, V.; Weingartner, R. Surface water floods in Switzerland: What insurance claim records tell us about the damage in space and time. Nat. Hazards Earth Syst. Sci. 2017, 17, 1659–1682. [Google Scholar] [CrossRef] [Green Version]
- Blanksby, J.; Saul, A.; Ashley, R.; Djordjević, S.; Chen, A.; Leandro, J.; Savić, D.; Boonya-aroonnet, S.; Maksimović, C.; Prodanović, D. Integrated Urban Drainage: Setting the Context for Integrated Urban Drainage Modelling in the United Kingdom; Aquaterra World Forum on Delta and Coastal Development: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Cea, L.; Garrido, M.; Puertas, J. Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas. J. Hydrol. 2010, 382, 88–102. [Google Scholar] [CrossRef]
- Pathirana, A.; Maheng Dikman, M.; Brdjanovic, D. A Two-dimensional pollutant transport model for sewer overflow impact simulation. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011; pp. 10–15. [Google Scholar]
- Bates, P.; Horritt, M.; Fewtrell, T. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2018, 387, 33–45. [Google Scholar] [CrossRef]
- Fernández-Pato, J.; Caviedes-Voullième, D.; García-Navarro, P. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters. J. Hydrol. 2016, 536, 496–513. [Google Scholar] [CrossRef]
- Xia, X.; Liang, Q.; Ming, X. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Adv. Water Resour. 2019, 132, 103392. [Google Scholar] [CrossRef]
- Sañudo, E.; Cea, L.; Puertas, J. Modelling Pluvial Flooding in Urban Areas Coupling the Models Iber and SWMM. Water 2020, 12, 2647. [Google Scholar] [CrossRef]
- Leandro, J.; Martins, R. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries. Water Sci. Technol. 2010, 73, 3017–3026. [Google Scholar] [CrossRef]
- Fernández-Pato, J.; García-Navarro, P. 2D Zero-Inertia Model for Solution of Overland Flow Problems in Flexible Meshes. J. Hydrol. Eng. 2016, 21, 04016038. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Zhang, H. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model. Water Sci. Technol. 2017, 76, 3392–3403. [Google Scholar] [CrossRef]
- Fraga, I.; Cea, L.; Puertas, J. Validation of a 1D-2D dual drainage model under unsteady part-full and surcharged sewer conditions. Urban Water J. 2017, 14, 74–84. [Google Scholar] [CrossRef]
- Fernández-Pato, J.; Sánchez, A.; García-Navarro, P. Simulación de avenidas mediante un modelo hidráulico/hidrológico distribuido en un tramo urbano del río Ginel (Fuentes de Ebro). Ribagua 2019, 6, 49–62. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, L.; Li, R.; Yin, J.; Yu, D. Linking a Storm Water Management Model to a Novel Two-Dimensional Model for Urban Pluvial Flood Modeling. Int. J. Disaster Risk Sci. 2020, 11, 508–518. [Google Scholar] [CrossRef]
- Leandro, J.; Chen, A.S.; Djordjević, S.; Savić, D.A. Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. J. Hydraul. Eng. 2009, 135, 495–504. [Google Scholar] [CrossRef]
- Leandro, J.; Djordjević, S.; Chen, A.S.; Savić, D.A.; Stanić, M. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data. Water Sci. Technol. 2011, 64, 1016–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León, A.S.; Ghidaoui, M.S.; Schmidt, A.R.; García, M.H. Application of Godunov-type schemes to transient mixed flows. J. Hydraul. Resour. 2009, 47, 147–156. [Google Scholar] [CrossRef]
- Rossman, L. Storm Water Management Model User’s Manual Version 5.1 (EPA/600/R-14/413b); Technical Report; National Risk Management Research Laboratory, United States Environmental Protection Agency: Cincinnati, OH, USA, 2015.
- Rossman, L. Storm Water Management Model Version 5.1. Reference Manual. Volume II-Hydraulics (EPA/600/R-17/111); Technical Report; National Risk Management Research Laboratory, United States Environmental Protection Agency: Cincinnati, OH, USA, 2017.
- Fernández-Pato, J.; García-Navarro, P. Development of a New Simulation Tool Coupling a 2D Finite Volume Overland Flow Model and a Drainage Network Model. Geosciences 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Morales-Hernández, M.; Lacasta, A.; Murillo, J.; Brufau, P.; García-Navarro, P. A Riemann coupled edge (RCE) 1D–2D finite volume inundation and solute transport model. Environ. Earth Sci. 2015, 74, 7319–7335. [Google Scholar] [CrossRef]
- Baek, K.O.; Seo, I.W. Routing procedures for observed dispersion coefficients in two-dimensional river mixing. Adv. Water Resour. 2010, 33, 1551–1559. [Google Scholar] [CrossRef]
- Latorre, B.; Garcia-Navarro, P.; Murillo, J.; Burguete, J. Accurate and efficient simulation of transport in multidimensional flow. Int. J. Numer. Methods Fluids 2011, 65, 405–431. [Google Scholar] [CrossRef] [Green Version]
- Murillo, J.; García-Navarro, P. Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow. J. Comput. Phys. 2011, 230, 7202–7239. [Google Scholar] [CrossRef]
- Morales-Hernández, M.; Murillo, J.; García-Navarro, P. Diffusion–dispersion numerical discretization for solute transport in 2D transient shallow flows. Environ. Fluid Mech. 2018, 19, 1217–1234. [Google Scholar] [CrossRef] [Green Version]
- Gordillo, G.; Morales-Hernández, M.; García-Navarro, P. Finite volume model for the simulation of 1D unsteady river flow and water quality based on the WASP. J. Hydroinformatics 2020, 22, 327–345. [Google Scholar] [CrossRef]
- Beg, M.N.A.; Rubinato, M.; Carvalho, R.F.; Shucksmith, J.D. CFD Modelling of the Transport of Soluble Pollutants from Sewer Networks to Surface Flows during Urban Flood Events. Water 2020, 12, 2514. [Google Scholar] [CrossRef]
- Wool, T.; Ambrose, R.; Martin, J.; Comer, E. Water Quality Analysis Simulation Program (WASP). Users Manual, Version 6; Technical Report; US Environmental Protection Agency: Washington, DC, USA, 2015.
- Lacasta, A.; Morales-Hernández, M.; Murillo, J.; García-Navarro, P. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes. Adv. Eng. Softw. 2014, 78, 1–15. [Google Scholar] [CrossRef]
- Brodtkorb, A.; Hagen, T.; Lie, K.; Natvig, J. Simulation and visualization of the Saint-Venant system using GPUs. Comput. Vis. Sci. 2010, 13, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Saetra, M.; Brodtkorb, A. Shallow Water Simulations on Multiple GPUs. In Proceedings of the Para 2010 Conference, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7134, pp. 56–66. [Google Scholar]
- Vreugdenhil, C. Numerical Methods for Shallow Water Flow; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]
- USDA. Urban Hydrology for Small Watersheds; Environment Agency Report; United States Department of Agriculture (USDA): Washington, DC, USA, 1986.
- Mishra, S.; Singh, V. Soil Conservation Service Curve Number (SCS-CN) Methodology; Kluwer Academic Publishers: Norwell, MA, USA, 2003. [Google Scholar]
- Murillo, J.; García-Navarro, P. Weak solutions for partial differential equations with source terms: Application to the shallow water equations. J. Comput. Phys. 2010, 229, 4327–4368. [Google Scholar] [CrossRef]
- Rubinato, M.; Martins, R.; Kesserwani, G.; Leandro, J.; Djordjević, S.; Shucksmith, J. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions. J. Hydrol. 2017, 552, 421–432. [Google Scholar] [CrossRef]
- Néelz, S.; Pender, G. Benchmarking of 2D Hydraulic Modelling Packages; Environment Agency Report; UK Environment Agency: Bristol, UK, 2013.
CPU (1 Core) | CPU (6 Cores) | GPU (Tesla C2075) | GPU (Titan Black) | |
---|---|---|---|---|
Comp. time (h) | 30.9 | 5.43 | 0.766 | 0.264 |
Speed-up | - | 5.7 | 40.3 | 117.1 |
CPU (1 Core) | CPU (6 Cores) | GPU (Tesla C2075) | GPU (GTX Titan Black) | |
---|---|---|---|---|
Comp. time (h) | - | 135.62 | 18.05 | 5.11 |
Speed-up | - | - | 7.5 | 26.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Pato, J.; García-Navarro, P. An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with Pollutant Transport. Hydrology 2021, 8, 146. https://doi.org/10.3390/hydrology8040146
Fernández-Pato J, García-Navarro P. An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with Pollutant Transport. Hydrology. 2021; 8(4):146. https://doi.org/10.3390/hydrology8040146
Chicago/Turabian StyleFernández-Pato, Javier, and Pilar García-Navarro. 2021. "An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with Pollutant Transport" Hydrology 8, no. 4: 146. https://doi.org/10.3390/hydrology8040146
APA StyleFernández-Pato, J., & García-Navarro, P. (2021). An Efficient GPU Implementation of a Coupled Overland-Sewer Hydraulic Model with Pollutant Transport. Hydrology, 8(4), 146. https://doi.org/10.3390/hydrology8040146