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Abstract: Shock waves are generated downstream of spillways during flood operations, which have
adverse effects on spillway operations. This paper presents the physical model study of shock waves
at the Mohmand Dam Spillway project, Pakistan. In this study, hydraulic analysis of shock waves
was carried out to investigate its generation mechanism. Different experiments were performed to
analyze the rooster tail on a flat spillway chute and to examine the factors affecting the characteristics
of the rooster tail. The study results show that shock wave height is influenced by spillway chute
slope, pier shape, and flow depth. Moreover, the height of the shock wave can be minimized by
installing a semi-elliptical pier on the tail part of the main pier. Further modifications in the geometry
of the extended tail part of the pier are recommended for the elimination of the shock wave. Based
on observed data collected from the model study, an empirical equation was developed to estimate
the shock wave height generated on the flat slope spillway chutes (5◦ to 10◦).

Keywords: shock wave; spillway; spillway pier; flat chute; physical modeling

1. Introduction

Concerns related to the effects of unpredictably high flows entering reservoirs, espe-
cially considering possible increased rainfall intensities, have led to a renewed general
interest in reservoir spillway design. In the spillways, gates are mounted onto the crest
of a free spillway that controls the head, discharge, reservoir volume, and reservoir level
increase. The addition of these gates adds some new complex issues to the hydraulic
subjects [1–3]. According to Ansar et al. [4], not all flow conditions can occur at most spill-
ways; thus, flow conditions at a gated spillway tend to become controlled when the gate
opening Go is smaller than the critical depth yc and submerged when the tailwater depth
h is greater than yc. Moreover, they developed generalized flow rating equations based
on field flow measurements at the gated spillway. Al-Mansori et al. [5] found that, with
increasing hydraulic head up to seven times that of the design head, the flow separation
zone grows linearly.

Among gate discharge coefficients, the gate’s location above the spillways, and separa-
tion of flow profile, the spillway transverse flows and waves are lesser-known issues. These
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waves are called by different names such as shock waves, lateral shock waves, and rooster
tail waves [6,7]. The mechanism that induces the rooster tail is the gathering pressure
generated by the joint flow. During that process, the kinetic energy of the diffused flow
is converted into pressure energy and is transported to the bottom, subsequently. Thus,
variations in the pressure of the spillway bottom can be used to reflect the intensity of
the rooster tail [6]. Likewise, shock waves are frequently generated in dam spillways by
uniform flow disturbances due to the presence of spillway piers, curves, or changes in
the cross-section of spillway chutes [6,8,9]. Consequently, local maxima inflow depth are
produced, and their magnitude can be much greater than the incoming uniform depth.
This has important practical implications in the dimensioning of the chute walls, which
must be designed with greater height to adequately convey the flow, with the obvious
consequences in terms of magnitude and cost [10]. According to Jiang and Xiang [11],
shock waves behind the pier may result in poor hydraulic performance such as reduced
discharge capacity, erosion and swell, increased aeration, and asymmetry of water flow in
the steep groove. The shock wave generated at the end of the pier causes the water surface
downstream of the sluice to become a cross-shaped rhombic wave, which causes the water
flow to be partially high and may lead to overflow. For spillways, overflow may result in
erosion of the spillway foundation; thus, to prevent the overflow of water, it is necessary to
increase the sidewall.

Moreover, the design of the spillway must tend to the constant cross-section and
slope to approach uniform flow and thus avoid the shock wave phenomenon. However,
these geometric particularities are frequently unavoidable due to the topographical and/or
geological characteristics of the dam and spillway site [10]. Thus, shock waves can be
generally grouped into different categories [6]. In slit-type energy dissipaters, a shock
wave is generated due to the contraction of the channel section [5,12]. The second kind
of shock wave is induced in stepped spillways due to their steep chute slope [13–16].
Rajaratnam [13] noted that the second kind of shock wave occurs during low flows. In
another study, Chanson [17] observed the effect of step geometry and flow regime on the
generation of a shock wave. Similarly, Carnacina et al. [16] conducted an experimental
study to observe shock wave height on the stepped spillway and concluded that shock wave
height is low in steep chutes as compared to flat ones. The third type of shock wave occurs
due to the installation of an aerator on spillway chutes to avoid cavitation damages [18,19].
Studies indicate that the aerator ramp, the ratio of lateral jet length to bottom jet length,
flow depth, and Froude number have a dominant effect on shock wave intensity. The
fourth type of shock wave is generated directly downstream of the overflow spillway crest.
In this case, diffusion of flows takes place due to spillway piers at their tail part [6]. A
number of research studies have been carried out to study the hydraulic characteristic of
this kind of shock wave. Behera et al. [20] concluded that a standing wave is created at the
downstream end of the pier because the confluence of the flows from the two spillway bays
is at a slight angle and higher discharge. The standing wave develops directly downstream
of the pier, and the shock waves travel laterally, reaching the downstream of a bucket for
higher discharge Q equals 810.54 m3/s. These standing waves with shock waves are highly
fluctuating and create additional scouring damage in the downstream spillway together
with regular hydraulic jumps. Under these circumstances, such waves may be eliminated
to save costs and avoid potential catastrophic hazards. Duan [21] developed a sloping tail
pier to eliminate the shock wave generated on the spillway chute of a hydropower project.
Later, an experimental study of [22–24] concluded that the height of shock wave depends
on the ratio of approach flow depth to pier width. They performed several experiments in
the horizontal channel and sloping chutes to investigate the hydraulic characteristics of a
shock wave. In another study, Wu and Yan [25,26] investigated the formation of a shock
wave in discharging tunnel due to pier. They developed a new type of pier to control shock
wave in discharge tunnel. Recently, Xue et al. [6] also developed a composite tail for the
spillway pier to reduce shock wave height or eliminate the shock wave on spillway chutes
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with slope variations of 12◦ to 20◦. Xue et al. [6] noted that shock waves are influenced by
spillway pier width and type, chute slope and flow depth in the spillway chute.

Despite many studies on the hydraulic characteristics of flow in a chute spillway, there
is insufficient knowledge of the formation of shock waves. Investigations on the formation
of the shock wave flow in a horizontal rectangular channel by Reinaur and Hager [22]
showed that, for the state of constant flow depth H0 and constant pier width bp, the height
of waves and their width increase with an increase in the Froude number. Recently, it was
noticed that if the depth measurements were taken perpendicularly to the chute spillway,
the results would be consistent with the studies performed in the horizontal channel [23,27].
Further, Wu and Yan [25] investigated the hydraulic characteristics of the shock wave’s
formation by the pier of the discharge tunnel of the Sanbanxi hydropower station. It was
observed that the primary reason for the shock wave’s inception was the concavity of the
water surface.

The current literature on shock waves over spillways includes a large quantity of
experimental work indicating that an intense shock wave can overtop the spillway chute
walls and induce vibrations in spillway structures [25,28]. Ultimately, such a situation
disturbs the flood operation of the spillway [29–31]. The literature survey also showed the
lack of research on shock wave generation at flat spillway chutes (50 to 100). Keeping in
view the adverse effects of a shock wave, a physical model of Mohmand Dam Spillway
was constructed to investigate the hydraulic characteristics and generation mechanism
of shock waves on flat spillway chutes. In the end, an empirical equation was developed
based on observed data to estimate shock wave height for flat slope spillway chutes.

2. Study Area

Mohmand dam is proposed on Swat River, approximately 37 km north of Peshawar
and 5 km upstream of existing Munda Headworks in Mohmand Agency of Pakistan’s
Federally Administrated Tribal Area (FATA), as shown in Figure 1. The gated type of
spillway is provided to pass a design flood of 27,427 m3/s. It is to be located on the left
abutment of the dam. It comprises seven bays (07) and a long concrete chute. The crest
level of the spillway is 539 m amsl, whereas the maximum reservoir operating level is
563 m amsl. To normalize the high flow velocity (23 to 45 m/s), a double stilling basin
arrangement is provided to dissipate the energy.
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3. Experimental Setup

To study the hydraulic characteristics of shock waves on flat spillway chutes, a physical
model of Mohmand Dam spillway was constructed in the model tray hall of Center of
Excellence in Water Resources Engineering (CEWRE), Lahore, Pakistan. The spillway
model was designed based on gravity similarity criteria. It was constructed with two bays
at a scale of 1:100 considering discharge and space limitations.

Each bay was equipped with radial gates. As shown in Figure 2a, the model consists of:
a water tank, V-notch, a small water tank, baffle walls, a spillway control section (provided
with redial gates and piers), and a spillway chute. The width of each bay and pier was
15 and 5 mm, respectively. As depicted in Figure 2b, the tail part of the spillway pier has
an elliptical or rectangular shape. The length of semi-major axis (a) and chute slope (θ)
were considered for this study. Details regarding geometric parameters of the pier and
spillway chute slope are discussed in Table 1 below (where a = 0 means tail part of the pier
is rectangular, otherwise it is elliptical).
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Table 1. Detail of geometric modifications.

Geometric Variables M1 M2 M3 M4

Spillway slope (θ) 1:6.5 1:6.5 1:8.5 1:8.5
Length of semi major axis (m) (a) 0 4.5 0 4.5
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Model operation was performed for each geometric variable shown in Table 1 at
free-flow conditions by varying the reservoir levels ‘H’ from 541 to 558 m amsl (with an
increment of 1 m). However, it was operated after its validation and dynamic similarity
check, as discussed below. Hydraulic parameters observed during model operation include
flow depth at upstream of the pier (ho), shock wave height (hm), depth of water surface
cavity at confluence area of two defused flows (hc), horizontal distance before the collision
of the two diffused flows (Ic), and pressure head at the bottom of the chute (h). Flow depth
and pressure heads were measured using point gauge and piezometer tubes, respectively.
Figure 3 shows the definition sketch for observed parameters.
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4. Model Validation

Validation of the model was performed to obtain an idea about the accuracy of model
results. For this purpose, observed discharge values were compared with computed
ones. The comparison of observed discharge with computed discharge, as indicated in
Table 2, at reservoir level of 541m average mean sea level (amsl) shows only a 1.19% error,
whereas at maximum reservoir levels, this difference is 3.11%. Table 2 shows that the
overall percentage of the difference between observed and computed values is up to 3%. It
indicates that the physical model is a good representative of a prototype.

Table 2. Comparison between observed and computed discharge.

Sr. No. Reservoir Level
amsl (m)

Observed Discharge
(m3/s)

Computed Discharge
(m3/s) Error (%)

1 539 0 0 0
2 541 156.99 155.14 1.19
3 543 453.08 446.8 1.41
4 545 848.05 837.4 1.27
5 547 1337.75 1314.28 1.79
6 549 1902.02 1870.5 1.69
7 551 2550.89 2498.5 2.10
8 558 5052.27 5214.2 3.11

5. Dynamic Similarity of Model

Dynamic similarity exists between the model and prototype if the ratio of inertial to
gravity forces at some point in the model is the same at the corresponding point of the
prototype. Froude similarity law is used in problems where gravity is important, i.e., in
free-surface flows such as in case of flow over the spillway, weir, under sluice gates, open
channel, etc. In the current study, Froude’s model law was applied. The Froude number
observed near the control section of the spillway at the reservoir level of 558 m amsl was
0.730, whereas the calculated value was 0.725. This indicates that the model is dynamically
similar to the prototype.
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6. Height of Shock Wave

The height of the shock wave provides an important reference for the computation
of optimal height of spillway sidewalls. In the current study, shock wave height was
computed by operating the Mohmand Dam Spillway model for geometric variables as
shown in Table 1. The results show (Figure 4) that in the beginning, the height of the shock
wave for all geometric variables (M1 to M4) was almost the same, but with the further
increase in reservoir level (above 547 m amsl), a clear difference in shock wave height
between M1 and M2 and M3 and M4 was noticed. For M1, the shock wave height was
increased with the increase in reservoir level up to 551m amsl, and after that, the shock
wave height decreased with a further increase in reservoir level. For M2, the shock wave
height increased thoroughly with the increase in the reservoir level. The same trend was
observed in the case of M3 and M4. It is also visible from Figure 4 that shock wave heights
are also almost the same at the maximum reservoir level. It is noted that when discharge
increases, the backwater flow also increases, and the distance between the two diffused
flows and pier decreases, which affect the shock wave height at maximum discharge or
reservoir level. A clear difference in shock wave height between M1 and M2 and M3 and
M4 (from reservoir level 547 to 557 m amsl) indicates the impact of the extended part of the
pier installed at its tail end (semi-major axis length).
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Figure 4. Observed shock wave heights for all geometric variables.

Figure 5a–c presents the profile view of shock wave formation at reservoir levels of 547,
549 and 551 m amsl, respectively, without geometric modification (a = 0), while Figure 5d–f
shows the profile view of shock wave formation at above-mentioned reservoir levels with
geometric modification (a = 45 mm). As shown in Figure 5a,d, for the same reservoir level,
i.e., at 547 m amsl, the shock wave height is low in the case of ‘d’ as compared to case ‘a’
due to geometric modification. A similar trend can be noted at other reservoir levels (549
and 551 m amsl) from Figure 5.
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7. Evaluation of Cavity Angle and Diffused Flow Pressure

The flow was diffused laterally behind the pier because there was no constraint effect
due to the pier sidewall. A cavity with backwater in the tail part of the pier was generated
by the diffused flow, as shown in Figure 6a,b. Based on the experimental observations,
it was noted that the size of the cavity can significantly affect the shock wave formation.
The ratio of the horizontal diffusion distance to the depth of the water surface concave
(Ic/hc) can be used to describe the cavity form. Thus, the experimental data were used
to investigate the relationship between the ratio of the shock wave height to the width
of the pier (hm/b) and Ic/hc. The value of the coefficient of determination is 0.85, which
indicates that there is a significant correlation between them (Figure 7), and an exponential
relationship can be written as follows:

hm

b
= 3.0018 exp(−0.493

Ic

hc
) (1)

As per Figure 3, the equation for the dropping angle (δ) can be given as under:

cotδ =
Ic

hc

1
cos2θ

+ tanθ (2)

In Equation (2), θ represents the spillway chute angle. By rearranging Equation (2)
and substituting it into Equation (1), we can obtain:

hm

b
= 3.0018 exp

[
−0.493(cotδ − tanθ)·cos2θ

]
(3)

It can be noted from Equation (3) that hm/b increases with the increase in dropping
angle (δ) when the spillway chute slope (θ) and the width of the pier (b) remain constant,
which means that the rooster tail’s height is significantly affected by the dropping angle.
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Pressure Energy

The other hydraulic parameter that induced the shock wave was the gathering pres-
sure generated by the joint flow. During that process, the kinetic energy of the diffused flow
is converted into pressure energy and is transported to the bottom, subsequently. Thus,
variations in the pressure of the spillway bottom may be used to reflect the intensity of the
shock wave.

The pressure distributions along the length of the chute for M3 and M4 are shown in
Figures 8 and 9, respectively, in which the origin of the coordinate axis (x) is at the tail of the
pier, ‘p’ is the spillway chute pressure, and ‘γ’ is the bulk density of water (γ = 9.8 kN/m3).
It can be concluded from Figures 8 and 9 that at different water heads (H), all the pressure
peaks occur at the bottom near the tail part of the pier due to the formation of a shock wave.
Moreover, the peak values for M4 are slightly less as compared to M3 due to extension in
the tail part of the pier (length of semi-major axis).
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8. Evaluation of Cavity Angle and Diffused Flow Pressure

The equation presented by Xue et al. (2018) was modified for estimation of the shock
wave height on flat spillway chutes (5◦ to 10◦).

hm

ho
= 2.5

(
ho

b

)0.5
exp(− c1a

ho
− c2i) (4)

In the above equation, ‘c1’ and ‘c2’ are experimental coefficients, whereas ‘i’ represents
the slope ratio of the bottom. Analysis was performed on MiniTab software to examine the
suitability of experimental coefficients for experimental data collected from the model study.
Minitab is the statistical software that helps in taking out the complexities of statistical
calculations. The experimental data were divided into training and testing values. Seventy
percent (70%) of values were used as training values, while thirty percent (30%) values
were considered as testing values. Training data were used to modify the Xue et al. (2018)
equation. The modified form of Equation (4) is shown below.

hm

ho
= 2.5

(
ho

b

)0.5
exp(−0.78a

ho
− 13.67i) (5)

Computed values of shock wave height using Equation (5) were correlated with the
testing values (observed data) to find the coefficient of determination (R2). Figure 10 shows
that the coefficient of determination for computed and observed data of shock wave height
is 0.91, which indicates that data is in good correlation. Hence, the equation developed
(Equation (5)) through this study can be used for the estimation of shock wave height
generated on flat spillway chutes (5◦ to 10◦).
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9. Conclusions

A physical study was performed on a flat spillway with varying geometric parameters
of pier and spillway chute slope. While different chute configurations were tested, the
focus of the study was on the hydraulic characteristics and generation mechanism of a
shock wave on flat spillway chutes (5◦ to 10◦). The spillway model was designed based on
gravity similarity criteria. It was constructed with two bays at a scale of 1:100 considering
discharge and space limitations.

The study results showed that shock wave height was slightly decreased with a
decrease in spillway chute slope. However, extension in the tail part of the spillway pier
(semi-major axis length) caused a further reduction in shock wave height. Overall, a 26%
reduction in shock wave height was noted due to the extended part of the spillway pier.
The dropping angle of diffused flow significantly affected the shock wave height. It was
noted that shock wave height is directly proportional to the dropping angle of diffused
flow. Variation in pressure energy along the spillway chute indicated the intensity of shock
wave. Pressure peaks were observed near the tail part of the spillway pier due to the
formation of a shock wave. In this study, an empirical equation was developed to estimate
the shock wave height, which can be used to estimate the shock wave height at the flat
spillway chute, varying from 50 to 100. Lastly, the main goal of the experiments was to
support the planning of shock waves’ adverse effects on spillway operations, therefore,
the currently reduced-scale experiments may apply to prototype scale, considering the
extension in the tail part of the spillway pier along with the reduction in chute slope for
the elimination of shock waves.
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