Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Hydrological and Meteorological Data
3. Methods
3.1. Hydro-Genetic Method
- (1)
- screening of the homogeneity of winter flood records by using the mass curve approach;
- (2)
- estimation of the residual mass curve of winter floods and assessment of stationarity of flood time series;
- (3)
- plotting of fluctuations of winter floods and evaluating synchronicity between different gauges in the homogenous region and between winter floods and selected climate characteristics, i.e., air temperature, precipitation and snow depth.
3.2. Seasonality Assessment
4. Results
4.1. Fluctuation and Seasonality of Winter Floods
4.2. Factors Controlling Winter Flood Fluctuations
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kireeva, M.B.; Rets, E.P.; Frolova, N.L.; Samsonov, T.E.; Povalishnikova, E.S.; Entin, A.L.; Durmanov, I.N.; Ivanov, A.M. Occasional Floods On The Rivers Of Russian Plain In the 20th–21st Centuries. Geography, Environment. Sustainability 2020, 13, 84–95. [Google Scholar] [CrossRef]
- Volchek, A.A.; Shelest, T.A. Formation of winter floods on the rivers of Belarus, Scientific notes of the Russian State Hydrometeorological University, Rubric. Hydrology 2012, 25, 5–19. (In Russian) [Google Scholar]
- Pekarova, P.; Miklanek, P.; Melo, M.; Halmova, D.; Pekar, J.; Bacova Mitkova, V. Flood Marks along the Danube River between Passau and Bratislava; Veda and the Slovak Committee for Hydrology: Bratislava, Slovakia, 2014; 104p. [Google Scholar]
- Blöschl, G.; Nester, T.; Komma, J.; Parajka, J.; Perdigao, R.A.P. The June 2013 flood in the Upper Danube basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci. 2013, 10, 9533–9573. [Google Scholar] [CrossRef] [Green Version]
- Böhm, O.; Wetzel, F. Flood history of the Danube tributaries Lech and Isar in the Alpine foreland of Germany. Hydrol. Sci. J. 2006, 51, 784–798. [Google Scholar] [CrossRef]
- Prykhodko, M.M. Floods and their management in the Carpathian region of Ukraine. Sci. Bull. Natl. Min. Univ. 2017, 2, 112–117. [Google Scholar]
- Susidko, M.; Luk’yanets, O. The Carpathians—Flood Danger Region of Ukraine. Comprehensive Basin Flood Forecasting System in Zakarpattya: Methodical and Technological Basis of Its Components; Nika-Centre: Kyiv, Ukraine, 2009; 88p, (in Ukrainian, English, German). [Google Scholar]
- Bauzha, T.O. Flood flow the cold period in the Rika River basin and its calculated characteristics. Hydrol. Hydrochem. Hydroecol. 2012, 2, 73–80. (in Ukrainian). [Google Scholar]
- Susidko, M.; Luk’yanets, O. Zoning of the territory of Ukraine according to the degree of hydrological danger. Proc. Ukr. Hydrometeorol. Inst. 2004, 253, 196–204. (In Ukrainian) [Google Scholar]
- Korchynska, Z. Analysis of natural and anthropogenic factors of catastrophic flooding’s growth in Transcarpathia. Sci. Bull. Uzhhorod Univ. 2013, 2, 51–57. [Google Scholar]
- Ya, K. Catastrophic floods in Carpathians and directions of their prevention. Lviv Proc. For. Acad. Sci. Ukr. 2008, 6, 1–11. (in Ukrainian). [Google Scholar]
- Pylkevuch, I.; Kotkov, V.; Maievskyi, O. Emergency monitoring dealed with catastrophic floods in Carpathians. East. European J. Enterp. Technol. 2012, 1, 25–31. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar] [CrossRef]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Parajka, J.; Merz, R.; Viglione, A.; Blöschl, G. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour. Res. 2012, 48, W04511. [Google Scholar] [CrossRef]
- Gorbachova, L. Methodical approaches the assessment of the homogeneity and stationarity of hydrological observation series. Hydrol. Hydrochem. Hydroecol. 2014, 1, 22–31. (In Ukrainian) [Google Scholar]
- Gaudry, C.M.M.; Gutknecht, D.; Parajka, J.; Perdigão, R.A.P.; Blöschl, G. Seasonality of runoff and precipitation regimes along transects in Peru and Austria. J. Hydrol. Hydromech. 2017, 65, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Bauzha, T.O.; Gorbachova, L.O. Estimation of the homogeneity of the average annual runoff of the rivers and streams of the Zacarpatska station. In Proceedings of the International Conference on Water, Climate and Environment, BALWOIS 2012, Ohrid, Republic of Macedonia, 28 May–2 June 2012; Available online: https://balwois.com/wp-content/uploads/old_proc/815.pdf (accessed on 24 January 2022).
- Gorbachova, L.; Bauzha, T. Complex analysis of stationarity and homogeneity of flash flood maximum discharges in the Rika River basin. Energetika 2013, 59, 167–174. [Google Scholar] [CrossRef]
- Bauzha, T.O.; Gorbachova, L.O. Cyclical fluctuations of the hydrometeorological characteristics in the Rika River Basin. Proc. UHMI 2013, 264, 34–43. Available online: https://uhmi.org.ua/pub/np/264/Bauzha_Gorbachova_264.pdf (accessed on 24 January 2022). (in Ukrainian with English summary).
- Bauzha, T.O. The spatial and temporal regularities of the water courses in the Rika River Basin: The thesis abstract for the degree of candidate of geographical sciences, speciality 11.00.07—Land hydrology, water resources, hydrochemistry. Kyiv, 2014; 20p, (in Ukrainian with English summary). [Google Scholar]
- Gorbachova, L.; Khrystyuk, B. Hydro-genetic methods of the analysis of the average annual runoff in the Danube basin. The hydrological forecasting and hydrological bases of water management. Bridging the sciences—crossing borders. In Proceedings of the XXVI Conference of the Danubian Countries, Deggendorf, Germany, 22–24 September 2014; Dorner, W., Marquardt, A., Schroder, U., Eds.; Deggendorf Institute of Technology: Deggendorf, Germany, 2014; pp. 71–74. [Google Scholar]
- Gorbachova, L.O. Hydro-Genetic Analysis of the Spatio-Temporal Regularities of Streamflow Rivers of Ukraine: Methodology, Trends, Forecast: The Thesis Abstract for the Degree of Doctor of Geographical Sciences Speciality 11.00.07—Land Hydrology, Water Resources, Hydrochemistry, Kviv. 2017. Available online: http://scc.univ.kiev.ua/upload/iblock/0e7/aref_Gorbachova%20L.O..pdf (accessed on 24 January 2022). (in Ukrainian with English Summary).
- Bauzha, T. Hydro-genetic analysis of the long-term fluctuations of the average annual water temperature in the Siverskyi Donets River basin (within Ukraine). In Proceedings of the XXVII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Golden Sands, Bulgaria, 26–28 September 2017; pp. 105–111. Available online: https://www.danubeconference2017.org/images/e-book_full_texts_dc_2017.pdf (accessed on 24 January 2022).
- Zabolotnia, T. Estimation of the long-term tendencies and homogeneity of the average annual water temperature and air temperature in the Siverskyi Donets River Basin (within Ukraine). J. Fundam. Appl. Sci. 2018, 10, 1–22. [Google Scholar]
- Zabolotnia, T.; Gorbachova, L.; Khrystiuk, B. Estimation of the long-term cyclical fluctuations of snow-rain floods in the Danube basin within Ukraine. Meteorol. Hydrol. Water Manag. 2019, 7, 3–11. [Google Scholar] [CrossRef]
- Parajka, J.; Merz, R.; Szolgay, J.; Blöschl, G.; Kohnová, S.; Hlavcová, K. A comparison of precipitation and runoff seasonality in Slovakia and Austria. Meteorol. J. 2008, 11, 9–14. [Google Scholar]
- Parajka, J.; Kohnová, S.; Merz, R.; Szolgay, J.; Hlavčová, K.; Blöschl, G. Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria. Hydrol. Sci. J. 2009, 54, 456–473. [Google Scholar] [CrossRef]
- Falkenmark, M.; Chapman, T. (Eds.) Comparative Hydrology: An Ecological Approach to Land and Water Resources; UNESCO: Paris, France, 1989. [Google Scholar]
- Materials of observations of the Zakarpatska water-balance station. Kyiv 2016, 57, 5. (in Ukrainian).
- Zabolotnia, T.; Szeles, B.; Gorbachova, L.; Parajka, J.; Tong, R. Comparison of winter design floods between Austrian and Ukrainian Danube River tributaries. Acta Hydrol. Slovaca 2021, 22, 256–263. [Google Scholar] [CrossRef]
- Girkinger, W.; Heitzmann, W. Die Steyr: Landschaft und Menschen am Fluß; Oberösterreichischer Landesverlag: Linz, Austria, 1990; ISBN 3-85214-527-9. [Google Scholar]
- Hiebl, J.; Frei, C. Daily temperature grids for Austria since 1961—concept, creation and applicability. Theor. Appl. Climatol. 2016, 124, 161–178. [Google Scholar] [CrossRef]
- Hiebl, J.; Frei, C. Daily precipitation grids for Austria since 1961-development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling. Theor. Appl. Climatol. 2018, 132, 327–345. [Google Scholar] [CrossRef]
- Grishchenko, V.F.; Aksiuk, O.M.; Honcharenko, H.A. The Guide of Snow Cover in the Mountains of Ukraine (Carpathians, Crimea); Ukrainian Hydromet Institute: Kiev, Ukraine, 2013; 218p, Available online: https://uhmi.org.ua/pub/books/snow_2013.pdf (accessed on 24 January 2022). (In Ukrainian)
- Andreyanov, V.G. Cyclical fluctuations of annual runoff and their account at hydrological calculations. Proceed. Stat. Hydr. Inst. 1959, 68, 3–49. (In Russian) [Google Scholar]
- Gorbachova, L.O. Place and role of hydro-genetic analysis among modern research methods runoff. Proceed. Ukrain. Hydrometeorol. Instit. 2016, 268, 73–81. (In Ukrainian) [Google Scholar]
- Hundecha, Y.; Parajka, J.; Viglione, A. Assessment of past flood changes across Europe based on flood-generating processes. Hydrol. Sci. J. 2020, 65, 1830–1847. [Google Scholar] [CrossRef]
ID | Catchment | Area (km2) | Latitude | Longitude | Mean Elevation (m a.s.l.) |
---|---|---|---|---|---|
UA1 | Rika River—Mizhhiria village | 550 | 48°32′20″ | 23°29′47″ | 800 |
UA 2 | Rika River—Verkhnii Bystryi village | 165 | 48°37′36″ | 23°30′50″ | 920 |
UA 3 | Holiatynka River—Maidan village | 86 | 48°36′54″ | 23°27′17″ | 790 |
UA 4 | Pylypets River—Pylypets village | 44 | 48°40′15″ | 23°20′29″ | 854 |
UA 5 | Lopushna River—Lopushne village (nyzhn.) | 37 | 48°39′13″ | 23°34′46″ | 897 |
UA 6 | Studenyi River—Nyzhnii Studenyi village | 25 | 48°42′38″ | 23°22′06″ | 800 |
UA 7 | Ploshanka Stream—Pylypets village (nyzhn.) | 20 | 48°40′14″ | 23°20′27″ | 983 |
UA 8 | Lopushna River—Lopushne village (verkhn.) | 13 | 48°38′41″ | 23°37′39″ | 925 |
UA 9 | Branyshche Stream—Lopushne village | 10 | 48°38′56″ | 23°37′22″ | 916 |
UA 10 | Studenyi River—Verkhnii Studenyi village | 8.0 | 48°45′03″ | 23°21′22″ | 809 |
UA 11 | Pylypets River—Podobovets village | 7.4 | 48°40′32″ | 23°18′36″ | 747 |
UA 12 | Pylypetskyi Stream—Pylypets village | 5.7 | 48°39′43″ | 23°19′00″ | 1000 |
UA 13 | Ziubrovets Stream—Lopushne village | 3.2 | 48°38′44″ | 23°36′49″ | 871 |
UA 14 | Serednii Zvir Stream—Lopushne village | 2.2 | 48°38′48″ | 23°36′28″ | 984 |
ID | Catchment | Area (km2) | Latitude | Longitude | Mean Elevation (m a.s.l.) |
---|---|---|---|---|---|
AT 1 | Steyr River—Klaus an der Pyhrnbahn | 545 | 47°49′51″ | 14°09′37″ | 1059 |
AT 2 | Teichl River—St. Pankraz | 231 | 47°45′59″ | 14°12′35″ | 1009 |
AT 3 | Steyr River—Kniewas | 190 | 47°46′04″ | 14°10′12″ | 1213 |
AT 4 | Teichl River—Teichlbrücke | 147 | 47°43′37″ | 14°17′44″ | 1015 |
AT 5 | Steyr River—Hinterstoder | 86 | 47°41′38″ | 14°08′27″ | 1358 |
AT 6 | Steyrling River—Steyrling | 72 | 47°48′20″ | 14°08′17″ | 951 |
AT 7 | Dambach River—Windischgarsten | 66 | 47°43′20″ | 14°19′57″ | 1016 |
AT 8 | Teichl River—Spital am Pyhrn | 39 | 47°40′09″ | 14°20′05″ | 1205 |
AT 9 | Steyr River—Dietlgut | 26 | 47°40′08″ | 14°06′33″ | 1375 |
AT 10 | Krumme Steyr River—Polsterlucke | 18 | 47°41′34″ | 14°06′51″ | 1506 |
ID | The Name of Gauge | Qmax. cold period, m3/s | Qmax. annual, m3/s | Cv | Period | ||
---|---|---|---|---|---|---|---|
Max | Min | max | min | ||||
UA 1 | Rika R.—Mizhhiria v. | 471 (12/1957) | 55.1 (03/2015) | 471 (12/1957) | 55.1 (03/2015) | 0.46 | 1957–2015 |
UA 2 | Rika R.—Verkhnii Bystryi v. | 93.8 (11/1998) | 9.53 (03/2015) | 93.8 (11/1998) | 13.0 (05/2015) | 0.42 | 1957–2015 |
UA 3 | Holiatynka R.—Maidan v. | 74.1 (12/1957) | 7.58 (03/2015) | 74.1 (12/1957) | 7.58 (03/2015) | 0.51 | 1957–2015 |
UA 4 | Pylypets R.—Pylypets v. | 27.3 (11/1972) | 3.86 (04/2003) | 32.8 (09/1968) | 4.73 (01/2015) | 0.44 | 1957–2015 |
UA 5 | Studenyi R.—Nyzhnii Studenyi v. | 26.0 (11/1998) | 2.39 (03/2015) | 26.0 (11/1998) | 3.48 (07/1961) | 0.55 | 1957–2015 |
UA 6 | Lopushna R.—Lopushne (nyzhn.) v. | 25.6 (12/1957) | 2.89 (03/2003) | 25.6 (12/1957) | 3.44 (05/2015) | 0.47 | 1957–2015 |
UA 7 | Ploshanka S.—Pylypets (nyzhn.) v. | 14.4 (01/1985) | 1.00 (03/2015) | 14.4 (01/1985) | 1.22 (05/2015) | 0.44 | 1957–2015 |
UA 8 | Pylypets R.—Podobovets v. | 7.60 (12/1985) | 0.76 (03/2015) | 8.72 (10/1992) | 0.76 (03/2015) | 0.49 | 1957–2015 |
UA 9 | Branyshche S.—Lopushne v. | 11.2 (12/1957) | 0.57 (01/2015) | 11.2 (12/1957) | 0.91 (05/2015) | 0.67 | 1957–2015 |
UA 10 | Pylypetskyi S.—Pylypets v. | 5.14 (01/1985) | 0.42 (03/2015) | 5.14 (01/1985) | 0.78 (10/2015) | 0.46 | 1957–2015 |
UA 11 | Ziubrovets S.—Lopushne v. | 2.89 (12/1957) | 0.22 (04/2003) | 2.89 (12/1957) | 0.25 (10/2003) | 0.53 | 1957–2015 |
UA 12 | Serednii Zvir S.—Lopushne v. | 2.40 (11/1998) | 0.14 (04/2003) | 2.40 (11/1998) | 0.23 (06/2015) | 0.68 | 1957–2015 |
UA 13 | Studenyi R.—Verkhnii Studenyi v. | 7.99 (11/1998) | 0.97 (11/1972) | 7.99 (11/1998) | 0.99 (07/1961) | 0.60 | 1958–2015 |
UA 14 | Lopushna R.—Lopushne (verkhn.) v. | 11.0 (11/1998) | 1.16 (03/1960) | 11.0 (11/1998) | 1.16 (03/1960) | 0.57 | 1959–2015 |
AT 1 | Steyr River—Klaus an der Pyhrnbahn | 246 (12/1961) | 42.7 (11/1952) | 393 (08/1959) | 74.5 (01/1986) | 0.44 | 1951–2015 |
AT 2 | Teichl River—Teichlbrücke | 74.0 (11/1964) | 10.8 (04/1969) | 110 (06/2013) | 15.5 (04/1986) | 0.52 | 1951–2015 |
AT 3 | Steyr River—Kniewas | 80.0 (11/1964) | 10.1 (02/1960) | 109 (08/2006) | 28.1 (05/1986) | 0.49 | 1951–2015 |
AT 4 | Steyr River—Dietlgut | 10.7 (12/1974) | 1.56 (04/1984) | 24.2 (07/1977) | 3.72 (06/2003) | 0.44 | 1951–2015 |
AT 5 | Steyrling River—Steyrling | 45.4 (11/1964) | 5.65 (03/1963) | 87.0 (08/1959) | 10.3 (07/1990) | 0.46 | 1956–2015 |
AT 6 | Teichl River—Spital am Pyhrn | 18.2 (11/1992) | 4.20 (03/1991) | 26.3 (08/1991) | 6.39 (10/2003) | 0.33 | 1966–2015 |
AT 7 | Dambach River—Windischgarsten | 27.0 (11/1993) | 3.80 (03/1991) | 42.7 (08/2002) | 5.96 (12/2002) | 0.52 | 1971–2015 |
AT 8 | Teichl River—St. Pankraz | 109 (11/1992) | 19.6 (03/1991) | 197 (06/2013) | 33.7 (05/1986) | 0.42 | 1976–2015 |
AT 9 | Steyr River—Hinterstoder | 41.9 (11/1992) | 6.07 (04/1984) | 65.6 (08/2002) | 19.0 (09/2003) | 0.45 | 1976–2015 |
AT 10 | Krumme Steyr River—Polsterlucke | 15.7 (11/1992) | 2.15 (11/1983) | 27.0 (07/1997) | 10.5 (05/1994) | 0.48 | 1976–2015 |
Climate Station | Elevation, m a.s.l. | Dmax, cm | Daverage, cm | Period |
---|---|---|---|---|
UA:Nyzhnii Studenyi | 615 | 144 | 38 | 1946–2016 |
UA:Verkhnii Studenyi * | 600–700 | 143 | 49 | 1956–2016 |
UA:Verkhnii Bystryi | 545 | 123 | 38 | 1949–2016 |
UA:Mizhhiria | 456 | 119 | 32 | 1949–2016 |
UA:Maidan | 499 | 73 | 28 | 1983–2016 |
AT:Windischgarsten (Schule) | 604 | 173 | 71 | 1970–2016 |
AT:Hinterstoder | 590 | 170 | 66 | 1970–2016 |
AT:Spital am Pyhrn | 630 | 169 | 68 | 1970–2016 |
AT:St. Pankraz | 598 | 170 | 61 | 1970–2016 |
AT: Klaus an der Pyhrnbahn | 461 | 110 | 42 | 1970–2016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabolotnia, T.; Parajka, J.; Gorbachova, L.; Széles, B.; Blöschl, G.; Aksiuk, O.; Tong, R.; Komma, J. Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments. Hydrology 2022, 9, 38. https://doi.org/10.3390/hydrology9020038
Zabolotnia T, Parajka J, Gorbachova L, Széles B, Blöschl G, Aksiuk O, Tong R, Komma J. Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments. Hydrology. 2022; 9(2):38. https://doi.org/10.3390/hydrology9020038
Chicago/Turabian StyleZabolotnia, Tetiana, Juraj Parajka, Liudmyla Gorbachova, Borbála Széles, Günter Blöschl, Oleksandr Aksiuk, Rui Tong, and Jürgen Komma. 2022. "Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments" Hydrology 9, no. 2: 38. https://doi.org/10.3390/hydrology9020038
APA StyleZabolotnia, T., Parajka, J., Gorbachova, L., Széles, B., Blöschl, G., Aksiuk, O., Tong, R., & Komma, J. (2022). Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments. Hydrology, 9(2), 38. https://doi.org/10.3390/hydrology9020038