Spatiotemporal Variability of Intensity–Duration–Frequency (IDF) Curves in Arid Areas: Wadi AL-Lith, Saudi Arabia as a Case Study
Abstract
:1. Introduction
2. Study Area
3. Methodology and Data Collection
- Robs is the total observed rainfall depth,
- Rexp is the expected total rainfall depth from the probability distribution, and n is the number of data points at the station.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, I.; Ghumman, A.R.; Ghazaw, Y.; Abdel-Maguid, R.H.; Samreen, B. Climate Change Impact on Precipitation in Arid Areas of Pakistan. Int. J. Water Resour. Arid Environ. 2017, 6, 80–88. [Google Scholar]
- Peterson, E.W.; Wicks, C.M. Assessing the Importance of Conduit Geometry and Physical Parameters in Karst Systems Using the Storm Water Management Model (SWMM). J. Hydrol. 2006, 329, 294–305. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Karamouz, M.; Goharian, E.; Burian, S.J. Analysis of the Effects of Climate Change on Urban Storm Water Runoff Using Statistically Downscaled Precipitation Data and a Change Factor Approach. J. Hydrol. Eng. 2015, 20, 05014022. [Google Scholar] [CrossRef]
- Alataway, A.; El Alfy, M. Rainwater Harvesting and Artificial Groundwater Recharge in Arid Areas: Case Study in Wadi Al-Alb, Saudi Arabia. J. Water Resour. Plan. Manag. 2019, 145, 05018017. [Google Scholar] [CrossRef]
- Vivekanandan, N. Development of intensity-duration-frequency relationships using OSA estimators of probability distributions. J. Res. Archit. Civ. Eng. 2013, 1, 1–7. [Google Scholar]
- Cheng, L.; AghaKouchak, A. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Sci. Rep. 2014, 4, 7093. [Google Scholar] [CrossRef] [Green Version]
- Wayal, A.S.; Menon, K. Intensity–Duration–Frequency Curves and Regionalization. Int. J. Innov. Res. Adv. Eng. 2014, 1, 28–32. [Google Scholar]
- El Alfy, M. Assessing the Impact of Arid Area Urbanization on Flash Floods Using GIS, Remote Sensing, and HEC-HMS Rainfall–Runoff Modeling. Hydrol. Res. 2016, 47, 1142–1160. [Google Scholar] [CrossRef] [Green Version]
- Ewea, H.A.; Elfeki, A.M.; Bahrawi, J.A.; Al-Amri, N.S. Modeling of IDF Curves for Stormwater Design in Makkah Al Mukarramah Region, The Kingdom of Saudi Arabia. Open Geosci. 2018, 10, 954–969. [Google Scholar] [CrossRef]
- Bell, F.C. Generalized Rainfall-Duration-Frequency Relationships. J. Hydraul. Div. 1969, 95, 311–328. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Kozonis, D.; Manetas, A. A Mathematical Framework for Studying Rainfall Intensity-Duration-Frequency Relationships. J. Hydrol. 1998, 206, 118–135. [Google Scholar] [CrossRef]
- Nhat, L.M.; Tachikawa, Y.; Takara, K. Establishment of Intensity-Duration-Frequency Curves for Precipitation in the Monsoon Area of Vietnam. Annu. Disas. Prev. Res. Inst. 2006, 49B, 93–103. [Google Scholar]
- Raiford, J.P.; Aziz, N.M.; Khan, A.A.; Powell, D.N. Rainfall Depth-Duration-Frequency Relationships for South Carolina, North Carolina, and Georgia. Am. J. Environ. Sci. 2007, 3, 78–84. [Google Scholar] [CrossRef]
- El-Sayed, E.A.H. Generation of Rainfall Intensity Duration Frequency Curves for Ungauged Sites. Nile Basin Water Sci. Eng. J. 2011, 4, 112–124. [Google Scholar]
- Liew, S.C.; Raghavan, S.V.; Liong, S.-Y. Development of Intensity-Duration-Frequency Curves at Ungauged Sites: Risk Management under Changing Climate. Geosci. Lett. 2014, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Elsebaie, I.H. Developing Rainfall Intensity–Duration–Frequency Relationship for Two Regions in Saudi Arabia. J. King Saud Univ.-Eng. Sci. 2012, 24, 131–140. [Google Scholar] [CrossRef] [Green Version]
- BV, D.C.; Hydraulics, D. How to Analyse Rainfall Data. 2002. Available online: https://www.mahahp.gov.in/old_mahahp.org/resource/modules/12%20How%20to%20analyse%20rainfall%20data.pdf (accessed on 2 September 2019).
- Hailegeorgis, T.T.; Alfredsen, K. Regional Flood Frequency Analysis and Prediction in Ungauged Basins Including Estimation of Major Uncertainties for Mid-Norway. J. Hydrol. Reg. Stud. 2017, 9, 104–126. [Google Scholar] [CrossRef]
- Houessou-Dossou, E.A.Y.; Mwangi Gathenya, J.; Njuguna, M.; Abiero Gariy, Z. Flood Frequency Analysis Using Participatory GIS and Rainfall Data for Two Stations in Narok Town, Kenya. Hydrology 2019, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- AlHassoun, S.A. Developing an Empirical Formulae to Estimate Rainfall Intensity in Riyadh Region. J. King Saud Univ.-Eng. Sci. 2011, 23, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Subyani, A.M.; Al-Amri, N.S. IDF Curves and Daily Rainfall Generation for Al-Madinah City, Western Saudi Arabia. Arab. J. Geosci. 2015, 8, 11107–11119. [Google Scholar] [CrossRef]
- Al-Amri, N.S.; Subyani, A.M. Generation of Rainfall Intensity Duration Frequency (IDF) Curves for Ungauged Sites in Arid Region. Earth Syst. Environ. 2017, 1, 8. [Google Scholar] [CrossRef]
- Abdeen, W.M.; Awadallah, A.G.; Hassan, N.A. Investigating Regional Distribution for Maximum Daily Rainfall in Arid Regions: Case Study in Saudi Arabia. Arab. J. Geosci. 2020, 13, 501. [Google Scholar] [CrossRef]
- AL-Areeq, A.; Al-Zahrani, M.; Chowdhury, S. Rainfall Intensity–Duration–Frequency (IDF) Curves: Effects of Uncertainty on Flood Protection and Runoff Quantification in Southwestern Saudi Arabia. Arab. J. Sci. Eng. 2021, 46, 10993–11007. [Google Scholar] [CrossRef]
- Suchithra, A.S.; Agarwal, S. IDF Curve Generation for Historical Rainfall Events. In Proceedings of the National Conference on Emerging Trends in Civil Engineering, Andhra Pradesh, India, 25–27 June 2020. [Google Scholar]
- Koutsoyiannis, D.; Baloutsos, G. Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences. Nat. Hazards 2000, 22, 29–48. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D. The Effect of Rainfall Intensity on the Flood Generation of Mountainous Watersheds (Chalkidiki Prefecture, North Greece). In Perspectives on Atmospheric Sciences; Springer: Berlin/Heidelberg, Germany, 2017; pp. 341–347. [Google Scholar]
- Pallister, J.S. Geologic Map of the Al Lith Quadrangle, Sheet 20D, Kingdom of Saudi Arabia. In Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map GM-95, Geological Survey, U.S. 1986. Available online: https://www.worldcat.org/title/geographic-map-of-the-al-lith-quadrangle-sheet-20d-kingdom-of-saudi-arabia/oclc/420487128&referer=brief_results (accessed on 2 September 2019).
- Cater, F.W.; Johnson, P.R. Geologic Map of the Jabal Ibrahim Quadrangle, Sheet 20E, Kingdom of Saudi Arabia. In Saudi Arabian Deputy Ministry for Mineral Resources Geologic Map GM-96C: Scale, Geological Survey, USA, 1987; 1, p. 32. Available online: https://www.worldcat.org/title/geologic-map-of-the-jabal-ibrahim-quadrangle-sheet-20-e-kingdom-of-saudi-arabia/oclc/53905440 (accessed on 2 September 2019).
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar] [CrossRef]
- Borga, M.; Vezzani, C.; Dalla Fontana, G. Regional Rainfall Depth–Duration–Frequency Equations for an Alpine Region. Nat. Hazards 2005, 36, 221–235. [Google Scholar] [CrossRef]
- Wilson, E.M. Engineering Hydrology; Macmillan International Higher Education: London, UK, 1990. [Google Scholar]
- Chow, V. Handbook of Applied Hydrology; McGraw-Hill Book: New York, NY, USA, 1964. [Google Scholar]
- Burke, C.B.; Burke, T.T. Storm Drainage Manual. Indiana LTAP 2008. Available online: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1099&context=inltappubs (accessed on 2 September 2019).
- Kite, G.W. Frequency and Risk Analyses in Hydrology; Water Resources Publications: Littleton, CO, USA, 1977; pp. 1–244.
- Alam, M.A.; Emura, K.; Farnham, C.; Yuan, J. Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of Empirical Models for Predicting Monthly Mean Horizontal Diffuse Solar Radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological Modeling of the Iroquois River Watershed Using HSPF and SWAT 1. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Basin area | 3089 km2 |
Maximum basin slope | 0.52 |
Average overland flow | 105.6 km |
Basin lengths | 108.5 km |
Perimeter | 53 km |
Mean basin elevation | 898 m |
Maximum flow distance | 148.2 km |
Maximum flow slope | 0.02 |
Centroid stream distance | 75.1 km |
Centroid stream slope | 0.01 |
Station | TA-233 | J-107 | J-108 |
---|---|---|---|
Sample size | 35 | 41 | 48 |
Minimum (mm) | 13 | 4 | 1 |
Maximum (mm) | 122 | 140 | 153 |
Median (mm) | 39 | 25 | 19.6 |
Mean (mm) | 49.6 | 31.7 | 28 |
Standard deviation | 28.8 | 27.6 | 29 |
Variation coefficient | 0.581 | 0.87 | 1.04 |
Skewness coefficient | 1.09 | 2.38 | 2.1 |
Kurtosis coefficient | 3.1 | 8.84 | 8.27 |
Stations | Gumbel | GEV | Gamma | Exponential | LPT III | |||||
---|---|---|---|---|---|---|---|---|---|---|
Chi-Square | K-S | Chi-Square | K-S | Chi-Square | K-S | Chi-Square | K-S | Chi-Square | K-S | |
TA-233 | 1 | 0.11 | 1 | 0.112 | 2.875 | 0.1 | 16.375 | 0.324 | 0.25 | 0.088 |
J-108 | 11.125 | 0.141 | 12.375 | 0.113 | 10.875 | 0.1 | 10.875 | 0.111 | 9.375 | 0.096 |
J-107 | 3.2 | 0.108 | 10.4 | 0.089 | 4.8 | 0.11 | 9.6 | 0.148 | 6 | 0.101 |
Gumbel | GEV | Gamma | Exponential | LP III | |
---|---|---|---|---|---|
Station | RMSE | RMSE | RMSE | RMSE | RMSE |
TA-233 | 4.8 | 6.722 | 4.719 | 8.387 | 4.19 |
J-108 | 8.359 | 9.132 | 5.581 | 5.847 | 4.486 |
J-107 | 8.864 | 7.159 | 9.884 | 7.714 | 6.315 |
Return Period (Year) | 2 | 5 | 10 | 25 | 50 | 100 | |
J107 station | Gumbel (mm) | 27.1 | 46.1 | 58.7 | 74.6 | 86.5 | 98.2 |
Log-Pearson type III | 23.6 | 45.9 | 64.2 | 91.2 | 114 | 139 | |
J108 station | Gumbel (mm) | 27.4 | 48.1 | 61.8 | 79.1 | 92 | 105 |
Log-Pearson type III | 23.3 | 47.3 | 67.7 | 98.3 | 124 | 153 | |
TA233 station | Gumbel (mm) | 41.7 | 66.6 | 83.1 | 104 | 119 | 135 |
Log-Pearson type III | 39.5 | 67.3 | 87.4 | 114 | 134 | 155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsebaie, I.H.; El Alfy, M.; Kawara, A.Q. Spatiotemporal Variability of Intensity–Duration–Frequency (IDF) Curves in Arid Areas: Wadi AL-Lith, Saudi Arabia as a Case Study. Hydrology 2022, 9, 6. https://doi.org/10.3390/hydrology9010006
Elsebaie IH, El Alfy M, Kawara AQ. Spatiotemporal Variability of Intensity–Duration–Frequency (IDF) Curves in Arid Areas: Wadi AL-Lith, Saudi Arabia as a Case Study. Hydrology. 2022; 9(1):6. https://doi.org/10.3390/hydrology9010006
Chicago/Turabian StyleElsebaie, Ibrahim H., Mohamed El Alfy, and Atef Qasem Kawara. 2022. "Spatiotemporal Variability of Intensity–Duration–Frequency (IDF) Curves in Arid Areas: Wadi AL-Lith, Saudi Arabia as a Case Study" Hydrology 9, no. 1: 6. https://doi.org/10.3390/hydrology9010006
APA StyleElsebaie, I. H., El Alfy, M., & Kawara, A. Q. (2022). Spatiotemporal Variability of Intensity–Duration–Frequency (IDF) Curves in Arid Areas: Wadi AL-Lith, Saudi Arabia as a Case Study. Hydrology, 9(1), 6. https://doi.org/10.3390/hydrology9010006