A Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. PET Estimation Models
3.1.1. The FAO Penman–Monteith Model
3.1.2. The Shuttleworth–Wallace Model
3.1.3. The Thornthwaite Model
3.1.4. Data Acquisition
3.2. Overall Methodology
3.2.1. Model Building
3.2.2. Performance Evaluation
4. Results and Discussion
4.1. Comparison of PET Estimates at the Selected Weather Stations
4.2. Cross Comparison of Four PET Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Terminology
—specific gas constant (= 0.287 kJ kg−1K−1) | |
—mean temperature in Kelvin (= 273 + T) (K) | |
z | —elevation above sea level (m) |
—net radiation absorbed by the canopy (MJ m−2) | |
—net radiation absorbed by the soil (MJ m−2) | |
—extinction coefficient of the vegetation for net radiation = 0.5 (22, 24). | |
—Leaf Area Index (dimensionless) | |
—simple ratio of hemispheric reflectance for near-infrared light to that for visible light | |
—Normalised Difference Vegetation Index | |
—fraction of photo-synthetically active radiation | |
—fraction of clumped vegetation (Table A1). | |
—relative humidity | |
—von Karman’s constant (k = 0.41) | |
—friction velocity (m s−1) | |
—reference height (m) | |
—zero-plane displacement of the canopy (m) | |
—the canopy height (m) (see Table A1) | |
—eddy diffusivity decay constant of the vegetation | |
—eddy diffusion coefficient at the top of the canopy (m2 s−1) | |
—‘‘preferred’’ roughness length (m) | |
—‘‘preferred’’ zero plane displacement | |
—wind speed at the reference height (m s−1) | |
—roughness length of the canopy (m) | |
—roughness length of the closed canopy (m) | |
—mean drag coefficient for individual leaves | |
—roughness length of ground (m) (see Table A1) | |
—canopy characteristic leaf width (m) | |
—wind speed at the top of the canopy (m s−1) | |
—shear velocity (m s−1) | |
—minimum stomatal resistance (s m−1) (see Table A1) | |
—effective LAI | |
—soil moisture | |
—plant permanent wilting point | |
—critical soil moisture at which transpiration is stressed |
Appendix B. Set of Equations
Code | Land Use Type | (m) | (m) | (sm−1) | (m) | |||
---|---|---|---|---|---|---|---|---|
1 | Coconut | 5.5 | 17 | 0.001 | 1 | 150 | 0.689 | 0.02 |
2 | Rubber | 7 | 30 | 0.05 | 0 | 150 | 0.611 | 0.02 |
3 | Forest—Unclassified | 5.7 | 20 | 0.04 | 0.5 | 150 | 0.721 | 0.02 |
4 | Homesteads/Garden | 3 | 1 | 0.01 | 1 | 100 | 0.674 | 0.02 |
5 | Shrublands | 3 | 1 | 0.01 | 1 | 100 | 0.674 | 0.02 |
6 | Tea | 3 | 1 | 0.01 | 1 | 100 | 0.674 | 0.02 |
7 | Grasslands | 1.8 | 0.8 | 0.01 | 0 | 115 | 0.674 | 0.01 |
8 | Marshy Lands | 6 | 1 | 0.01 | 0 | 65 | 0.674 | 0.01 |
9 | Chena | 7 | 0.6 | 0.01 | 0 | 90 | 0.674 | 0.05 |
10 | Other cultivations | 7 | 0.6 | 0.01 | 0 | 90 | 0.674 | 0.05 |
11 | Paddy | 7 | 0.6 | 0.01 | 0 | 90 | 0.674 | 0.05 |
12 | Urban and built-up | 0 | 0 | 0 | 0 | 0 | 0.674 | 0.02 |
13 | Barren land | 0.3 | 0.05 | 0.01 | 1 | 120 | 0.674 | 0.01 |
14 | Water bodies | 0 | 0 | 0 | 0 | 0 | 0.674 | 0.001 |
References
- Tan, C.L.; Wong, N.H.; Tan, P.Y.; Jusuf, S.K.; Chiam, Z.Q. Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Build. Environ. 2015, 94, 206–217. [Google Scholar] [CrossRef]
- Verstraeten, W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Available online: https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf (accessed on 27 December 2020).
- Lu, J.; Sun, G.; McNulty, S.G.; Amtya, M. A comparison of six potential evapotranspiration methods for regional use in the southeastern united states. J. Am. Water Resour. Assoc. 2005, 41, 621–633. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Gao, P.; Mu, X. Influence of Meteorological Factors on the Potential Evapotranspiration in Yanhe River Basin, China. Water 2021, 13, 1222. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Valle Júnior, L.C.G.; Ventura, T.M.; Gomes, R.S.R.; Nogueira, J.d.S.; Lobo, F.d.A.; Vourlitis, G.L.; Rodrigues, T.R. Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna. Agric. Water Manag. 2020, 232, 106040. [Google Scholar] [CrossRef]
- Chen, D.; Gao, G.; Xu, C.; Guo, J.; Ren, G. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Clim. Res. 2005, 28, 123–132. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Holzman, B. The determination of land and water surfaces. Mon. Weather Rev. 1939, 67, 4–11. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Guitjens, J.C. Models of alfalfa yield and Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 212–222. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory: Evaporation from Sparse Crops. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Adamala, S.; Raghuwanshi, N.S.; Mishra, A.; Tiwari, M. Evapotranspiration modeling using second order neural Networks. J. Hydrol. Eng. 2014, 19, 1131–1140. [Google Scholar] [CrossRef]
- Ngongondo, C.; Xu, C.-Y.; Tallaksen, L.M.; Alemaw, B. Evaluation of the FAO Penman–Montheith, Priestley–Taylor and Hargreaves models for estimating reference evapotranspiration in southern Malawi. Hydrol. Res. 2013, 44, 706–722. [Google Scholar] [CrossRef]
- Owusu-Sekyere, J.D.; Ampofo, E.A.; Asamoah, O. Comparison of five different methods in estimating reference evapotranspiration in Cape Coast, Ghana. Afr. J. Agric. Res. 2017, 12, 2976–2985. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Jackson, N.A.; Wallace, J.S. Soil evaporation measurements in an agroforestry system in Kenya. Agric. For. Meteorol. 1999, 94, 203–215. [Google Scholar] [CrossRef]
- Gao, K.; Santamouris, M. The use of water irrigation to mitigate ambient overheating in the built environment: Recent progress. Build. Environ. 2019, 164, 106346. [Google Scholar] [CrossRef]
- Ashraf, M.; Saeed, M.M.; Asgher, M.N. Evaporation Pan: A Tool for Irrigation Scheduling. J. Drain. Water Manag. 2002, 6, 45–51. [Google Scholar]
- Ahmed, S.; Rahman, M.; Shams, S.; Pasha, M. Assessment of Temporal and Spatial Variation of Pan Evaporation with Related Climatological Factors in Bangladesh. APCBEE Procedia 2014, 10, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Rai, P.; Heddam, S.; Kisi, O.; Sharafati, A.; Salih, S.; Al-Ansari, N.; Yaseen, Z. Pan Evaporation Estimation in Uttarakhand and Uttar Pradesh States, India: Validity of an Integrative Data Intelligence Model. Atmosphere 2020, 11, 553. [Google Scholar] [CrossRef]
- Senatilleke, U.; Abeysiriwardana, H.D.; Makubura, R.K.; Anwar, F.; Rathnayake, U. Estimation of Potential Evapotranspiration across Sri Lanka Using a Distributed Dual-Source Evapotranspiration Model under Data Scarcity. Adv. Meteorol. 2022, 2022, 6819539. [Google Scholar] [CrossRef]
- Climate Change Secretariate. Sri Lanka Climate Profile. 2017. Available online: http://www.climatechange.lk/Climate_Profile.html (accessed on 15 December 2021).
- Imbulana, K.A.U.S.; Wijesekara, N.T.S.; Neupane, B.R. (Eds.) Sri Lanka National Water Development Report; MAI&MD, UN-WWAP, UNESCO and University of Moratuwa: New Delhi, India, 2006. [Google Scholar]
- Zhou, M.C.; Ishidaira, H.; Hapuarachchi, J.; Magome, J.; Kiem, A.S.; Takeuchi, K. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J. Hydrol. 2006, 327, 151–173. [Google Scholar] [CrossRef]
- Subburayan, S.; Murugappan, A.; Mohan, S. Modified Hargreaves Equation for Estimation of ET0 in a Hot and Humid Location in Tamil Nadu State, India. Int. J. Eng. Sci. Technol. 2011, 3, 592–600. [Google Scholar]
- Bapuji Rao, B.; Sandeep, V.M.; Rao, V.U.M.; Venkateswarlu, B. Potential Evapotranspiration Estimation for Indian Conditions: Improving Accuracy through Calibration Coefficients. Tech. Bull. No 1/2012. All India Co-Ordinated Research Project on Agrometeorology, Central Research Institute for Dryland Agriculture, Hyderabad. Available online: http://nicra-icar.in/nicrarevised/images/Books/Potential%20Evapotranspiration%20estimation.pdf (accessed on 24 October 2022).
- Food and Agriculture Organization (FAO). Reference Evapotranspiration (Global-Mean Yearly-~19km), Food and Agriculture Organization of the United Nations. 2022. Available online: https://data.apps.fao.org/catalog/dataset/38047053-a960-46b7-98fc-970fc17cd29d/resource/bdfe6244-8c7c-49ad-b474-895ea10e6393 (accessed on 24 October 2022).
- Nandagiri, L.; Kovoor, G.M. Performance Evaluation of Reference Evapotranspiration Equations across a Range of Indian Climates. J. Irrig. Drain. Eng. 2006, 132, 238–249. Available online: https://idr.nitk.ac.in/jspui/handle/123456789/12984 (accessed on 15 April 2022). [CrossRef]
- Mo, X.; Liu, S.; Lin, Z.; Zhao, W. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J. Hydrol. 2004, 285, 125–142. [Google Scholar] [CrossRef]
- Trajkovic, S.; Kolakovic, S. Evaluation of Reference Evapotranspiration Equations Under Humid Conditions. Water Resour. Manag. 2009, 23, 3057–3067. [Google Scholar] [CrossRef]
- Trajkovic, S.; Gocic, M.; Pongracz, R.; Bartholy, J. Adjustment of Thornthwaite equation for estimating evapotranspiration in Vojvodina. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 138, 1231–1240. [Google Scholar] [CrossRef]
- Grismer, M.E.; Orang, M.; Snyder, R.; Matyac, R. Pan evaporation to reference evapotranspiration conversion methods. J. Irrig. Drain. Eng. 2002, 128, 180–184. [Google Scholar] [CrossRef]
- Xing, Z.; Chow, L.; Meng, F.; Rees, H.W.; Monteith, J.; Lionel, S. Testing reference evapotranspiration estimation methods using evaporation pan and modeling in Maritime region of Canada. J. Irrig. Drain. Eng. 2008, 134, 417–424. [Google Scholar] [CrossRef]
- Eagleman, J.R. Pan Evaporation, Potential and Actual Evapotranspiration. J. Appl. Meteorol. 1967, 6, 482–488. [Google Scholar] [CrossRef]
- Weerasinge, K.D.N. Comparative study of temperature based equations in estimation of potential evaporation for Angunakolapelessa in the arid zone of Southern Sri Lanka. J. Natl. Sci. Found. Sri Lanka 1986, 14, 75. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Chiew, F.H.S.; Kamaladasa, N.N.; Malano, H.M.; McMahon, T.A. Penman-Monteith, FAO-24 reference crop evapotranspiration and class—A pan data in Australia. Agric. Water Manag. 1995, 28, 9–21. [Google Scholar] [CrossRef]
- Chow, V.T.; Maldment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: Singapore, 1988. [Google Scholar]
- Shuttleworth, W.J.; Gurney, R.J. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Q. J. R. Meteorol. Soc. 1990, 116, 497–519. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; Li, F.; Jiang, X.; Tong, L.; Ding, R.; Li, S.; Du, T. Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maise for seed production with film-mulching in arid area. Agric. Water Manag. 2016, 178, 314–324. [Google Scholar] [CrossRef]
- Noilhan, J.; Planton, S. A Simple Parameterisation of Land Surface Process for Meteorological Models. Mon. Weather Rev. 1989, 117, 536–546. [Google Scholar] [CrossRef]
Type | Data | Source | Resolution | Period | |
---|---|---|---|---|---|
Raw Data | Processed Data | ||||
Meteorologic Data | Maximum Temperature | Department of Meteorology Sri Lanka | Daily | Monthly | 2009–2019 |
Minimum Temperature | Daily | Monthly | |||
Relative humidity (day) | Daily | Monthly | |||
Relative humidity (night) | Daily | Monthly | |||
Net Solar Radiation | Monthly | Monthly | |||
Wind Speed | Daily | Monthly | |||
Pan evaporation (Class A) | Daily | Monthly | |||
Rainfall | Monthly | Monthly | |||
Spatial Data | Elevation (DEM) | Department of Survey, Sri Lanka | 30 × 30 m | 6 × 6 km | |
Land Use Map | N/A (Vector) | 6 × 6 km | |||
Soil type map | N/A (Vector) | 6 × 6 km | |||
NDVI | US Geological Survey Earth Explorer | 30 × 30 m (Monthly) | 6 × 6 km (Monthly) | 2009–2019 | |
Soil Moisture | NASA Earth Data | 30 × 30 m (Monthly) | 6 × 6 km (Monthly) | 2009–2019 | |
Land cover threshold parameters (Table A1) | Zhou et al. [26] |
FAO P–M Estimates | S–W Estimates | |||
---|---|---|---|---|
R | p Value | R | p Value | |
Net Radiation | 0.88 | 0.6791 | 0.09 | 0.7498 |
Wind Speed | 0.16 | 0.5892 | 0.16 | 0.5963 |
Temperature | −0.44 | 0.1188 | 0.30 | 0.2898 |
Relative Humidity | −0.23 | 0.4359 | −0.23 | 0.4232 |
Station | Climate Zone | FAO P–M | S–W | ||||
---|---|---|---|---|---|---|---|
SWM | NEM | Annual | SWM | NEM | Annual | ||
Jaffna | Dry Zone | 827.4 | 305.2 | 1579.7 | 740.9 | 270.5 | 1408.7 |
Vavuniya | 914.7 | 345.6 | 1829.4 | 598.0 | 262.0 | 1302.6 | |
Anuradhapura | 1011.8 | 412.9 | 2084.3 | 679.9 | 318.4 | 1486.4 | |
Puttalam | 815.9 | 373.7 | 1783.4 | 774.4 | 368.7 | 1734.8 | |
Polonnaruwa | 1059.5 | 312.3 | 2027.4 | 823.7 | 295.1 | 1648.1 | |
Hamabantota | 852.4 | 453.1 | 2003.0 | 751.0 | 419.5 | 1827.8 | |
Kurunegala | Intermediate Zone | 718.5 | 399.4 | 1713.3 | 641.2 | 356.9 | 1530.9 |
Badulla | 848.9 | 401.9 | 1885.3 | 561.7 | 302.8 | 1291.9 | |
Bandarawela | 816.4 | 344.1 | 1714.3 | 467.2 | 240.4 | 1080.8 | |
Katugastota | Wet Zone | 649.2 | 368.3 | 1575.5 | 461.4 | 286.9 | 1216.2 |
Nuwara Eliya | 923.3 | 591.6 | 2349.1 | 444.8 | 364.8 | 1338.3 | |
Colombo | 773.9 | 442.9 | 1858.5 | 350.7 | 313.6 | 1028.2 | |
Rathnapura | 655.3 | 420.9 | 1642.7 | 538.1 | 368.1 | 1375.0 | |
Galle | 672.5 | 312.4 | 1520.1 | 414.6 | 245.2 | 1044.8 | |
Station | Climate Zone | TW | Pan | ||||
SWM | NEM | Annual | SWM | NEM | Annual | ||
Jaffna | Dry Zone | 1092.7 | 339.2 | 2133.4 | 713.8 | 259.3 | 1394.3 |
Vavuniya | 1060.8 | 343.4 | 2085.1 | 653.1 | 214.0 | 1234.9 | |
Anuradhapura | 1020.6 | 374.7 | 2113.0 | 633.1 | 219.9 | 1232.3 | |
Puttalam | 957.7 | 368.9 | 1978.3 | 742.5 | 271.6 | 1482.3 | |
Polonnaruwa | 894.2 | 329.1 | 1827.2 | 804.8 | 233.1 | 1466.0 | |
Hamabantota | 862.2 | 455.7 | 1989.3 | 663.6 | 348.2 | 1503.8 | |
Kurunegala | Intermediate Zone | 831.1 | 395.9 | 1879.7 | 469.9 | 287.1 | 1132.5 |
Badulla | 545.3 | 219.6 | 1148.7 | 387.2 | 197.3 | 855.6 | |
Bandarawela | 448.2 | 192.9 | 949.8 | 455.7 | 209.6 | 969.3 | |
Katugastota | Wet Zone | 588.8 | 291.2 | 1361.9 | 440.5 | 309.8 | 1130.2 |
Nuwara Eliya | 314.5 | 167.5 | 731.4 | 338.2 | 242.2 | 880.5 | |
Colombo | 868.9 | 443.6 | 1976.3 | 537.1 | 332.1 | 1302.9 | |
Rathnapura | 762.3 | 441.5 | 1851.1 | 363.3 | 234.3 | 910.0 | |
Galle | 761.5 | 416.0 | 1808.3 | 385.3 | 236.3 | 951.2 |
RMSE | Bias | R | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SW | TW | Pan | SW | TW | Pan | SW | TW | Pan | ||
Jaffna | SWM | 0.10 | 0.32 | 0.14 | 10.45 | −32.07 | 13.73 | 0.99 | −0.22 | 0.72 |
NEM | 0.11 | 0.11 | 0.15 | 11.38 | −11.14 | 15.06 | 0.13 | 0.61 | 0.87 | |
Annual | 0.11 | 0.35 | 0.12 | 10.82 | −35.05 | 11.74 | 0.98 | 0.71 | 0.81 | |
Vavuniya | SWM | 0.35 | 0.16 | 0.29 | 34.62 | −15.97 | 28.60 | 0.89 | 0.76 | 0.76 |
NEM | 0.24 | 0.01 | 0.38 | 24.17 | 0.62 | 38.08 | 0.92 | 0.21 | 0.93 | |
Annual | 0.29 | 0.14 | 0.32 | 28.80 | −13.98 | 32.50 | 0.89 | 0.91 | 0.98 | |
Anuradhapura | SWM | 0.33 | 0.01 | 0.37 | 32.81 | −0.86 | 37.43 | 0.81 | 0.14 | 0.94 |
NEM | 0.23 | 0.09 | 0.47 | 22.88 | 9.25 | 46.74 | 0.81 | 0.51 | 0.96 | |
Annual | 0.29 | 0.01 | 0.41 | 28.68 | −1.38 | 40.88 | 0.85 | 0.90 | 0.98 | |
Puttalam | SWM | 0.05 | 0.17 | 0.09 | 5.08 | −17.37 | 9.00 | 0.95 | 0.13 | 0.37 |
NEM | 0.01 | 0.01 | 0.27 | 1.34 | 1.29 | 27.31 | 1.00 | −0.17 | 0.91 | |
Annual | 0.03 | 0.11 | 0.17 | 2.73 | −10.93 | 16.88 | 0.99 | 0.81 | 0.94 | |
Polonnaruwa | SWM | 0.22 | 0.16 | 0.24 | 22.26 | 15.60 | 24.04 | −0.05 | −0.61 | 0.66 |
NEM | 0.05 | 0.05 | 0.25 | 5.49 | −5.39 | 25.34 | 1.00 | 0.19 | 1.00 | |
Annual | 0.19 | 0.10 | 0.28 | 18.71 | 9.88 | 27.69 | 0.97 | 0.90 | 0.94 | |
Kurunegala | SWM | 0.11 | 0.16 | 0.35 | 10.75 | −15.68 | 34.59 | 0.89 | 0.12 | 0.86 |
NEM | 0.11 | 0.01 | 0.28 | 10.64 | 0.86 | 28.11 | 0.96 | 0.64 | 0.98 | |
Annual | 0.11 | 0.10 | 0.34 | 10.65 | −9.71 | 33.90 | 0.90 | 0.76 | 0.88 | |
Katugastota | SWM | 0.29 | 0.09 | 0.32 | 28.93 | 9.30 | 32.14 | 0.91 | 0.62 | 0.59 |
NEM | 0.22 | 0.21 | 0.16 | 22.10 | 20.94 | 15.89 | 0.99 | −0.11 | 0.96 | |
Annual | 0.23 | 0.14 | 0.28 | 22.81 | 13.56 | 28.27 | 0.84 | 0.64 | 0.71 | |
Nuwara Eliya | SWM | 0.52 | 0.66 | 0.63 | 51.83 | 65.93 | 63.37 | 0.93 | 0.89 | 0.96 |
NEM | 0.38 | 0.72 | 0.59 | 38.33 | 71.69 | 59.05 | 1.00 | −0.50 | 0.77 | |
Annual | 0.43 | 0.69 | 0.63 | 43.03 | 68.86 | 62.52 | 0.81 | 0.22 | 0.82 | |
Badulla | SWM | 0.34 | 0.36 | 0.54 | 33.84 | 35.77 | 54.39 | 0.48 | 0.95 | −0.04 |
NEM | 0.25 | 0.45 | 0.51 | 24.66 | 45.36 | 50.91 | 1.00 | 0.55 | 0.98 | |
Annual | 0.31 | 0.39 | 0.55 | 31.48 | 39.07 | 54.62 | 0.89 | 0.77 | 0.81 | |
Colombo | SWM | 0.55 | 0.12 | 0.31 | 54.68 | −12.28 | 30.60 | 0.20 | −0.38 | 0.80 |
NEM | 0.29 | 0.00 | 0.25 | 29.19 | −0.15 | 25.00 | −0.80 | 0.40 | 0.96 | |
Annual | 0.45 | 0.06 | 0.30 | 44.68 | −6.34 | 29.89 | −0.07 | 0.55 | 0.83 | |
Bandarawela | SWM | 0.43 | 0.45 | 0.44 | 42.78 | 45.10 | 44.18 | 0.45 | 0.21 | 0.35 |
NEM | 0.30 | 0.44 | 0.39 | 30.13 | 43.95 | 39.09 | 0.96 | 0.18 | 0.99 | |
Annual | 0.37 | 0.45 | 0.43 | 36.95 | 44.60 | 43.46 | 0.83 | 0.83 | 0.92 | |
Rathnapura | SWM | 0.18 | 0.16 | 0.45 | 17.89 | −16.33 | 44.56 | 0.81 | −0.95 | 0.02 |
NEM | 0.13 | 0.05 | 0.44 | 12.54 | −4.91 | 44.32 | 0.98 | 0.65 | 0.93 | |
Annual | 0.16 | 0.13 | 0.45 | 16.29 | −12.69 | 44.60 | 0.89 | 0.59 | 0.92 | |
Hamabantota | SWM | 0.12 | 0.01 | 0.22 | 11.89 | −1.15 | 22.14 | −0.69 | 0.96 | −0.05 |
NEM | 0.07 | 0.01 | 0.23 | 7.43 | −0.57 | 23.15 | −0.14 | 0.48 | 0.76 | |
Annual | 0.09 | 0.01 | 0.25 | 8.75 | 0.69 | 24.92 | 0.47 | 0.79 | 0.78 | |
Galle | SWM | 0.38 | 0.13 | 0.43 | 38.34 | −13.24 | 42.71 | 0.86 | −0.33 | −0.72 |
NEM | 0.22 | 0.33 | 0.24 | 21.51 | −33.13 | 24.37 | 0.22 | 0.66 | 0.92 | |
Annual | 0.31 | 0.19 | 0.37 | 31.26 | −18.97 | 37.42 | 0.72 | 0.53 | 0.05 |
Entire Country | Dry Zone | ||||||||
---|---|---|---|---|---|---|---|---|---|
PM | SW | TW | Pan | PM | SW | TW | Pan | ||
PM | PM | ||||||||
SW | 0.61 | SW | 0.76 | ||||||
TW | 0.20 | 0.44 | TW | 0.67 | 0.47 | ||||
Pan | 0.55 | 0.67 | 0.69 | Pan | 0.78 | 0.76 | 0.73 | ||
Wet Zone | Intermediate Zone | ||||||||
PM | SW | TW | Pan | PM | SW | TW | Pan | ||
PM | PM | ||||||||
SW | 0.49 | SM | 0.48 | ||||||
TW | −0.48 | −0.30 | TW | 0.21 | 0.84 | ||||
Pan | 0.16 | 0.00 | 0.37 | Pan | 0.54 | 0.67 | 0.59 |
Classification of Regions | Classification of Performances | ||||
---|---|---|---|---|---|
Very Good | Good | Moderate | Low | Poor | |
For entire country | - | - | SW, Pan | - | TW |
For the dry zone | - | Pan, SW | TW | - | |
For the wet zone | - | - | SW, TW | Pan | |
For the intermediate zone | - | - | Pan | SW | TW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeysiriwardana, H.D.; Muttil, N.; Rathnayake, U. A Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka. Hydrology 2022, 9, 206. https://doi.org/10.3390/hydrology9110206
Abeysiriwardana HD, Muttil N, Rathnayake U. A Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka. Hydrology. 2022; 9(11):206. https://doi.org/10.3390/hydrology9110206
Chicago/Turabian StyleAbeysiriwardana, Himasha Dilshani, Nitin Muttil, and Upaka Rathnayake. 2022. "A Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka" Hydrology 9, no. 11: 206. https://doi.org/10.3390/hydrology9110206
APA StyleAbeysiriwardana, H. D., Muttil, N., & Rathnayake, U. (2022). A Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka. Hydrology, 9(11), 206. https://doi.org/10.3390/hydrology9110206