
Citation: Mehedi, M.A.A.; Khosravi,

M.; Yazdan, M.M.S.; Shabanian, H.

Exploring Temporal Dynamics of

River Discharge Using Univariate

Long Short-Term Memory (LSTM)

Recurrent Neural Network at East

Branch of Delaware River. Hydrology

2022, 9, 202. https://doi.org/

10.3390/hydrology9110202

Academic Editor: Evangelos Rozos

Received: 8 September 2022

Accepted: 8 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Exploring Temporal Dynamics of River Discharge Using
Univariate Long Short-Term Memory (LSTM) Recurrent Neural
Network at East Branch of Delaware River
Md Abdullah Al Mehedi 1 , Marzieh Khosravi 1,* , Munshi Md Shafwat Yazdan 2 and Hanieh Shabanian 3

1 College of Engineering, Villanova University, Villanova, PA 19085, USA
2 Civil and Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA
3 Department of Computer Science, Northern Kentucky University, Highland Heights, KY 41099, USA
* Correspondence: mkhosrav@villanova.edu

Abstract: River flow prediction is a pivotal task in the field of water resource management during the
era of rapid climate change. The highly dynamic and evolving nature of the climatic variables, e.g.,
precipitation, has a significant impact on the temporal distribution of the river discharge in recent
days, making the discharge forecasting even more complicated for diversified water-related issues,
e.g., flood prediction and irrigation planning. In order to predict the discharge, various physics-based
numerical models are used using numerous hydrologic parameters. Extensive lab-based investigation
and calibration are required to reduce the uncertainty involved in those parameters. However, in the
age of data-driven predictions, several deep learning algorithms showed satisfactory performance
in dealing with sequential data. In this research, Long Short-term Memory (LSTM) neural network
regression model is trained using over 80 years of daily data to forecast the discharge time series
up to seven days ahead of time. The performance of the model is found satisfactory through the
comparison of the predicted data with the observed data, visualization of the distribution of the
errors, and R2 value of 0.93 with one day lead time. Higher performance is achieved through the
increase in the number of epochs and hyperparameter tuning. This model can be transferred to other
locations with proper feature engineering and optimization to perform univariate predictive analysis
and potentially be used to perform real-time river discharge prediction.

Keywords: river discharge; hydro informatics; water resource; data-driven; deep learning; LSTM

1. Introduction

River discharge forecasting is considered a pivotal task in various fields of water
resource management, i.e., flood control, irrigation planning, and hydropower produc-
tion [1–7]. River discharge has a significant impact on the physical, chemical and biological
activities in the river contributing high correlation to the fluvial ecosystem [8–11]. Vari-
ous methods of forecasting are established on the probability of future river flow using
historical data or records. Forecasting models using Deep Learning algorithms (e.g., short-
term and long-term forecasting models) have a significant interest in the research and
scientific community [12–15]. Due to the complexity, climate changeability, and effects on
anthropology, hydrological data holds a strong constraint to the advancement of short-term
forecasting models [16–19]. Methodologies for river discharge modeling and forecasting
can be divided into three groups: conceptual, physics-based, and data-driven models [20].
A lot of research has already been conducted with a focus on the use of conceptual and
physics-based models [21,22]. For modeling streamflow, simple conceptual R-R models are
widely employed since they often provide reasonable prediction accuracy [23]. In addition,
several pieces of research demonstrate that conceptual and physics-based models have
a limited competence to provide short-term forecasts and require long-term datasets to
perform the computationally expensive model calibration [24]. Furthermore, some studies

Hydrology 2022, 9, 202. https://doi.org/10.3390/hydrology9110202 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology9110202
https://doi.org/10.3390/hydrology9110202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0003-4390-2664
https://orcid.org/0000-0003-2729-3168
https://orcid.org/0000-0001-6067-1453
https://orcid.org/0000-0001-8105-6716
https://doi.org/10.3390/hydrology9110202
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology9110202?type=check_update&version=2


Hydrology 2022, 9, 202 2 of 21

show that conceptual and physics-based models, in some circumstances, showed limited
capability in flood forecasting in higher dimensions [25]. In the last decade, many scientists
and researchers have examined the pros and cons of various conceptual and physics-based
models and have compared their prediction performance with that of emerging data-driven
techniques, e.g., Deep Learning (DL) methods [11,26]. Recently, the practice of data-driven
techniques of DL methods has drawn substantial consideration for the sequential data, e.g.,
precipitation and river flow prediction applications. Scientists from all over the world have
concluded that data-driven techniques of DL methods are qualified to capture non-linear
processes numerically without the knowledge of the underlying conceptual or physical
processes involved [27–30].

This study is a valuable contribution to river discharge prediction using the DL method,
which contributes to understanding the dynamics of river flow and offers a framework
to predict the impact of it on agriculture, fluvial ecology, flooding, irrigation, and water
supply planning in the nearby areas. The proposed methodology is applied to the East
Branch of Delaware River in Delaware County, NY, because there is an eighty-year-long
record of daily flows available.

Data-driven techniques can be divided into two methods, such as statistical methods
and black-box models. Statistical models deal with autoregressive Moving Average (MA)
techniques [31,32]. On the other hand, the black box models follow various techniques of
Artificial Intelligence (AI) [33]. The Machine Learning (ML) methods to make the river
discharge prediction consist of Artificial Neural Networks (ANN) [34–40], Support Vector
Regression (SVR) [41–45], Decision Tree (DT) model [46,47], fuzzy inference system [48],
Bayesian particle filter [49], expert system [50], hybrid model [51], and Multiple Linear
Regression (MLR) [52]. The spatial and temporal hidden patterns in historical data are
explored by these ML/DL methods without using a conceptual or even physical model, as
it requires a large number of physical parameters and a broad understanding of the physical
processes in the domain of the model [53]. In many cases, streamflow analysis using ANN
can accomplish a better and accurate predictive performance than conceptual or physically
based models [54]. However, the traditional ANN algorithms e.g., Feed Forward Neural
Network (FFNN) do not have the ability to learn sequential data as they cannot recall
previous information flow, resulting in a constrained prediction capability for long-term
time series, e.g., temporal distribution of the discharge/water depth. The FFNN algorithms
need complex procedures in the data pre-processing stage to obtain good performance
in predicting the target variables. While comprehensive data pre-processing can bolster
the ability of a FFNN model to learn from the observed data, it requires a significant
amount of user intervention, e.g., selecting the number of reconstructed components38. In
addition, the pre-processing requires a substantial amount of time as many reconstructed
components need to be calculated.

In contrast, an updated version of Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), has achieved significant attention among the water scientist community,
specifically for time series prediction. LSTM was first introduced by Hochreiter and
Schmidhuber in 1997 and has later been established as a powerful tool for addressing
forecasting problems [55–60]. High computational effort and time are needed by recurrent
backpropagation to learn to store long-term information because of the decaying error
backflow. Hence, the concept of the vanishing gradient problem in recognizing the long-
term dependency of RNN was introduced [61]. LSTM has become a very popular algorithm
to deal with time series data in DL forecasting, where variables are dependent on the
previous information along the series. LSTM can capture the long-term dependencies and
linkage among the variables. Compared to traditional neural networks, e.g., FFNN, LSTMs
are capable of capturing both the Chaotic and periodic behaviors of time series data and
determining the dependencies with higher accuracy [62]. Kratzert et al. (2018) mentioned
the LSTM model as a successful adaptation [39] while describing the rainfall-runoff pattern
of large complex catchments at a daily scale [63]. On the other hand, Ni et al. (2019)
developed multiple hybrid models using the LSTM model, to analyze monthly streamflow
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and rainfall prediction [64]. Hu et al. (2018) found that the LSTM model outperformed other
traditional ANN models while forecasting the flood frequency and found the result was up
to 6 h ahead [65]. A similar analysis was performed by Le et al. (2019) [5], who compared
the ANN and LSTM models for predicting the daily scale, two-day, and three-day scale
ahead streamflow rate at Hoa Binh. The outcome of using the LSTMs model revealed that
it could determine both the long-term and short-term dependencies between sequential
complex data series and perform good results in river discharge forecasting.

The objective of this study is to develop an efficacious and concrete predictive frame-
work with LSTM neural network to forecast the river discharge trained by previous data
untangling the temporal dynamics of the large range of data. In order to accomplish the
goal, extensive Exploratory Data Analysis (EDA), Feature Engineering (FE), and hyper-
parameter optimization are conducted to obtain the best possible performance and a set
of learned parameters from the LSTM model. The proposed framework can be used to
help researchers, engineers, and decision-makers to perceive the temporal dynamics of
discharge and make accurate engineering/managerial decisions. Engineers and managers
will be able to observe both the short-term and long-term behavior and trend of discharge
which will eventually help make the precautionary measures for various water-related
issues in the surrounding area using the previous observational discharge values. As the
LSTM-based approach shown in this paper requires the observed data only, the burden of
high computational effort needed for the physics-based numerical models can be reduced
significantly. The rest of the paper is organized as follows. In Section 2, the study area and
observational data are introduced. Furthermore, this section illustrates the exploratory
analysis and FE to prepare the dataset for LSTM model training, the proposed model’s
architecture, and model evaluation criteria. Section 3 presents the experimental results and
discussion. Finally, Section 4 concludes the paper with future recommendations.

2. Materials and Methods
2.1. Study Location and Data Source

The river flow measuring site considered in this study is situated along the East Branch
Delaware River in Delaware County, NY (Figure 1). The latitude and longitude of the study
site are 42◦04′30′′ N, 74◦58′35′′ W with the coordinate system “North American Datum of
1983”. The identification number of the hydrologic unit in the USGS Water database of it is
02040102, on the left bank half miles downstream from Downsville Dam, at the downstream
end of the outlet channel of Pepacton Reservoir, and one mile east of Downsville. The
contributing drainage area of the measuring point is 372 mi2. The river flow recording
gauge datum is 1101 ft. The study location is the situation at the hamlet, Downsville, a
census-designated place which was a village in Colchester town, Delaware County, NY.

The period of discharge record is from July 1941 to the present. Range of the discharge
time series considered in this research is 1 July 1941 to 31 December 2021, with 29,393 obser-
vations. The maximum yearly flow recorded within the entire period after the construction
of Pepacton reservoir was 17,700 ft3/s on 18 September 1946 with a water level of 12.08 ft
and a minimum flow of 0.6 ft3/s on 11 October 1991 with the minimum water height, 1.39 ft
on 17 January 1964. The extreme water level recorded outside the period of record was
16 ft on 9 October 1903 during a flooding event in the surrounding area. Extreme river flow
recorded outside the period of record before the construction of the Pepacton reservoir was
23,900 ft3/s on 26 November 1950 with a water level of 14.52 ft [USGS 2022].

2.2. Univariate Exploratory Data Analysis and Feature Engineering

To obtain the characteristics and attributes of the dataset with discharge series, EDA
is performed. EDA is a process where the internal distribution of a dataset is extracted
through various graphical visualization and summarizing techniques. EDA involves a
critical process of conducting an initial exploration of the variables to investigate the
anomalies and hidden patterns. It is the first step toward data preprocessing for ML/DL
algorithms. In this study, steps in EDA can be further categorized into two parts. It
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involves descriptive statistics, outlier detection, and probability distribution to determine
the skewness. As the scope of this research is univariate analysis, i.e., only one variable
(discharge) (Figure 2), a brief study is performed in the descriptive statistics (Table 1). They
are counting the number of observations, obtaining the central values (e.g., mean, median,
mode), spread (e.g., standard deviation), range (e.g., minimum, maximum), percentile
distribution, interquartile range, and quantifying missing data. In probability distribution,
a graphical representation using a histogram and the coefficient of skewness is used to
analyze the normality of the discharge series. In this study, the discharge series consists of
a significant number of extreme values/outliers. Storm events with a significant amount
of rainfall have the greatest impact on the high values of discharge volume. Detecting the
outliers revealed both extreme events and erroneous measurements of discharge.
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Univariate outlier detection for the discharge series is performed using the inter-
quantile-range (IQR) rule. According to the IQR proximity rule, a value of the continuous
numeric variable is considered an outlier if it stays outside the upper boundary, i.e.,
75th quantile + (IQR × 1.5) or lower boundary, i.e., 25th quantile- (IQR × 1.5) where
the IQR is expressed by the difference between 75th quantile and 25th quantile.
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Table 1. Descriptive Statistics of the entire discharge series.

Count 29,393

Mean 323.73
Standard Deviation 681.61

Minimum 0.6
25th percentile 42
50th percentile 88.4
75th percentile 332

Maximum 17,700
Inter Quantile Range (IQR) 290.00

After the EDA step, FE is performed. FE is the most crucial step to obtaining the
appropriate dataset for training/testing the LSTM algorithm. In FE, imputation is to make
the data set consistent, normality check, necessary data transformation if applicable, and
data standardization is performed. Without a successful FE, any data-driven method
may not yield a satisfactory performance with minimum error. An adequate optimization
through the iterative gradient descent cannot be reached without successful scrutiny of
the dataset. Therefore, a comprehensive FE is performed to transform the dataset most
suitable for the learning algorithm of LSTM. As the discharge variable has some null
values, imputation with the median of the series is performed to make the series consistent.
Direct discarding of the observations with null values can also be considered. However,
this technique is not recommended as it reduces the shape of the dataset by reducing the
observed data point.

After the imputation task, the normality of the discharge series is checked using a
visualization technique accompanied by the coefficient of normality measure, e.g., Pearson
Coefficient of Skewness (PCR). Normal distribution is the most crucial factor in the field
of data-driven predictive analysis, e.g., deep neural network regression. Smooth progress
towards minima in gradient descent is required to reach the objective function that the
step sizes be updated at the same rate for the values of each feature used in the analysis,
which can be achieved by increasing the normality of the variable. The logarithmic trans-
formation of the discharge series conveyed a significant increase in normality. In addition,
processing and recalling long-term information in time series data is a unique feature of the
LSTM model, which makes it different from the traditional feedforward neural network.
Therefore, a combination of appropriate feature engineering to increase the normality with
the robustness of the LSTM algorithm is applied in this study to obtain satisfactory perfor-
mance in discharge prediction. As the distribution of the values of river discharge series is
highly skewed to the left, indicating non-normally distributed data, the traditional ML and
neural network regression algorithms, without appropriate data transformation, do not
offer satisfactory performance even with good optimization. Therefore, the LSTM, which is
a special type of RNN, is used to forecast the river discharge values in this study. In the
next section, a detailed explanation of how the LSTM is utilized for the river discharge time
series is presented.

As the distribution of the discharge series is found to be highly skewed, data trans-
formation is performed to decrease the non-normality of the series. In this study, three
methods of data transformation are considered, e.g., logarithmic, square-root, and cubic
transformation, to transform the distribution of the features more to the normal distri-
bution. Pearson’s coefficient is used as a numerical indicator of normality. In Figure 3
multiple data transformation techniques are applied to observe the shift in the skewness
i.e., in-crease/decrease in the normality. Logarithmic transformation outperforms other
transformation functions, distributions of the transformed and observed discharge series
can be seen. Data transformation with all three functions mentioned above helps to increase
the normality, thus decreasing the skewness. Pearson’s Coefficient of Skewness (PCS) is also
added to the individual figures to obtain an idea of the degree of the skewness. Logarithmic
transformation with the lowest PCS of 0.55 outperforms other transformation functions. It
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reduced the right-skewness more than other functions, which can be observed in Figure 3.
As the PCS value from the logarithmic transformation is promising compared to all others,
the data series from this transformation is considered in this research. Logarithmic trans-
formation outperforms other transformation functions, e.g., it reduced the non-normality
significantly by changing the value of Pearson’s coefficient of skewness (PCS).
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The autoregressive integrated MA model is the most extensively used parametric time
series method. Although determining trend significance can be challenging, among the
analyses and different methods, the most direct approach for detecting discharge trends in
a time series is the MA method. The MA method, as one of the most fundamental ways
for analyzing meteorological and hydrological data, smooths and clarifies trend lines by
screening out frequent random variations in hydrological data. The focus of the analysis
is more on the accentuating longer-term patterns rather than short-term fluctuation for a
better representation of MA. It can be calculated for a different duration and number of
years by shifting the average value of specified variable year by year and including all
the data points, and concluding the entire data set at the end of the process for the target
duration range. For this study, the MA method was used to analyze discharge variation as
a yearly average for the duration of 81 years (from 1941 to 2021). The average discharge
was investigated by considering two types of MA models: the Simple Moving Average
(SMA) and the Exponential Moving Average (EMA). SMA is an accounting MA that is
calculated by averaging recent discharges and adding recent values. Then dividing, the
outcome by the number of periods in the data range (Equation (1)).

SMA =
Q1 + Q3 + Q3 + · · ·+ QN

N
(1)

where N is the total number of periods, and QN is the discharge value at period N.
An exponential moving average (EMA) is a type of MA that assigns a higher weight

to the recent data and measures the direction of the discharge trend over a period of time



Hydrology 2022, 9, 202 7 of 21

(Equation (2)). The EMA benefits from the recent discharge changes and is capable of
capturing the possible recent year trend and climate change impact.

EMA = Qt × k + EMAt−1 × (1− k) (2)

k =
2

(N + 1)
(3)

where k is the weighted multiplier, t is represented as the present values, and (t− 1) is a
symbol for the previous period. The time interval is dependent on the time-series dataset
and the interval in the actual dataset (i.e., day, hour, or minute).

Both 10-year SMA, EMA, and MA analysis results in the Figure 4 illustrated the
average discharge to be highest in 1945 before decreasing to the minimum in late 1955.
However, the minimum range of average discharge continued for over a decade, compared
to the second rise in its values in 1975, which was still about half of the maximum discharge
average experienced in 1945. The decadal decrease was defined for more than two decades
after 1975, along with the same increasing trend and more variance until 2012.
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Through the data standardization process, the values of a variable are rescaled so that
the variable has a mean 0 and variance of 1 (or Z-score normalization), which is identical
to the bell-shaped normal distribution curve. As the variable considered in this study
is the continuous independent variable, the standardization of the variable is crucial for
training/testing the neural network algorithm. Standardization is an important step for
the optimization problem. The LSTM RNN model uses the gradient descent technique,
where the feature value (discharge) affects the step size of the technique. Smooth progress
towards minima in gradient descent requires the update of the steps at the same rate for all
the feature values. A standardized variable is a prerequisite for reaching the minima in the
gradient descends process.

Xnorm =
X− Xmin

Xmax − Xmin
(4)

All the values in the discharge series are normalized to prepare the training dataset
for the LSTM model.

Equation (4) shows the formula for the normalization of the discharge series. The
difference between the discharge value and the minimum of the entire discharge series is
divided by the range of the series and provides the standardized data, which is further
used in the training/testing process of the LSTM. The entire standardized discharge series
is split into two portions, i.e., a training set that is used to train the model and a testing
set that is used to test/evaluate the model. Seventy (70) percent of the dataset is used for
training, and thirty (30) percent is used for testing. In a nutshell, EDA and FE are pivotal
steps for the satisfactory performance of the predictive model.

2.3. Long Short-Term Memory (LSTM) Recurrent Neural

LSTM is a special type of RNN which is frequently applied specially in sequential
forecasting. LSTM feedback connections are the principal component of processing and
recalling long-term information and a unique feature that makes it different from the
traditional feedforward neural network. This unique property of LSTM is utilized in
processing the sequence of datasets, e.g., discharge time series, and treating all the data
points independently. LSTM RNN is suitable for various water-related variables with time
series, e.g., river flow, groundwater table, precipitation, etc. [61,66–70].

Both long-term memory (c[t − 1]) and short-term memory (h[t − 1]) are processed in
a typical LSTM algorithm through the utilization of multiple gates to filter the information
shown in the Figure 5. For an unchanged flow of gradients, forget and update gates update
the memory cell state [71,72]. Three gates, i.e., input gate ig, forgot gate fg, and output
gate og handle the information flow by writing, deleting, and reading, respectively. Hence,
LSTM is capable of memorizing information at different time tags and intervals, making
it suitable for time series prediction within a certain interval [73]. In the forget gate, long-
term information enters and passes through a filtration where unnecessary information
is discarded. The forget gate filters out unnecessary data by using the sigmoid activation
function where the range of the function is 0 (gate closed) and 1 (gate open). Input gate filter
and quantify the significance of new data coming as input to the cell. Such as the forget
fate, the input gate filters out information by using binary activation functions and controls
the flow of both long-term and short-term information. The output gates regulate the value
of the upcoming hidden state, which is a function of the information on previous inputs.
The entire schematic of the information flow through LSTM cells and related equations for
each cell can be seen in the Figure 6 and Table 2, respectively.



Hydrology 2022, 9, 202 9 of 21

Hydrology 2022, 9, x FOR PEER REVIEW 9 of 22 
 

 

Equation (4) shows the formula for the normalization of the discharge series. The 
difference between the discharge value and the minimum of the entire discharge series is 
divided by the range of the series and provides the standardized data, which is further 
used in the training/testing process of the LSTM. The entire standardized discharge series 
is split into two portions, i.e., a training set that is used to train the model and a testing set 
that is used to test/evaluate the model. Seventy (70) percent of the dataset is used for train-
ing, and thirty (30) percent is used for testing. In a nutshell, EDA and FE are pivotal steps 
for the satisfactory performance of the predictive model. 

2.3. Long Short-Term Memory (LSTM) Recurrent Neural 
LSTM is a special type of RNN which is frequently applied specially in sequential 

forecasting. LSTM feedback connections are the principal component of processing and 
recalling long-term information and a unique feature that makes it different from the tra-
ditional feedforward neural network. This unique property of LSTM is utilized in pro-
cessing the sequence of datasets, e.g., discharge time series, and treating all the data points 
independently. LSTM RNN is suitable for various water-related variables with time se-
ries, e.g., river flow, groundwater table, precipitation, etc. [61,66–70]. 

Both long-term memory (c[t − 1]) and short-term memory (h[t − 1]) are processed in 
a typical LSTM algorithm through the utilization of multiple gates to filter the information 
shown in the Figure 5. For an unchanged flow of gradients, forget and update gates up-
date the memory cell state [71,72]. Three gates, i.e., input gate ig, forgot gate fg, and output 
gate og handle the information flow by writing, deleting, and reading, respectively. Hence, 
LSTM is capable of memorizing information at different time tags and intervals, making 
it suitable for time series prediction within a certain interval [73]. In the forget gate, long-
term information enters and passes through a filtration where unnecessary information is 
discarded. The forget gate filters out unnecessary data by using the sigmoid activation 
function where the range of the function is 0 (gate closed) and 1 (gate open). Input gate 
filter and quantify the significance of new data coming as input to the cell. Such as the 
forget fate, the input gate filters out information by using binary activation functions and 
controls the flow of both long-term and short-term information. The output gates regulate 
the value of the upcoming hidden state, which is a function of the information on previous 
inputs. The entire schematic of the information flow through LSTM cells and related equa-
tions for each cell can be seen in the Figure 6 and Table 2, respectively. 

 
Figure 5. Schematic representation of a LSTM architecture. 

 

Figure 5. Schematic representation of a LSTM architecture.

Hydrology 2022, 9, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 6. LSTM cells with gates (forget, input, cell, and output) show the flow of information. 

Table 2. All cell and gate operations are presented in the following equations for all the gates and 
cells. 

LSTM Component Equations 
Forget gate 𝑓 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋௧𝑉 + ℎ௧ିଵ𝑊 + 𝑏) 
Input gate 𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋௧𝑉 + ℎ௧ିଵ𝑊 + 𝑏) 

Output gate 𝑜 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋௧𝑉 + ℎ௧ିଵ𝑊 + 𝑏) 
Cell state 𝐶௧ = 𝑖⨀ 𝐶ሚ௧ + 𝑓 ⨀ 𝐶௧ିଵ 

Candidate for cell state 𝐶ሚ௧ =𝑡𝑎𝑛ℎ  (𝑋௧𝑉 + ℎ௧ିଵ𝑊 + 𝑏) 
Hidden state ℎ௧ = 𝑜 ⨀ 𝑡𝑎𝑛ℎ (𝐶௧) 

In the above equations ℎ௧ represents a vector for the hidden state, which is linked to 
the short-term memory. The 𝐶௧ is the cell state linked to long-term memory, and 𝐶ሚ௧ is the 
candidate for cell state at time tag t, which is used to filter important data to store over 
time. Several weight matrices are used in the input gate, forget gate, output gate, and cell 
state. They are indicated as 𝑊, 𝑊, 𝑊, 𝑊. For current input 𝑋௧, several weight matrices 
and biases, i.e., 𝑉, 𝑉, 𝑉, 𝑉, and 𝑏, 𝑏, 𝑏, 𝑏 are used. The operator ⊙ denotes the Hada-
mard product (element-wise product) 

Hyperparameters are required to be tuned to maximize the performance of every ML 
model. Other parameters involved in the stochastic process of any ML model are learned 
through iteration. However, the hyperparameters are decided manually. Therefore, they 
must be tuned in to achieve satisfactory performance. As there is no systematic approach 
to selecting the hyperparameters, the iterative trial and error method is applied to find the 
most appropriate values where the model performs best. In this study, Keras, a python 
library that offers a space search for ML algorithms, is used to find the best combination 
of the hyperparameters. Hyperparameters of the LSTM algorithm considered in this study 
are the size of epoch and batch and number of neurons [74,75]. 

2.4. Comparative Study 
A comparative study is performed to investigate the performance of the LSTM algo-

rithm with other DNN time series prediction algorithms. In this study, Multilayer Percep-
tron (MLP), RNN, and Convolution Neural Network (CNN) are used to predict the dis-
charge. A multilayer perceptron (MLP) is a fully connected type of feed-forward neural 
network (FFNN). An MLP is constructed with three layers, i.e., an input, hidden, and 

Figure 6. LSTM cells with gates (forget, input, cell, and output) show the flow of information.

Table 2. All cell and gate operations are presented in the following equations for all the gates
and cells.

LSTM Component Equations

Forget gate fg = sigmoid
(

XtVf + ht−1W f + b f

)
Input gate ig = sigmoid(XtVi + ht−1Wi + bi)

Output gate og = sigmoid(XtVo + ht−1Wo + bo)
Cell state Ct = ig

⊙
C̃t + fg

⊙
Ct−1

Candidate for cell state C̃t = tanh (XtVc + ht−1Wc + bc)

Hidden state ht = og
⊙

tanh(Ct)

In the above equations ht represents a vector for the hidden state, which is linked to
the short-term memory. The Ct is the cell state linked to long-term memory, and C̃t is the
candidate for cell state at time tag t, which is used to filter important data to store over time.
Several weight matrices are used in the input gate, forget gate, output gate, and cell state.
They are indicated as Wi, W f , Wo, Wc. For current input Xt, several weight matrices and
biases, i.e., Vi, Vf , Vo, Vo, and bi, b f , bo, bc are used. The operator � denotes the Hadamard
product (element-wise product)

Hyperparameters are required to be tuned to maximize the performance of every ML
model. Other parameters involved in the stochastic process of any ML model are learned
through iteration. However, the hyperparameters are decided manually. Therefore, they
must be tuned in to achieve satisfactory performance. As there is no systematic approach
to selecting the hyperparameters, the iterative trial and error method is applied to find the
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most appropriate values where the model performs best. In this study, Keras, a python
library that offers a space search for ML algorithms, is used to find the best combination of
the hyperparameters. Hyperparameters of the LSTM algorithm considered in this study
are the size of epoch and batch and number of neurons [74,75].

2.4. Comparative Study

A comparative study is performed to investigate the performance of the LSTM al-
gorithm with other DNN time series prediction algorithms. In this study, Multilayer
Perceptron (MLP), RNN, and Convolution Neural Network (CNN) are used to predict the
discharge. A multilayer perceptron (MLP) is a fully connected type of feed-forward neural
network (FFNN). An MLP is constructed with three layers, i.e., an input, hidden, and
output layer. Except for the nodes in the input layer where the inputs are embedded, each
node in the hidden layer is a neuron uses a nonlinear activation function. MLP is based on
supervised learning and backpropagation techniques for training. All the layers and non-
linear activations distinguish the MLP algorithm from a linear perceptron-based prediction.
Convolutional neural network (CNN) is a special type of neural network mathematical
convolution. In general, matrix multiplication is at least one layer. CNN is specifically
designed to preprocess the pixel data applied in image processing. CNN substitutes the
mathematical operation known as convolution for generic matrix multiplication in at least
one of its layers. A convolutional neural network is built of an input layer, hidden layer(s),
and an output layer to generate the outcome of the model. Unlike the feed-forward neural
network, the hidden layers of CNN include layers to perform convolutions on the input
data. Convolutional layers are among the hidden layers in CNN. This typically contains a
layer that does a dot product of the input matrix of the layer with the convolution kernel.
The convolution procedure develops a feature map as the convolution kernel moves across
the input matrix for the layer, adding to the input of the following layer. Following this
are further layers such as normalizing, pooling, and fully connected layers. In this study,
a sequential model of 1D convolutional neural network (Conv1D) with a fully connected
network is used to predict discharge time series. A total of 64 filters and 2 kernel sizes have
been considered for Conv1D. The activation function was ‘ReLU’ for both the Conv1D
and fully connected layer. A 1D Max Pooling was added with a pool size of 2. A total
of 50 neurons with two hidden layers have been used for the fully connected network
(Figure 7).
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2.5. Error Analysis

The literature provides a wide range of evaluation matrices that have been mostly used
in hydrologic modeling to compare the prediction’s accuracy. The predictions’ error defined
via various methods represents the difference between data points as the observed real
values and predicted values as the measured ones. Multiple model variability settings were
used in this study. The top four standard performance assessment methods to evaluate the
analytical output and draw conclusions were Root Mean Square Error (RMSE), correlation
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coefficient (r), relative error (RE), and the Nash Sutcliffe model efficiency coefficient (E).
Multiple performance indicators should indeed be employed to assess model accuracy
rather than one which can also effectively capture the high streamflow time series values.
The term “norms” refers to the varied forms of multi-dimensional error measures. The
norm normalizations lead to a relative dimensionless metric and reduce the error measures’
sensitivity to the dimensions of the data frame. The most popular evaluation metric is
the Root Mean Square Error (RMSE), as the function is more sensitive to significant errors.
That’s because the squared term multiplies greater errors exponentially more than smaller
ones. RMSE is the mean of the absolute value of the errors and is normalized by the number
of data points, N:

RMSE =

√√√√ 1
N

N

∑
t=1

∣∣∣Qt(obs) −Qt(com)

∣∣∣2 (5)

where Qt(obs) = observed discharge, Qt(com) = computed discharge, so (Qt(obs) − Qt(com))
represents the error term between the real and measured value for each data point which
is normalized by dividing by the total number of observations after the summation of all
terms. The lowest RMSE score corresponds to the best predictive accuracy.

The coefficient of determination (R2) is a popular performance indicator for the accu-
racy of the model and the model's fitness to the data points’ values depicted by this metric.
The better the model fits the data, the higher the R2 is. The coefficient of determination
which is the second error function implemented in this study is represented in Equation (6).

R2 =

(
∑N

t=1

(
Qt(com) −Q(com)

)(
Qt(obs) −Q(obs)

))2(
∑N

t=1

(
Qt(com) −Q(com)

)2
)(

∑N
t=1

(
Qt(obs) −Q(obs)

)2
) (6)

where Q(obs) = average of observed discharge. The R2 range is 0 to 1, with 0 indicating no
correlation and 1 signifying perfect correlation between observed and computed values.

MAPE =
100%

n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (7)

The above equation shows the third performance indicator, the Mean Absolute Per-
centage Error (MAPE) used in this study. MAPE is a measure of the prediction accuracy of
a time series forecasting method. The fourth evaluation metric refers to the Nash Sutcliffe
model efficiency coefficient (E) and is one of the most widely used metrics for evaluating
a hydrologic model’s performance. E can be classified as one of the scaled forecasts that
compare the predicted error to the observed error.

E = 1−
∑T

t=1

(
Qt(obs) −Qt(com)

)2

∑T
t=1

(
Qt(obs) −Qt(obs)

)2 (8)

where Qt(obs) = average of observed discharge, and E is dimensionless with a range of
∞ ≤ E ≤ 1, with 1 as the largest value that E can obtain, representing the best model
accuracy. Having a positive value for E (greater than zero) shows that the prediction and
computed discharge value are better than simply selecting the average observed value.

3. Results

LSTM RNN are used to predict the time series of discharge data based on multi-
ple lead times. Several lead time durations, e.g., 1 day, 2 days, 3 days, 4 days, 5 days,
6 days, and 7 days are used to forecast the future values of discharge. Only one lag time,
30 days, is used for the entire analysis to be consistent with the comparison of the model
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performance. Model performances are recorded for the lead times based on several error
indicators to show the efficiency of the LSTM model in predicting the discharge values.
Predicted values are compared to the observed dataset, and their difference of them is
computed to quantify the performance indicators. Root mean square error (RMSE), correla-
tion coefficient (R-squared), and Nash Sutcliffe (E) error are used to estimate error from
the predicted discharge data in the comparative study of LSTM, CNN, and MLP-based
predictions. Model performance is improved by the increase in iteration, i.e., an increase
in the number of epochs. Performance indicators are obtained through multiple models
runs to demonstrate the linkage between the model performance and the lead times in the
LSTM model. Hyperparameters of the LSTM model are adjusted to optimize the model
performance considering a set of batch size, epoch size, and the total number of neurons.

3.1. Predicted and Observed Discharge Series

The output from the LSTM algorithm is compared to the observed discharge data from
the USGS database through visualization. A comparative study with predictions from CNN
and MLP is also presented to investigate the LSTM performance. Both the observed and
predicted discharge time series are plotted in cubic feet per second (cfs) against the number
of observations. The overall distribution of the predicted discharge values from LSTM,
CNN, and MLP, are approximately identical to the observed data providing a satisfactory
performance of all the algorithms. However, the LSTM approach outperforms the CNN
and MLP-based approaches in predicting discharge based on past values. The performance
indicator, RMSE, for the LSTM algorithm is 151.52 ft3/s, where 235.74 ft3/s and 489.07 ft3/s
for CNN and MLP, respectively, where the MAPE values are 0.92%, 2.17%, and 2.95%.
Model performance improvement through continuous iterations, i.e., with the increase in
the number of epochs, is presented in the Figure 8 for all algorithms. However, LSTM ended
up with the best performance after 100 epochs among all other algorithms with minimum
error. After the LSTM model is trained with the training portion of the dataset, the entire
observed dataset is fed to predict the outcome and divided into training and testing sets
with the proportion of 70% and 30%. The training dataset is used to train the model, and the
testing dataset is used to evaluate the model’s performance. Observed data are shown in a
with green color, and the training portion of the dataset is illustrated in sections (b–d) for
LSTM, CNN, and MLP, respectively. The RMSE values of the training and testing portion
are 0.097 and 0.045, respectively. The lowest RMSE score corresponds to the best predictive
accuracy and shows the better satisfactory performance of the LSTM algorithm.

It is common practice to utilize measured or predicted precipitation data files in any
approach for estimating future river flows during a flood event since the magnitude of
the precipitation event is the most significant factor affecting the magnitude of the flood
event. In addition, we considered precipitation data from the closest station because it
is one of the most important contributing factors in the dynamics of river discharge. We
took into consideration a dataset with a range of a year (2017) because both the discharge
and precipitation data were readily available. Univariate prediction for future discharge
scenarios based on past values can be highly efficient in reaching a quick and effective
decision for water resource managers and engineers. It is fairly simple to see the future
situation of the river flow at a point location (e.g., after 1, 3, or 7 days) based only on the past
recorded discharge values. The 30 days duration is used for the time lag so that the past
recorded discharge values considered for each lead time can be consistent. We also explored
the bivariate (precipitation and discharge) prediction comparing them with the observed
discharge values (with the lead time of 1 days) for the year 2017 and univariate prediction.
Both approaches showed satisfactory performance with the RMSE score of 151.52 ft3/s
and 389.77 ft3/s, respectively, for univariate and bivariate (Figure 9). The RMSE for 2 days
and days lead time resulted in 1.98 and 4.17, respectively. Bivariate prediction conveyed
a slightly lower score compared to univariate prediction, where only previous discharge
values were used. Increasing the lead time from 1 day to 2 days or 3 days enhances the error
and reduce the accuracy as expected. This may have occurred as a result of the predictive
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analysis for a point location with no spatial variability. In order to obtain a more robust
prediction with more influencing factors, additional exploratory analyses and feature engi-
neering need to be performed to understand the internal dynamics of the input variables at
a point location, however, for effective decision-making, multiple observational stations for
both the input variable (e.g., precipitation) and output variable (e.g., discharge) to reach a
better prediction incorporating both spatial and temporal dynamics in the prediction.
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Figure 8. Distribution of observed (a), predicted discharge values from LSTM with RMSE 151.52 ft3/s
(b), CNN with 235.74 RMSE ft3/s (c), and MLP with RMSE 489.07 ft3/s (d) for the entire discharge
time series used in this study.

The availability of reasonably accurate quantitative rainfall forecasts allows flood
predictions to be made in advance of the occurrence of severe rain events using physically
based modeling. It is to be expected that the predicted flowrates from the LSTM algorithm
would not similarly predict high flowrates in subsequent days on the day before the rain
event occurred. However, in practice, the LSTM predictions in some cases, but not in
all, correctly predicted daily flow peaks in days to come on the day before a large rain
event would occur. For example, on 5 June 2017, the observed flowrate was 175 ft3/s.
The predicted flowrates for June 6, 7, and 8th were 1065, 1227, and 1186 ft3/s, correctly
identifying a large flood event caused by rain on June 6th. However, this pattern of
anticipation of flood peaks was not always present. On May 1, 2017, with a daily flowrate
of 103 ft3/s, the predicted flowrates for May 2, 3rd, and 4th were 311, 238, and 320 ft3/s;
the observed flowrates were 2700, 3120, and 2190 ft3/s. Further investigation is needed to
seek an explanation for the erratic prediction of future flood events by LSTM on the day
before large rain events.

Performance indicators are documented for several lead times and illustrated in
the Figure 10. Lead times are pivotal parameters of the LSTM algorithm toward model
performance. Lead times values considered in this research are from 1–7 days. The values of
RMSE increase with the increase in the number of lead times, whereas of R2 and E decreases
showing the poorer performance in the model performance in the Figure 10. Lead time
is the length of a cutout of a time series that is used to predict the output (recession rate)
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at a future time step. The increase in the time leads to convey increase in the duration of
prediction, e.g., discharge prediction after 2 days from the present. The R2 value of 0.093 for
the lead time of one day is the lowest among all the lead times.
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3.2. Model Evaluation Matrices and Improvement

The performance of the LSTM neural network is evaluated using three performance
indicators, e.g., the coefficient of determination (R2), Root Mean Square Error (RMSE),
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and Nash Sutcliffe model efficiency coefficient (E). The performance variation with the
change in the lead time is represented in the Figure 10. Further, the performance of the
model was also evaluated and improved by increasing the number of iterations, i.e., an
epoch in the neural network. The value of RMSE is observed with the increase in the
number of iterations/epochs in the LSTM neural network in the Figure 11. The number of
epochs is increased up to 100 to increase the performance and converge to a more stable
narrow range of RMSE values. The RMSE of the normalized values is found to decrease
from 0.09 to 0.037, which indicates satisfactory performance in the LSTM algorithm. The
model performance increases significantly from the very beginning of the iteration for
both the train and test scenarios. Changes in the RMSE values are obtained for both the
train and test datasets marked in blue and orange color. A comparatively mild decrease
in the RMSE value, i.e., an increase in the model performance, can be observed between
20 and 100 epochs. Several local abrupt variations in the performance can also be identified
after approximately 5 epochs. The trend of change in the decrease in the RMSE of the
normalized values for the models shows that approximately 100 epochs may yield the
best performance.
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3.3. Hyperparameters

Tuning the hyperparameters of LSTM can be intimidating as there is no simple and
robust hypothesis to perform the task of optimizing the model [76]. In order to conduct
hyperparameter tuning for LSTM algorithms, a systematic approach should be undertaken
to perceive the dynamical and stochastic characteristics of the process [77]. In this study,
LSTM neural network is applied discharge time series data. The performance of the model
is further improved by tuning the size of epoch and batch and the number of neurons
for the neural network stochastic procedure. The tuned parameters are only applicable
for the discharge time series used in this study to the stochastic nature of the neural
network optimization.
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Epoch size is tuned first for constant batch sizes of four and a single neuron. The
number of epochs considered to observe the variation in the performance are 100, 300, 500,
1000, and 2000. Similarly, the number of batch sizes of 1, 2, and 4 and neurons of 1–5 are
considered to keep the epoch size constant in 2000 to see the model improvement. An
epoch size of 2000 is selected to further the tuning task with the batch size and the number
of neurons as it contributes to the lowest RMSE value. A batch size of 1 and 4 neurons
provides further lower RMSE values, which can be seen in the Figure 12. Therefore, an
epoch size of 2000, batch size of 1, and a number of neurons of 4 are selected as the best
hyperparameter combination for the LSTM algorithm to maximize the model performance.
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4. Conclusions

Time series prediction for river flow is a pivotal task in the field of water resource
management. Discharge is the most important parameter in various aspects of water
resource engineering and management, e.g., flood and irrigation warning systems. On
the contrary, the application of the data-driven prediction models is highly efficacious
in predicting various hydrological variables without taking complicated equations and
assumptions into consideration. In this study, river discharge is predicted using the
most powerful neural network in predicting sequential data, i.e., LSTM RNN. The LSTM
algorithm can recall both the short- and long-term pattern of the time series to forecast.
The range of the discharge time series considered in this research is quite large, containing
multiple seasonal dynamics and climatic variations. Traditional physics-based numerical
modeling tool requires assumptions, other correlated variables, and expensive calibration
of the parameters. Compared to the other neural network regression models, LSTM is
proven to show good performance, especially the time series prediction. As the river flow
provides sequential data which has high temporal dynamics, LSTM is used to quantify
future values based on past data. As the shape of the discharge dataset is comparatively
large, containing 29,392 observations data points from July 1941 to December 2021, LSTM
algorithms showed highly satisfactory performance with longer lead periods.

This study contributes to a reproducible template to investigate the uniqueness of
the temporal dynamics of river discharge through extensive EDA. The hidden pattern of
the distribution of discharge values through over 80 years of data is discovered in various
up-to-date data exploration tools, which is a mandatory requirement for the satisfactory
training of the LSTM algorithm. After a successful training step, LSTM is tuned and
optimized through an explicit iterative performance record which can further be transferred
to forecast discharge value in identical geographical locations. The performance of the
LSTM algorithm in predicting the river discharge illustrates the algorithm is highly suitable
to the discharge time series. Several performance indicators show promising performance
with minimum error compared to the other DNN approaches.

In comparison to a univariate prediction, which relied solely on prior discharge lev-
els, a bivariate prediction resulted in a slightly lower score. The predictive analysis for
a point location with little spatial variability may have caused this to occur. Additional
exploratory research and feature engineering must be performed in order to fully under-
stand the internal dynamics of the input variables at a given point location in order to
obtain more reliable predictions with more influencing factors. However, to make effective
decisions, it is necessary to use several observational stations to gather data on the input
(such as precipitation) and output (such as discharge) variables. This allows for more
accurate predictions that account for both spatial and temporal dynamics. Consequently,
in our upcoming research, we are quite eager to track the spatio-temporal dynamics of
the contributing factors at the watershed scale. It should also be considered that there
are a couple of drawbacks of using LSTM along with the advantages, which are: (1) the
time consumption on training the model, which LSTM analysis requires more time and
running the model over a large dataset can take longer than other conceptual models. In
this study, the computational effort/time required for the LSTM algorithm was found to
be considerably high. (2) The low-speed process also resulted in the requirement of using
more memory and storage potential of the system, which again can cause a challenge for
training on a large dataset, likewise in this research. (3) Complex process of LSTM for time
series data has a high potential of facing overfitting challenges and results in inaccurate,
extremely low error measures. (4) Although the ability to compare the difference lead
time throughout the entire time series dataset is the key point of implementation of LSTM,
we were not able to obtain a satisfactory performance for more than a three-day period
for this dataset. Any lead times within a three-day period resulted in satisfactory model
performance with low error measures. Future research works should be conducted to
incorporate high-performance computing and cloud-based operations to obtain the best
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result. LSTM models with different configurations should also be applied in different
geographical and climatic locations to investigate the transferability of the model.
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16. Bai, Y.; Bezak, N.; Sapač, K.; Klun, M.; Zhang, J. Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression

Model. Water Resour. Manag. Int. J. Publ. Eur. Water Resour. Assoc. EWRA 2019, 33, 4783–4797. [CrossRef]
17. Xiao, Z.; Liang, Z.; Li, B.; Hou, B.; Hu, Y.; Wang, J. New Flood Early Warning and Forecasting Method Based on Similarity Theory.

J. Hydrol. Eng. 2019, 24, 04019023. [CrossRef]
18. Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate.

Nature 2005, 438, 347–350. [CrossRef]

http://doi.org/10.1080/02626667.2022.2121654
http://doi.org/10.1016/j.jhydrol.2020.124631
http://doi.org/10.1016/j.petrol.2019.106682
http://doi.org/10.3390/w11071387
http://doi.org/10.3390/rs13050889
http://doi.org/10.3390/su12198060
http://doi.org/10.1016/S0378-3774(00)00092-5
http://doi.org/10.1029/2007WR006200
http://doi.org/10.1007/s10040-004-0385-6
http://doi.org/10.1016/j.ecolind.2017.08.049
http://doi.org/10.1016/j.jhydrol.2010.12.041
http://doi.org/10.1016/j.jhydrol.2019.123953
http://doi.org/10.3390/hydrology9060105
http://doi.org/10.3390/hydrology8010006
http://doi.org/10.1007/s11269-019-02399-1
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001811
http://doi.org/10.1038/nature04312


Hydrology 2022, 9, 202 19 of 21

19. Chang, L.-C.; Liou, J.-Y.; Chang, F.-J. Spatial-Temporal Flood Inundation Nowcasts by Fusing Machine Learning Methods and
Principal Component Analysis. J. Hydrol. 2022, 612, 128086. [CrossRef]

20. Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [CrossRef]
21. Askarizadeh, A.; Rippy, M.A.; Fletcher, T.D.; Feldman, D.L.; Peng, J.; Bowler, P.; Mehring, A.S.; Winfrey, B.K.; Vrugt, J.A.;

AghaKouchak, A.; et al. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of
the Urban Stream Syndrome. Environ. Sci. Technol. 2015, 49, 11264–11280. [CrossRef]

22. Zhao, J.; Xu, J.; Xie, X.; Lu, H. Drought Monitoring Based on TIGGE and Distributed Hydrological Model in Huaihe River Basin,
China. Sci. Total Environ. 2016, 553, 358–365. [CrossRef] [PubMed]

23. Humphrey, G.B.; Gibbs, M.S.; Dandy, G.C.; Maier, H.R. A Hybrid Approach to Monthly Streamflow Forecasting: Integrating
Hydrological Model Outputs into a Bayesian Artificial Neural Network. J. Hydrol. 2016, 540, 623–640. [CrossRef]

24. Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536.
[CrossRef]

25. Costabile, P.; Macchione, F. Enhancing River Model Set-up for 2-D Dynamic Flood Modelling. Environ. Model. Softw. 2015, 67,
89–107. [CrossRef]

26. Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long Lead-Time Daily and Monthly Streamflow Forecasting Using
Machine Learning Methods. J. Hydrol. 2020, 590, 125376. [CrossRef]

27. Alvisi, S.; Franchini, M. Fuzzy Neural Networks for Water Level and Discharge Forecasting with Uncertainty. Environ. Model.
Softw. 2011, 26, 523–537. [CrossRef]

28. Prasad, R.; Deo, R.C.; Yan, L.; Maraseni, T. Input Selection and Performance Optimization of ANN-Based Streamflow Forecasts in
the Drought-Prone Murray Darling Basin Region Using IIS and MODWT Algorithm. Atmos. Res. 2017, 197, 42–63. [CrossRef]

29. Rathinasamy, M.; Adamowski, J.; Khosa, R. Multiscale Streamflow Forecasting Using a New Bayesian Model Average Based
Ensemble Multi-Wavelet Volterra Nonlinear Method. J. Hydrol. 2013, 507, 186–200. [CrossRef]

30. Yaseen, Z.M.; El-shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial Intelligence Based Models for Stream-Flow Forecasting:
2000–2015. J. Hydrol. 2015, 530, 829–844. [CrossRef]

31. Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in
Cyprus. Water Resour. Manag. Int. J. Publ. Eur. Water Resour. Assoc. EWRA 2018, 32, 1759–1776. [CrossRef]

32. Wang, W.; Chau, K.; Xu, D.; Chen, X.-Y. Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on
EEMD Decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [CrossRef]

33. Long, J.; Sun, Z.; Pardalos, P.M.; Hong, Y.; Zhang, S.; Li, C. A Hybrid Multi-Objective Genetic Local Search Algorithm for the
Prize-Collecting Vehicle Routing Problem. Inf. Sci. 2019, 478, 40–61. [CrossRef]

34. Abdollahzadeh, M.; Khosravi, M.; Hajipour Khire Masjidi, B.; Samimi Behbahan, A.; Bagherzadeh, A.; Shahkar, A.; Tat Shahdost, F.
Estimating the Density of Deep Eutectic Solvents Applying Supervised Machine Learning Techniques. Sci. Rep. 2022, 12, 4954.
[CrossRef]

35. Chang Fi [Chang, F.J.; LiChiu, C.; ChienWei, H.; IFeng, K. Prediction of Monthly Regional Groundwater Levels through Hybrid
Soft-Computing Techniques. J. Hydrol. Amst. 2016, 541, 965–976. [CrossRef]

36. Daliakopoulos, I.N.; Coulibaly, P.; Tsanis, I.K. Groundwater Level Forecasting Using Artificial Neural Networks. J. Hydrol. 2005,
309, 229–240. [CrossRef]

37. Parchami-Araghi, F.; Mirlatifi, S.M.; Dashtaki, S.G.; Mahdian, M.H. Point Estimation of Soil Water Infiltration Process Using
Artificial Neural Networks for Some Calcareous Soils. J. Hydrol. Amst. 2013, 481, 35–47. [CrossRef]

38. Zhu, X.; Khosravi, M.; Vaferi, B.; Nait Amar, M.; Ghriga, M.A.; Mohammed, A.H. Application of Machine Learning Methods for
Estimating and Comparing the Sulfur Dioxide Absorption Capacity of a Variety of Deep Eutectic Solvents. J. Clean. Prod. 2022,
363, 132465. [CrossRef]

39. Rozos, E.; Dimitriadis, P.; Mazi, K.; Koussis, A.D. A Multilayer Perceptron Model for Stochastic Synthesis. Hydrology 2021, 8, 67.
[CrossRef]

40. Elbeltagi, A.; Di Nunno, F.; Kushwaha, N.L.; de Marinis, G.; Granata, F. River Flow Rate Prediction in the Des Moines Watershed
(Iowa, USA): A Machine Learning Approach. Stoch. Environ. Res. Risk Assess. 2022, 36, 3835–3855. [CrossRef]

41. Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Long-Term SPI Drought Forecasting in the Awash River Basin in
Ethiopia Using Wavelet Neural Network and Wavelet Support Vector Regression Models. J. Hydrol. 2014, 508, 418–429. [CrossRef]

42. Mirzavand, M.; Ghazavi, R. A Stochastic Modelling Technique for Groundwater Level Forecasting in an Arid Environment Using
Time Series Methods. Water Resour. Manag. 2015, 29, 1315–1328. [CrossRef]

43. Yoon, H.; Jun, S.-C.; Hyun, Y.; Bae, G.-O.; Lee, K.-K. A Comparative Study of Artificial Neural Networks and Support Vector
Machines for Predicting Groundwater Levels in a Coastal Aquifer. J. Hydrol. 2011, 396, 128–138. [CrossRef]

44. Khosravi, M.; Tabasi, S.; Hossam Eldien, H.; Motahari, M.R.; Alizadeh, S.M. Evaluation and Prediction of the Rock Static and
Dynamic Parameters. J. Appl. Geophys. 2022, 199, 104581. [CrossRef]

45. Karimi, M.; Khosravi, M.; Fathollahi, R.; Khandakar, A.; Vaferi, B. Determination of the Heat Capacity of Cellulosic Biosamples
Employing Diverse Machine Learning Approaches. Energy Sci. Eng. 2022, 10, 1925–1939. [CrossRef]

46. Jothiprakash, V.; Kote, A.S. Effect of Pruning and Smoothing While Using M5 Model Tree Technique for Reservoir Inflow
Prediction. J. Hydrol. Eng. 2011, 16, 563–574. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2022.128086
http://doi.org/10.1016/j.aqpro.2015.02.126
http://doi.org/10.1021/acs.est.5b01635
http://doi.org/10.1016/j.scitotenv.2016.02.115
http://www.ncbi.nlm.nih.gov/pubmed/26930309
http://doi.org/10.1016/j.jhydrol.2016.06.026
http://doi.org/10.3390/w10111536
http://doi.org/10.1016/j.envsoft.2015.01.009
http://doi.org/10.1016/j.jhydrol.2020.125376
http://doi.org/10.1016/j.envsoft.2010.10.016
http://doi.org/10.1016/j.atmosres.2017.06.014
http://doi.org/10.1016/j.jhydrol.2013.09.025
http://doi.org/10.1016/j.jhydrol.2015.10.038
http://doi.org/10.1007/s11269-018-1902-z
http://doi.org/10.1007/s11269-015-0962-6
http://doi.org/10.1016/j.ins.2018.11.006
http://doi.org/10.1038/s41598-022-08842-5
http://doi.org/10.1016/j.jhydrol.2016.08.006
http://doi.org/10.1016/j.jhydrol.2004.12.001
http://doi.org/10.1016/j.jhydrol.2012.12.007
http://doi.org/10.1016/j.jclepro.2022.132465
http://doi.org/10.3390/hydrology8020067
http://doi.org/10.1007/s00477-022-02228-9
http://doi.org/10.1016/j.jhydrol.2013.10.052
http://doi.org/10.1007/s11269-014-0875-9
http://doi.org/10.1016/j.jhydrol.2010.11.002
http://doi.org/10.1016/j.jappgeo.2022.104581
http://doi.org/10.1002/ese3.1155
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000342


Hydrology 2022, 9, 202 20 of 21

47. Khosravi, M.; Arif, S.B.; Ghaseminejad, A.; Tohidi, H.; Shabanian, H. Performance Evaluation of Machine Learning Regressors for
Estimating Real Estate House Prices. Preprints 2022, 2022090341. [CrossRef]

48. Allawi, M.F.; Jaafar, O.; Mohamad Hamzah, F.; Mohd, N.S.; Deo, R.C.; El-Shafie, A. Reservoir Inflow Forecasting with a Modified
Coactive Neuro-Fuzzy Inference System: A Case Study for a Semi-Arid Region. Theor. Appl. Climatol. 2018, 134, 545–563.
[CrossRef]

49. Xu, X.; Zhang, X.; Fang, H.; Lai, R.; Zhang, Y.; Huang, L.; Liu, X. A Real-Time Probabilistic Channel Flood-Forecasting Model
Based on the Bayesian Particle Filter Approach. Environ. Model. Softw. 2017, 88, 151–167. [CrossRef]

50. Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) Based Model for Predicting Water
Table Depth in Agricultural Areas. J. Hydrol. 2018, 561, 918–929. [CrossRef]

51. Bai, Y.; Xie, J.; Wang, X.; Li, C. Model Fusion Approach for Monthly Reservoir Inflow Forecasting. J. Hydroinform. 2016, 18,
634–650. [CrossRef]

52. Sahoo, S.; Jha, M.K. Groundwater-Level Prediction Using Multiple Linear Regression and Artificial Neural Network Techniques:
A Comparative Assessment. Hydrogeol. J. 2013, 21, 1865–1887. [CrossRef]

53. Mehedi, M.A.A.; Reichert, N.; Molkenthin, F. Sensitivity Analysis of Hyporheic Exchange to Small Scale Changes in Gravel-Sand
Flumebed Using a Coupled Groundwater-Surface Water Model. In Proceedings of the EGU General Assembly 2020, Online,
4–8 May 2020; EGU2020-20319. [CrossRef]
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