Establishing Stage–Discharge Rating Curves in Developing Countries: Lake Tana Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. The Lake Tana Basin and Its River System
2.1.2. Gauging Stations and Data Collection
2.2. Methods
2.2.1. The Rating and Offset Equations
2.2.2. Procedure to Find C, n, and
2.2.3. Observed Relationships of the Stage–Discharge Measurements
2.2.4. Finding the Optimum Values
2.2.5. Confidence Intervals
2.2.6. Stage Discharge Curve
3. Results
3.1. Stage–Discharge Measurements
3.2. Offset
3.3. Confidence Bands in a Non-Linear Regression Curve Fitting
3.4. Field Validation of the Predicted Offset
3.5. Final Rating Curves: Observed versus Predicted
3.6. The Rating Curve Exponents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Statistical Performance Metrics
Appendix B
Original Stage–Discharge Rating Curves
Appendix C
Modified Stage–Discharge Rating Curves
References
- Grover, N.C.; Hoyt, J.C. Accuracy of Streamflow Data; 400D; 1916.-pubs.er.usgs.gov, G.P.O.: Washington, DC, USA.
- Hamilton, A.S.; Moore, R.D. Quantifying uncertainty in streamflow records. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2013, 37, 3–21. [Google Scholar] [CrossRef]
- Whitfield, P.H.; Pomeroy, J.W. Assessing the quality of the streamflow record for a long-term reference hydrometric station: Bow River at Banff. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2017, 42, 391–415. [Google Scholar] [CrossRef]
- Mansanarez, V.; Renard, B.; Le Coz, J.; Lang, M.; Darienzo, M. Shift happens! Adjusting stage-discharge rating curves to morphological changes at known times. Water Resour. Res. 2019, 55, 2876–2899. [Google Scholar] [CrossRef]
- McMillan, H.K.; Westerberg, I.K. Rating curve estimation under epistemic uncertainty. Hydrol. Processes 2015, 29, 1873–1882. [Google Scholar] [CrossRef]
- Van Eerdenbrugh, K.; Van Hoey, S.; Verhoest, N.E.C. Identification of temporal consistency in rating curve data: Bidirectional Reach (BReach). Water Resour. Res. 2016, 52, 6277–6296. [Google Scholar] [CrossRef] [Green Version]
- Le Coz, J. A Literature Review of Methods for Estimating the Uncertainty Associated with Stage-Discharge Relations. WMO Rep. PO6a. 2012, p. 21. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.8656&rep=rep1&type=pdf (accessed on 9 January 2022).
- Morlot, T.; Perret, C.; Favre, A.C.; Jalbert, J. Dynamic rating curve assessment for hydrometric stations and computation of the associated uncertainties: Quality and station management indicators. J. Hydrol. 2014, 517, 173–186. [Google Scholar] [CrossRef] [Green Version]
- McMahon, T.A.; Peel, M.C. Uncertainty in stage–discharge rating curves: Application to Australian Hydrologic Reference Stations data. Hydrol. Sci. J. 2019, 64, 255–275. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S. On the derivation of flow rating curves in data-scarce environments. J. Hydrol. 2018, 562, 151–154. [Google Scholar] [CrossRef]
- Hamilton, S.; Watson, M.; Pike, R. The Role of the Hydrographer in Rating Curve Development. Conflu. J. Watershed Sci. Manag. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Abate, M.; Nyssen, J.; Moges, M.M.; Enku, T.; Zimale, F.A.; Tilahun, S.A.; Adgo, E.; Steenhuis, T.S. Long-Term Landscape Changes in the Lake Tana Basin as Evidenced by Delta Development and Floodplain Aggradation in Ethiopia. Land Degrad. Dev. 2017, 28, 1820–1830. [Google Scholar] [CrossRef]
- Zimale, F.A.; Moges, M.A.; Alemu, M.L.; Ayana, E.K.; Demissie, S.S.; Tilahun, S.A.A.; Steenhuis, T.S. Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: The Lake Tana basin. J. Hydrol. Hydromech. 2018, 66, 65. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.M. Climate change implications for river restoration in global biodiversity hotspots. Restor. Ecol. 2010, 18, 261–268. [Google Scholar] [CrossRef]
- Braca, G. Stage-Discharge Relationships in Open Channels: Practices and Problems; Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Trento: Trento, Italy, 2008. [Google Scholar]
- Rantz, S.E. Measurement and Computation of Streamflow; U.S. Government Printing Office: Washington, DC, USA, 1982; Volume 2. [Google Scholar]
- Reitan, T.; Petersen-Øverleir, A. Dynamic rating curve assessment in unstable rivers using Ornstein-Uhlenbeck processes. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- BRL Ingénierie and MCE. Environmental and Social Impact Assessment of Irrigation and Drainage Schemes at Megech Pump (Seraba), Ribb and Anger Dam; 1/2: Main Report; Ministry of Water Resources: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- BCEOM. Abbay River Basin Integrated Development Master Plan Project; Phase 2; Ministry of Water, Resources: Addis Ababa, Ethiopia, 1999. [Google Scholar]
- Chorowicz, J.; Collet, B.; Bonavia, F.F.; Mohr, P.; Parrot, J.F.; Korme, T. The Tana basin, Ethiopia: Intra-plateau uplift, rifting and subsidence. Tectonophysics 1998, 295, 351–367. [Google Scholar] [CrossRef]
- Alemayehu, T.; McCartney, M.; Kebede, S. Improved water and land management in the Ethiopian highlands: Its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5–6 February 2009. Available online: https://www.weap21.org/downloads/LakeTana.pdf (accessed on 9 January 2022).
- BRL Ingénierie. Hydraulics Infrastructures; Ribb Plain—Flood Appraisal BRL: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- BRL Ingénierie—Royal HaskoningDHV—T&A. Institutional Set Up Studies of The Ethiopian Nile (Abbay) Basin Project; Ministry of Water Resources: Addis Ababa, Ethiopia, 2008; p. 12. [Google Scholar]
- Worqlul, A.W.; Collick, A.S.; Rossiter, D.G.; Langan, S.; Steenhuis, T.S. Assessment of surface water irrigation potential in the Ethiopian highlands: The Lake Tana Basin. Catena 2015, 129, 76–85. [Google Scholar] [CrossRef]
- Water Works Design and Supervision Enterprise and TAHAL Consulting Eng. Design of Dams in Lake Tana Sub-Basin Project, Ribb Dam Design; Ribb Feasibility Study Final; Ministry of Water Resources: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Water Works Design and Supervision Enterprise and TAHAL Consulting Eng. Design of Irrigation and Drainage Projects in Lake Tana Sub-Basin, Jemma Irrigation Project, Volume 3—Hydrological Studies; Jemma Irigation Project: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Legesse, S.A. Environmental Protection in the Lake Tana Basin. In Social and Ecological System Dynamics in the Lake Tana Basin, Ethiopia; Stave, K., Goshu, G., Aynalem, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 433–452. [Google Scholar]
- SMEC. Hydrological Study of the Tana-Beles Sub-Basins, Surface Water Investigation; 5089018; Ministry of Water Resources: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Annys, S.; Adgo, E.; Ghebreyohannes, T.; Van Passel, S.; Dessein, J.; Nyssen, J. Impacts of the hydropower-controlled Tana-Beles interbasin water transfer on downstream rural livelihoods (northwest Ethiopia). J. Hydrol. 2019, 569, 436–448. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Adgo, E.; Poesen, J.; Nyssen, J. Scenario-based decision support for an integrated management of water resources. Int. J. River Basin Manag. 2017, 15, 485–502. [Google Scholar] [CrossRef]
- Mott MacDonald. Growth Corridor for Tana and Beles Regions: Endowments, Potential and Constraints, Appendix 1A Land and Water Endowments; Ministry of Water Resources: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- SMEC. Hydrological Study of the Tana-Beles Sub-Basins, Hydrological Monitoring Network (Review and Recommendations); MoWE: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Eastern Nile Transboundary Regional Office. Flood Risk Mapping for Pilot Areas in Ethiopia: Final Report to the Eastern Nile Technical Regional Office; ENTRO: Addis Ababa, Ethiopia, 2010; pp. 1–206. [Google Scholar]
- Mekonnen, D.F. Satellite Remote Sensing for Soil Moisture Estimation: Gumara Catchement, Ethiopia; Master of Science in Geo-information Science and Earth Observation; Technische Universität München: Enschede, The Netherlands, 2009. [Google Scholar]
- Abate, M.; Nyssen, J.; Steenhuis, T.S.; Moges, M.M.; Tilahun, S.A.; Enku, T.A.; Adgo, E. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia. J. Hydrol. 2015, 525, 152–164. [Google Scholar] [CrossRef]
- Petersen-Øverleir, A. Modelling stage–discharge relationships affected by hysteresis using the Jones formula and non-linear regression. Hydrol. Sci. J. 2006, 51, 365–388. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, K.B. Evaluation of Converting Stage to Discharge Using Normal Rating Curve for Flood Routing Studies; M. Technology, M. Tech: Roorkee, India, 2000. [Google Scholar]
- Gore, J.A.; Banning, J. Chapter 3—Discharge measurements and streamflow analysis. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: Boston, MA, USA, 2017; Volume 1, pp. 49–70. [Google Scholar] [CrossRef]
- Lowe, L.; Szemis, J.; Webb, J.A. Chapter 15—Uncertainty and Environmental ater. In Water for the Environment; Academic Press: Cambridge, MA, USA; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 317–344. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.G.; Zheng, J.H.; Wang, H.G.; Wang, G.; Zhang, J.S. Reconstruction of stage–discharge relationships and analysis of hydraulic geometry variations: The case study of the Pearl River Delta, China. Glob. Planet. Chang. 2015, 125, 60–70. [Google Scholar] [CrossRef]
- Herschy, R.W. Streamflow Measurement, 3rd ed.; CRC Press: London, UK, 2009. [Google Scholar]
- ISO 18320:2020; Hydrometry—Measurement of Liquid Flow in Open Channels—Determination of the Stage–Discharge Relationship. standards.iteh.ai. International Standard: Geneva, Switzerland, 2020.
- Kennedy, E.J. Discharge Ratings at Gaging Stations; Department of the Interior, US Geological Survey G.P.O: Washington, DC, USA, 1984. [Google Scholar]
- Schmidt, A.R. Analysis of Stage–Discharge Relations for Open-Channel Flows and Their Associated Uncertainties. Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL, USA, 2002. [Google Scholar]
- WMO. Manual on Stream Gauging. Volume II—Computation of Discharge Ed.; WMO-No. 1044; World Meteorological Organization (WMO): Geneva, Switzerland, 2010; Volume II. [Google Scholar]
- Guerrero, J.L.; Westerberg, I.K.; Halldin, S.; Xu, C.Y.; Lundin, L.C. Temporal variability in stage–discharge relationships. J. Hydrol. 2012, 446, 90–102. [Google Scholar] [CrossRef]
- Alemu, M.L.; Worqlul, A.W.; Zimale, F.A.; Tilahun, S.A.; Steenhuis, T.S. Water Balance for a Tropical Lake in the Volcanic Highlands: Lake Tana, Ethiopia. Water 2020, 12, 2737. [Google Scholar] [CrossRef]
- Hamilton, S.; Maynard, R.; Kenney, T. Comparative Investigation of Canadian, US, and Australian Stage-Discharge Rating Curve Development. In Proceedings of the AHA 2016 Conference, Canberra 18th Australian Hydrographers Association Conference Canberra, Canberra, Australia, 24–27 November 2016. [Google Scholar]
- Leon, J.G.; Calmant, S.; Seyler, F.; Bonnet, M.P.; Cauhopé, M.; Frappart, F.; Filizola, N.; Fraizy, P. Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges. J. Hydrol. 2006, 328, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Royal HaskoningDHV and Delft Hydraulics. How to Establish Stage Discharge Rating Curve; Hydrology Project; World Bank and Government of The Netherlands: New Delhi, India, 1999. [Google Scholar]
- Kebedew, M.G.; Tilahun, S.A.; Zimale, F.A.; Steenhuis, T.S. Bottom sediment characteristics of a tropical lake: Lake Tana, Ethiopia. Hydrology 2020, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of the Lake Tana basin, Ethiopia. J. Maps 2013, 9, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Disaster Prevention and Food Security Program Coordination Office of the ANRS (DPFSCO). ANRS Flood Risk Assessment for Mitigation Study; DPFSCO: Bahir Dar, Ethiopia, 2014. [Google Scholar]
- Disaster Prevention and Food Security Program Coordination Office of the ANRS (DPFSCO). ANRS Ribb River Training Work and Socio-Economic Impact Assessment Project Study; DPFSCO: Bahir Dar, Ethiopia, 2014. [Google Scholar]
- Mulatu, C.A.; Crosato, A.; Moges, M.M.; Langendoen, E.J.; McClain, M. Morphodynamic trends of the Ribb River, Ethiopia, prior to dam construction. Geosciences 2018, 8, 255. [Google Scholar] [CrossRef] [Green Version]
- Hupp, C.R.; Schenk, E.R.; Kroes, D.E.; Willard, D.A.; Townsend, P.A.; Peet, R.K. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales. Geomorphology 2015, 228, 666–680. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Gauging Station (See Figure 1) | Watershed | Period and Number of Observations | Flow Control Conditions | ||
---|---|---|---|---|---|
a | Gumara at Woreta | Gumara | 1960–2021 | 149 | Unstable control, high flow measurements conducted on the bridge |
b | Ribb at Addis Zemen | Ribb | 1960–2021 | 128 | Unstable control, high sediment (sand) deposition, small gradient |
c | Gilgel Abbay at Bikolo | Gilgel Abbay | 1960–2020 | 30 | Rocky and stable control, the oldest and a basic hydrometric station |
d | Megech at Azezo | Megech | 1960–2021 | 97 | Unstable shiftable bed (pebbles and small boulders) pool with no flow control |
e | Gelda at Ambessame | Gumara | 1983–2021 | 33 | Scouring and deposition |
f | Fogeda at Arb-Gebeya | Gumara | 1985–2021 | 27 | Shiftable mountainous and pool in the left (concave) side of the stream |
g | Ribb at Gassay | Ribb | 1984–2020 | 20 | Shiftable, scouring on the channel bed |
h | Upper Ribb nr Ibnat | Ribb | 1980–2020 | 33 | Pool and mountainous gorge installed to gather data for the Ribb reservoir site |
i | Kirari near Addis Zemen | Ribb | 2017–2020 | 21 | Shiftable, fill and scouring, mainly dictated by aggradation from the bed material |
j | Sheni at Addis Zemen | Ribb | 1990–2020 | 37 | Station location changed, sand deposition |
k | Garno at Enfranz | Arno-Garno | 1987–2021 | 39 | Shiftable, boulders, and cobbles at a mountainous stream |
l | Gumero at Maksegnit | Gumero | 1984–2020 | 36 | Pool, river bed with gravels and cobbles |
m | Angereb at Gondar | Megech | 1982–2021 | 82 | Shiftable reach, mountainous with boulders and cobbles |
n | Dirma at Koladeba | Dirma | 2000–2021 | 39 | Stable channel control (small depositions), but affected by bridge construction |
o | Jemma nr Bikolo | Gilgel Abbay | 2018–2021 | 16 | Stable, depositions as rock, cobbles, and gravel fill |
p | Koga at Bikolo | Gilgel Abbay | 1990–2019 | 58 | Permanent, natural control and in-stream vegetation (upstream of the bridge) |
q | Amen at Dangila | Gilgel Abbay | 1988–2016 | 134 | Scouring with small vegetations on the banks |
r | Quashini nr Addis Kidame | Gilgel Abbay | 1984–2016 | 20 | Small scouring of the channel bed and grassed banks |
s | Killitti at Durebetie | Gilgel Abbay | 2007–2021 | 27 | Pool, erosion and deposition |
t | Gilgel Abbay at Chinba | Gilgel Abbay | 2014–2021 | 65 | Depositions and silt channel bed |
u | Abbay at Bahir Dar Peda | Lake Tana | 1983–2015 | 35 | Permanent, straight reach, vegetated stable banks, gentle slope, good condition |
Gauging Station | Stage-Discharge Eq | 1st yr | R2 | RMSE | R2 | ||
---|---|---|---|---|---|---|---|
a | Gumara at Woreta | 1960 | 0.98 | 10.3 | 0.92 | ||
b | Ribb at Addis Zemen | 1960 | 0.96 | 8.26 | 0.95 | ||
c | Gilgel Abbay at Bikolo | 1960 | 0.99 | 8.74 | 0.89 | ||
d | Megech at G. Azezo | 1960 | 0.96 | 2.75 | 0.96 | ||
e | Gelda at Ambessame | 1983 | 0.96 | 0.27 | 0.65 | ||
f | Fogeda at Arb G. | 1985 | 0.96 | 0.63 | 0.76 | ||
g | Ribb at Gassay | 1984 | 0.85 | 3.74 | 0.89 | ||
h | Upper Ribb nr Ibnat | 1980 | 0.96 | 5.66 | 0.84 | ||
i | Kirari nr Addis Z | 2017 | 0.77 | 0.31 | 0.59 | ||
j | Sheni nr Addis Z. | 1990 | 0.76 | 3.37 | 0.94 | ||
k | Garno at Enfranz | 1987 | 0.46 | 5.30 | 0.86 | ||
l | Gumero at Maksegnit | 1984 | 0.95 | 0.58 | 0.93 | ||
m | Angereb at Gondar | 1982 | 0.93 | 0.88 | 0.96 | ||
n | Dirma at Koladeba | 2000 | 0.93 | 4.73 | 0.30 | ||
o | Jemma nr Bikolo | 2018 | 0.99 | 2.42 | 0.74 | ||
p | Koga at Bikolo | 1990 | 0.99 | 1.09 | 0.60 | ||
q | Amen at Dangila | 1988 | 0.91 | 0.13 | 0.67 | ||
r | Quashini nr Addis Kidame | 1984 | 0.93 | 0.08 | 0.46 | ||
s | Killitti nr Durebetie | 2007 | 0.96 | 4.19 | 0.55 | ||
t | Gilgel Abbay at Chinba | 2014 | 0.94 | 27.40 | 0.36 | ||
u | Abbay at Peda | 1983 | 0.99 | 17.90 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negatu, T.A.; Zimale, F.A.; Steenhuis, T.S. Establishing Stage–Discharge Rating Curves in Developing Countries: Lake Tana Basin, Ethiopia. Hydrology 2022, 9, 13. https://doi.org/10.3390/hydrology9010013
Negatu TA, Zimale FA, Steenhuis TS. Establishing Stage–Discharge Rating Curves in Developing Countries: Lake Tana Basin, Ethiopia. Hydrology. 2022; 9(1):13. https://doi.org/10.3390/hydrology9010013
Chicago/Turabian StyleNegatu, Teshager A., Fasikaw A. Zimale, and Tammo S. Steenhuis. 2022. "Establishing Stage–Discharge Rating Curves in Developing Countries: Lake Tana Basin, Ethiopia" Hydrology 9, no. 1: 13. https://doi.org/10.3390/hydrology9010013
APA StyleNegatu, T. A., Zimale, F. A., & Steenhuis, T. S. (2022). Establishing Stage–Discharge Rating Curves in Developing Countries: Lake Tana Basin, Ethiopia. Hydrology, 9(1), 13. https://doi.org/10.3390/hydrology9010013