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Abstract: Ombrian curves, i.e., curves linking rainfall intensity to return period and time scale, are
well-established engineering tools crucial to the design against stormwaters and floods. Though the
at-site construction of such curves is considered a standard hydrological task, it is a rather challenging
one when large regions are of interest. Regional modeling of ombrian curves is particularly complex
due to the need to account for spatial dependence together with the increased variability of rainfall
extremes in space. We develop a framework for the parsimonious modeling of the extreme rainfall
properties at any point in a given area. This is achieved by assuming a common ombrian model
structure, except for a spatially varying scale parameter which is itself modeled by a spatial smoothing
model for the 24 h average annual rainfall maxima that employs elevation as an additional explanatory
variable. The fitting is performed on the pooled all-stations data using an advanced estimation
procedure (K-moments) that allows both for reliable high-order moment estimation and simultaneous
handling of space-dependence bias. The methodology is applied in the Thessaly region, a 13,700 km2

water district of Greece characterized by varying topography and hydrometeorological properties.

Keywords: ombrian curves; intensity–duration–frequency curves; rainfall extremes; regionalization;
regional frequency analysis; spatial rainfall; design rainfall

1. Introduction

Ombrian (from the Greek word ‘óµβρoς’ meaning rainfall) curves are a standard
engineering tool in the form of a mathematical relationship linking rainfall intensity to
timescale and return period, usually known as ‘intensity-duration-frequency’ curves. This
term, albeit widely used, appears to be a misnomer, considering that ‘duration’ does not
refer to the actual duration of a rainfall event but rather to the (arbitrary) time scale of
averaging the rainfall intensity, while ‘frequency’ is not meant to be frequency but its
reciprocal, i.e., return period. To oppose this common confusion (and having in mind the
Aristotelian principle that science presupposes clarity—or saphenia [1]), the term ‘ombrian
curves’ has been used as an alternative name in the past [2–5] and has been adopted here
as well.

Ombrian curves have been used in hydrology since the works of Sherman [6] and
Bernard [7] and own their popularity to their practical benefits when design problems
affected by rainfall extremes are of interest. Although the typical curves have been con-
structed mostly following an empirical fashion, over the past decades, there have been
several attempts to provide a theoretical basis for their modeling, e.g., [8–10], with the
most recent advance being their full upgrade to multi-scale models of rainfall intensity [2].
At this point, it could be argued that the issue of deriving the curves for single sites has
been efficiently tackled both at the practical level, with diverse methodologies providing
satisfactory results for small scales, of the order of minutes to a few days (see the review by
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Svensson and Jones [11]), and at the theoretical level as well, achieving their full modeling
validity over any scale of interest [2,3].

At the same time, there have been various efforts to produce regional ombrian curves,
a considerably more demanding task that is essential when hydrological analyses for large
areas are to be performed, and design rainfall estimates are required for multiple sites.
This is the case when regional flooding is studied, e.g., when large-scale flood protection
works and urban stormwater networks are to be constructed. Even more, the construction
of regional curves is critical when rainfall data for at-site analysis are missing, as is often
the case. As such, the construction of ombrian curves at regional scales and even at the
national level has been a priority for various countries, with a notable early example being
the construction of regional curves in the US [12].

Broadly, the construction of regional ombrian curves can follow two different approaches:

(a) the at-site, independent fitting approach, which consists of separately fitting the
curves to multiple gauged sites and using spatial interpolation methods to map the
parameters over the whole region.

(b) the regional, simultaneous fitting approach, which consists of appropriately pooling
the data together and obtaining a single model valid over the entire area, which is, in
essence, the inverse approach to (a).

Frameworks based on the first approach are older yet still in use, e.g., [12–14], as this
approach is easier to apply. Indeed, the task of constructing the curves for a single site is
more straightforward, and the same is true for the mapping of the parameters in space,
given the ample availability of geostatistical software. However, an important limitation
of this approach is that results are very sensitive to data from single stations, which are
often short and fragmented and can be impacted by large sampling uncertainty. A further
issue with automated spatial interpolation methods is that their structure is obscure and
cannot be easily modified, making their results not always interpretable. For instance, it
is known that both the number and spatial distribution of available stations impact the
reliability of the geostatistical method, but the former is not easy to assess. In this respect,
Malamos and Koutsoyiannis [15] note that kriging requires a large number of available
data points (at least 100, according to Oliver and Webster, [16], or 50–100 according to other
studies [17]), in order to produce a reliable estimation of the variogram. The same authors
propose a bilinear surface smoothing (BSS) model [18,19] that is shown to have superior
performance to Universal kriging in terms of bias and heteroscedastic behaviors of the data,
as well as a more interpretable theoretical structure.

On the other hand, having a single spatial model is a theoretically more powerful
approach since it allows simultaneously using all observations to limit uncertainty by
‘substituting space for time’; i.e., the principle behind the well-known ‘regional frequency
analysis’ [20]. Nonetheless, the simultaneous use of all stations in the estimation process
is challenging, for it requires a rigorous estimation framework to handle the underlying
assumptions that control the information content of the pooled records. These are related
to the different record lengths of the stations and the presence or not of spatial dependence
among them. The most well-known framework of this type is the regional frequency
estimation based on the L-moments [20,21]. Yet the latter is founded on the inter-site
independence assumption and has been shown to decrease in accuracy as the level of
dependence increases [22]. To explicitly address the effect of the spatial dependence in
the data, a new regional frequency estimation framework has been proposed that allows
high-order properties estimation from spatially correlated data by means of ‘knowable’
moments’ (K-moments of high order [2,23]). Separate space dependence models have
been employed in other approaches (e.g., [24]). Evidently, the issue of regional frequency
analysis is still an evolving research subject.

Aside from the choice of the theoretical framework for the regional estimation, the
formulation of a regionalization approach for the extreme rainfall properties is an addi-
tional demanding task that has to be performed in approach (b). The literature on the
different types of regionalization techniques for frequency analysis is vast and extensively
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covered by previous works [11,25]. The simpler approach considered is the estimation of
a common frequency distribution by directly pooling together all stations of a homogenous
region [26]. This is a reasonable approach for small areas or areas with limited spatial
variability but is less efficient for complex regimes. In such cases, an extension of the same
concept is to delineate the region by identifying homogenous sub-regions and pool the
data within them, allowing for the possible variation only of a site-specific scale parameter,
known as the ‘index-rainfall’. This is a widely used approach [11,20,25,27,28], inspired
by a similar method in flood frequency analysis, the so-called ‘index-flood’ method [29].
Considerable limitations of the approach relate to the subjectivity of detecting clusters
in complex regimes and the arising of spatial discontinuities at the clusters’ boundaries.
Remediation to these issues is the ‘region of influence approach’, which, instead of using
fixed boundaries regions, employs individual regions of varying boundaries centered at the
site of interest [30]. Irrespective of the arrangements of each method, the need to model the
spatial variability of the site-specific parameter(s) still emerges and is often treated through
standard interpolation and geostatistical methods as in approach (a).

In this sense, several frameworks resort to a combination of the two approaches
(e.g., [28,31,32]). Namely, the data are pooled together for the distribution fitting after
being proportionally adjusted by a site-specific parameter, which itself is obtained for
a given grid by interpolation methods. This approach bypasses the difficulty of identifying
sub-regions based on hydrological similarity and is characteristically called ‘regionless’ or
‘boundaryless’ [25,32].

The scope of this work is to construct regional ombrian curves by exploiting and
combining recent advances in the different methodological components of the analysis and
integrating them into a new framework for regional frequency analysis of rainfall extremes.
The latter is based on:

1. An advanced estimation method of extreme values based on high-order moment
estimation while respecting space dependence [2].

2. A couple of flexible spatial smoothing models [18,19] to describe the spatial variability
of extreme rainfall without resorting to uncontrolled interpolation.

3. A formulation of ombrian curves, which is revisited through recent theoretical devel-
opments in the field [2].

This is the first time that the K-moments framework, by now used in frequency
estimation for several hydrometeorological variables [23,33,34], has been put into practice
in regional frequency estimation of rainfall extremes. This is also the first time that the
BSS model framework has been employed for the regionalization of extreme rainfall. As
a proof-of-concept, the framework is applied in the region of Thessaly (Greece), utilizing
data from 55 stations over a 13,700 km2 basin area. The large spatial scale, together with
the hydrological complexity of the case study, form a challenging test for the methodology,
from which new insights into regional rainfall frequency analysis are gained.

2. Methodology
2.1. Mathematical Form of the Ombrian Relationship

Koutsoyiannis ([2]; Chapter 8) recently developed a framework advancing typical
ombrian curves to stochastic models of rainfall intensity, valid over any scale supported
by the data. This type of ombrian model arises directly from the stochastic properties
(dependence structure and marginal distribution) of rainfall intensity and their (non-
simple) scaling behavior, and, as such, it can also be applied for simulation of the rainfall
process [35]. The framework in [2] can be applied at any time scale, arbitrarily large, to
produce the ombrian relationship linking rainfall intensity x to any timescale k and return
period T. We note, though, that for large time scales the mathematics becomes somewhat
involved. Here we apply the framework only for small time scales, for which a Pareto
distribution for the non-zero rainfall intensity is justified. (For larger scales, this should be
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replaced by a Pareto–Burr–Feller distribution.) In this case, the Pareto distribution quantile
is given as [2]:

x = λ(k)

(
P(k)

1 T/k
)ξ
− 1

ξ
, ξ > 0 (1)

where P(k)
1 is the probability wet, λ(k) is a scale parameter and ξ is the tail-index of the

Pareto distribution. Both P(k)
1 and λ(k) are functions of the timescale obtained as [2]:

P(k)
1 =

1− ξ

1/2− ξ

µ2

γ(k) + µ2 (2)

λ(k) =
µ(1− ξ)

P(k)
1

=
(1/2− ξ)

(
γ(k) + µ2)
µ

(3)

where µ is the mean intensity (constant at all time scales) and γ(k) is the climacogram of
the process, i.e., the function of the variance across timescale, which can follow different
models [2]. A simplification of Equations (1)–(3) is possible based on the following assump-
tions stemming from the fine-scale behavior of rainfall. For small time scales, of the order
of minutes to a few days:

• P(k)
1 ∝ k, and hence we can set the quantity β(k) := k/P(k)

1 = β = constant in Equation (1).
• γ(k)� µ2, and thus we can neglect the latter term in their sum.
• we select the generalized Cauchy-type model for the climacogram:

γ(k) = λ2
1

(
1 +

(
k
α

)2M
) H−1

M

(4)

where α and λ1 are scale parameters, with dimensions of time [t] and [x], respectively, and
H, M are dimensionless parameters in the interval (0, 1), controlling the long-range (Hurst-
Kolmogorov dynamics) and local scaling of the process (fractal behavior) of the process,
respectively. For M we take the neutral value M = 1/2 as default. We note though that if
the focus is on even smaller temporal scales, this value (M = 1/2) can be inappropriate.

These simplifying assumptions result in some violations of a full stochastic consistency,
as detailed in [2]. However, at small scales, the violations are negligible [2,3]. By virtue of
these simplifications, the ombrian relationship is given as:

x = λ2
1
(1/2− ξ)

ξµ

(
1 +

k
α

)2H−2
((

T
β

)ξ

− 1

)
(5)

Setting λ = (1/2− ξ)λ2
1 / ξµ and η = 2− 2H, Equation (5) can be rewritten as:

x = λ
( T/β)ξ − 1
(1 + k/α)η , ξ > 0 (6)

where the following five parameters are involved, λ an intensity scale parameter in units
of x (e.g., mm/h), β a timescale parameter in units of the return period (e.g., years), α
a timescale parameter in units of timescale (e.g., h) with α ≥ 0, η a dimensionless parameter
with 0 < η < 1, and ξ > 0 the tail index of the process.

It is easily observed that Equation (6) can be written concisely as the quotient of two
separable functions b(T) and a(k) of the return period and the timescale, respectively, in
the form:

x =
b(T)
a(k)

(7)
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with

a(k) =
(

1 +
k
α

)η

(8)

being a function of time scale, in wide use as an approximation [2,36] but here resulting
as a consequence of the climacogram, and b(T) a function of the return period that is
analytically derived from the distribution function of the rainfall intensity.

In the case that the return period of the rainfall intensity is determined based on
rainfall exceedances extracted from the full series (i.e., Peaks over Threshold, POT), a Pareto
distribution can be generally assumed for modeling the rainfall intensity, as implied in
Equation (6). However, if the return period is determined based on series of annual maxima
(AM) of rainfall intensity, then both long-term empirical evidence and theoretical arguments
support the use of the Extreme Value Type 2 (EV2) distribution from the Generalized
Extreme Value (GEV) distribution family [37–39]:

F(y) = exp

(
−
(

1 + ξ
(y

ν
− ψ

))− 1
ξ

)
, y ≥ ν

(
ψ− 1

ξ

)
(9)

where ψ (dimensionless), ν > 0 (units same as in y) and ξ > 0 (dimensionless) are location,
scale, and shape parameters, respectively. It should be mentioned that the case of ξ < 0 is
not appropriate for maximum rainfall, since it presumes the existence of an upper limit
for the variable, which is inconsistent with the physical reality. Furthermore, the case of
ξ = 0, i.e., assuming a Gumbel (Extreme Value Type 1—EV1) distribution for the maximum
rainfall intensity, is also not supported by worldwide empirical evidence and is to be
avoided in general [37]. Therefore, it is not developed herein, but further details for this
case are given in Koutsoyiannis [2].

Equivalently, the EV2 distribution as given by Equation (9) can be re-parameterized
consistently to Equation (6) as follows:

F(y) = exp

(
−∆

β

( y
λ
+ 1
)− 1

ξ

)
(10)

where β = (1− ξψ)1/ξ∆ and λ = (1− ξψ) ν/ξ and ξ > 0.
The variable y represents either the rainfall intensity x or, equivalently, the product

x a(k) (Equation (7)). Solving Equation (10) in terms of y and substituting F(y) = 1−∆/T,
where ∆ = 1 year for annual maxima, yields:

yT = λ
(
(−(β/∆) ln(1−∆/T))−ξ − 1

)
(11)

Therefore, by substituting Equations (8) and (11) in (7), the following generalized form
of ombrian curves for annual maxima is derived:

x = λ
(−(β/∆) ln(1−∆/T))−ξ − 1

(1 + k/α)η , ξ > 0 (12)

It is easily shown that for small return periods, Equation (6) deriving from a Pareto
distribution yields higher intensity than Equation (12), whereas for larger return periods
(T > 10 years), the two are practically indistinguishable, given that for small ∆/T holds
ln [1− (∆/T)] = −(∆/T)− (∆/T)2 − · · · ≈ −∆/T. Therefore, even in the case that the
model fitting is based on Equation (12), i.e., when annual maxima are used (which is also
the case here), it is safer, from an engineering point of view, to express the final model used
to obtain design rainfall in the form of Equation (6). Yet, the availability of either POT or
AM series determines which of Equation (6) or (12), respectively, will be used for model
fitting. Following a slightly different parameterization, Equations (6) and (12) were also
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proposed by Koutsoyiannis et al. [8] for small scales, which nevertheless are sufficient for
most engineering applications of ombrian curves, namely those involving flood analyses.

The advantage of this simplified approach is precisely the separability of a(k) and b(T)
functions that allows for a two-step procedure for the parameter estimation. This turns
out to be convenient for typical applications and even more for regional analyses, as will
be shown next. It also has attractive flexibility in using different sources of data. Namely,
a reliable determination of the timescale parameters α and η requires data from fine-scale
records, whereas the parameters of the function b(T), including the highly uncertain tail
index, are better inferred from daily raingauge data, which are usually more systematic
and less prone to erroneous recordings [8].

2.2. Regionalization Method: Bilinear Surface Smoothing Models for the 24 h Average Annual
Rainfall Maxima

The target of the regional model is to generalize Equation (6) or (12) in space, achieving
their applicability for any set of coordinates in a given area. To efficiently describe the
spatial heterogeneity in a region without resorting to a great number of parameters and
uncontrolled interpolation, we should make an assumption on which parameters we con-
sider as regionally varying. It is reasonable to begin by applying diagnostics for the spatial
heterogeneity of rainfall in the study area, both in terms of the a(k) and b(T) functions’
parameters, bearing in mind that selected parameters should be reliably estimated from
single-site data. Following this rationale and supported by the available data, which in our
case are series of annual maxima at different temporal scales, as shown in Section 3.2, we
choose to spatially model the parameter λ of Equation (12). This corresponds to the scale
parameter of the EV2 distribution, which is proportional to the mean value of the process,
i.e., the average annual maxima at each location for any timescale. Since the transformation
between timescales is controlled by the a(k) function, it suffices to model the average
maxima at a single, convenient timescale. We choose the 24 h scale due to the much greater
availability of daily data in the study region. Depending on the need to apply further com-
plexity, the location parameter of the EV2 distribution could be another option for spatial
modeling. Yet it is not advisable to spatially model the highly uncertain shape parameter
(i.e., the tail index) based on single-site data unless long-term empirical evidence supports
a spatial variation thereof. Parameters α and η, which control the timescale transformations
of the curves, are very sensitive to the existence of sub-daily data [8], which are scarce in
the study region, and thus, they do not constitute good choices for spatial modeling either.
For these reasons, we apply common values for the rest of the parameters over the whole
area. The choice of the mean of the AM distribution as the parameter to be regionalized
has been proven to be a robust choice in regional frequency analysis, dating back to the
index-flood method [29] and several applications thereafter (see [11]).

Having chosen to spatially model only the λ parameter related to the mean value of
the annual maxima series, we have to identify a model for the spatial variation. As already
discussed in the introduction, a large region with complex topography cannot be efficiently
treated as a homogenous area. In this case, instead of identifying several sub-regions, which
may give rise to abrupt changes in the final results with questionable physical basis, it is
better to explicitly model the process at any given point in the area of interest. Towards this
‘regionless’ modeling approach, we apply a framework of spatial smoothing modeling that
is described next.

We apply two versions of a bilinear surface smoothing model proposed by Malamos
and Koutsoyiannis [18,19], generalizing in 2D a previous numerical smoothing and interpo-
lation method [40,41]. A brief overview of the mathematical framework is presented since
it is detailed in the aforementioned publications. The general idea behind both methods is
to compromise the trade-off between the objectives of minimizing the fitting error and the
roughness of the fitted bilinear surface, therefore termed bilinear surface smoothing (BSS).
The larger the weight of the first objective, the rougher the surface will appear, while the
opposite is true for a larger weight of the second objective.
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The mathematical framework of BSS suggests that fitting is meant in terms of mini-
mizing the generalized cross-validation error (GCV; [42]) between the set of the given data
points and the corresponding estimates. The general estimation function, ẑu, for point u on
a plane, according to the BSS method, is:

ẑu = du (13)

where du is the value of the fitted bilinear surface d at that point.
The BSS method can be extended by the introduction of an additional explanatory

variable (bilinear surface smoothing with an explanatory variable; BSSE) at a denser dataset
compared to that of the main variable, as follows. We assume that at the locations of the
given data points, we also know the value of an explanatory variable t, and therefore for
each point z there corresponds a value t. In this case, the general estimation function for
point u is:

ẑu = du + tueu (14)

where du, eu are the values of two fitted bilinear surfaces at that point, namely d and e,
while tu is the value of the explanatory variable at that point. This is not a global linear
relationship but a local linear one as the quantities du and eu change in space.

In the case of the BSS, there are four adjustable parameters for surface d: the numbers
of intervals along the horizontal and vertical direction, respectively, i.e., mx, my, and the
corresponding smoothing parameters τλx and τλy. The incorporation of the explanatory
variable for the BSSE case adds two more adjustable parameters: the smoothing parameters
τµx and τµy corresponding to surface e. The values of all the smoothing parameters are
restricted in the interval [0, 1) for both directions [18]. When the smoothing parameters
are close to 1, the resulting bilinear surfaces exhibit greater smoothness, whereas, for small
values of these parameters, interpolation among the known points is obtained.

A desirable feature of the method for regional analyses is the fact that it is proven reli-
able even in the case of few and scarce data, in contrast to common geostatistical methods
that require a denser data network to be applied reliably (e.g., to estimate a semivari-
ogram) [15]. It is important to note that the method is also parsimonious in terms of the
number of parameters and the choices involved in the modeling. This is evident when
compared to the standard kriging framework, in which one has to decide among the n
different types of the method, among the 4 n standard variogram types (i.e., spherical,
exponential, Gaussian and power), and also identify the values for the range, sill, and
nugget, resulting in a total of 12 n choices, depending on the selected number of kriging
methods. This increases the complexity of the approach and may increase the subjectivity
as well, given that an objective framework for basing these decisions is lacking.

2.3. Bilinear Surface Smoothing Model Parameters Estimation

As mentioned, the parameter estimation methodology for both the BSS and BSSE
methods is based on the minimization of GCV error, and therefore, there is no effect in
terms of heteroscedasticity. For a given combination of the bilinear surface segments, mx
and my, the minimization of GCV error results in the optimal values of τλx, τλy and τµx,
τµy. This can be repeated for several trial combinations of mx and my values until the
global minimum of GCV is reached.

Both variants of the method are applied, one taking into account only the coordinates
of the stations (BSS) and the second one exploiting as well the elevation of the stations
(BSSE) as an additional explanatory variable. In the second case, a digital elevation model
of the wider area (Thessaly and neighboring areas) with 90 m resolution at the equator
(SRTM; [43]) is employed both for extracting the elevation at the stations’ coordinates and
for making estimations for any point in the given grid.

For the objective evaluation of the two methods, two statistical indices, the root mean
square error (RMSE) and the mean absolute error (MAE), are compared in terms of (a)
performance using all data and (b) the leave-one-out cross-validation performance, i.e.,
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when the estimation at each coordinate set is performed by omitting the known value at
that position. This analysis is presented in Section 4.1.

2.4. Timescale Parameters Estimation

The simplified version of the ombrian model also allows for a simplified fitting proce-
dure. By utilizing the separability of functions a(k) and b(T) in this version, an independent,
two-step fitting approach can be used, as introduced by Koutsoyiannis et al. [8]. Namely,
Equation (12) can be written as:(

1 +
k
α

)η

x = λ
(
(−(β/∆) ln(1−∆/T))−ξ − 1

)
(15)

From this expression, it is easy to see that for the different timescales k j the stochastic
variables y

j
:= a

(
k j
)

x = (1 + k/α)η x have a common distribution function, with the y
j

for

the different k j being samples of it. Let then, y
ji

:= a
(
k j
)
xji of length n = ∑

j
nj denote the

merged sample of all sub-samples xji of size nj corresponding to timescale k j. Let also rji
denote the rank of each sub-sample xji in the merged sample y

ji
so that the mean rank of

each sub-sample is given as rj = ∑
i

rji/nj. Replacing all rji with the mean rank value rj

we obtain a sample of n values, with n1 equal to r1, n2 equal to r2 etc. Then the mean and
variance estimators are, respectively:

r :=
1
n ∑

j
njrj (16)

γr :=
1
n ∑

j
nj

(
rj − r

)2
(17)

If no ties are present among the different ranks, then r = (n + 1)/2.
Following the assumption that the samples are from the same distribution, given by

the right-hand side of Equation (15), then each rj should be close to the mean r while the
variance should be minimal. Therefore, we can find the parameters α and η as the values
that minimize the estimate of the variance γr from the observations xji. The original values
y

ji
could be used as well instead of the ranks, yet the use of the ranks makes the estimation

process more robust to outliers. In order to improve the fit to the higher quantile region,
we could also use a part of the data of each sample belonging to the highest 1/2 or 1/3 of
the data [8]. In this study, the highest 1/2 is used.

The limited availability of sub-daily stations, in combination with their short records,
hinder the reliable estimation of the time scale function parameters at each station separately.
It is also pointed out that parameter α is very sensitive to small scales intensities and ideally
requires sub-hourly data to be reliably estimated [8]. Given that few stations have data at
such scales, to limit uncertainty, we apply the methodology described above simultaneously
to the sample of all fine-scale raingauges. In particular, we identify the set of the time scale
parameter values as the one that minimizes the sum of all stations’ variances, each of which
is given by Equation (17).

2.5. Regional Estimation of Distribution Parameters through K-Moments

Having estimated the α and η parameters, it remains to specify the parameters of the
b(T) function through the following procedure. We form the pooled sample comprising
all stations’ annual rainfall maxima at the 24 h scale after first standardizing (dividing)
them by their theoretical mean value, given by the spatial smoothing model. To the pooled
standardized sample of annual maxima, we fit the EV2 distribution using the method of
the non-central K-moments [2,23]. K-moments are newly proposed moments developed
with the aims of being knowable for very large orders (depending on the sample size) and
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also interpretable in terms of order statistics. They are closely related to the probability-
weighted moments [44], but their formulation is simpler and more intuitive, which are
attractive qualities similar to the ones of the L-moments [21]. The distinctive feature of
K-moments, though, is that they are tailored to perform extreme-oriented analyses, as they
enable reliable estimation of very high-order moments. What is more, each high-order
K-moment estimate can be directly assigned a return period, which provides a direct means
to empirical estimation of probability, alternative to order statistics. Furthermore, this
estimation can be appropriately modified in the case that there is bias due to dependence [2].
In particular, K-moments allow straightforward estimation of high-order moments even for
spatially dependent data, which is a rare property. Namely, typical regional applications of
L-moments do not go beyond the 4th moment (L-kurtosis) estimation. This advantage of
K-moments is exploited in the regional frequency analysis, which is particularly sensitive
to high-order moments.

Koutsoyiannis [2,23] has introduced several variants of K-moments, of which here we
use the simplest non-central variant, defined as:

K′p := pE
[
(F(x))p−1x

]
(18)

for the moment order p ≥ 1. K′p has the important property that it equals the expected
value of the maximum of p independent stochastic variables identical to x, i.e.,

K′p = E
[
max

(
x1, x2, . . . , xp

)]
(19)

The estimators of the non-central K-moments are given by the following formulae:

K̂′p =
n

∑
i=1

binp x(i:n) (20)

binp =

{
0, i < p

p
n

Γ(n−p+1)
Γ(n)

Γ(i)
Γ(i−p+1) , i ≥ p ≥ 0

(21)

where x(i:n) is the ith smallest variable in a sample x, of size n, (the ith item of the sample
in ascending order) and p is the order of the moment, which can be any positive number
p ≤ n. In addition, the following holds:

n

∑
i=1

binp = 1 (22)

The fact that binp = 0 for i < p means that as the moment order increases, fewer data
are used in the estimation, until only one is left, the maximum, when p = n, and bnnn = 1.
For p > n, binp = 0 for every i, 1 ≤ i ≤ n, and the estimation becomes impossible. The first
order non-central K-moment is the mean value of the sample.

K-moment values can be assigned a return period as follows [2]:

T
(

K′p
)

∆
= pΛp ≈ Λ∞ p + (Λ1 −Λ∞) (23)

where Λ1, Λ∞ are coefficients depending on the distribution function. For the EV2 distribu-
tion it is shown [2] that the Λ coefficients are functions of the shape parameter ξ:

Λ1 =
1

1− exp
(
−(Γ(1− ξ))

− 1
ξ

) (24)

Λ∞ = Γ(1− ξ)
1
ξ (25)
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For validation purposes, the following relationship of empirical return periods based
on order statistics is also used, which is shown to provide an unbiased estimate of the
logarithm of the return period [2]:

T(i:n)

∆
=

n + e1−γ − 1
n− i + e−γ

=
n + 0.526

n− i + 0.561
(26)

The procedure outlined above could be directly applied for assigning return periods
to the K-moments of any single station, and the parameters of the EV2 distribution could
be obtained by minimizing an error metric (e.g., MAE or RMSE) between the theoretical
quantiles and the empirical K-moments, or between the corresponding return periods.
However, for the pooled sample, the resulting information gain, and thus the maximum
return period that can be estimated from the data, is a function of the sample’s dependence
structure. It is well known that in the case of cross-correlated variables, the quantity of
information for the variable corresponds to a smaller sample of length compared to the
case of independence but still greater than that of an individual station.

The framework of K-moments allows for the effect of dependence to be explicitly
accounted for in the estimation of the return period. This is achieved through proper
modification of the order of the moments of the unified sample, p’, which in turn modifies
the estimation of the return period. In particular, let n1 denote the sample length of each
station, m denote the number of stations, and n = m n1 denote the size of the merged
sample, and then the following methodology is applied [2]:

• For p ≤ n1 we set p′ = p.
• For p > n1 the following approximation is used. We estimate the equivalent Hurst

parameter H, based on the spatial correlation of the stations ρ:

H =
1
2
+

ln(1 + ρ)

2 ln 2
(27)

Based on the estimated H the following coefficient is used for bias correction, ΘHK:

ΘHK(n, H) ≈ 2H(1− H)

n− 1
− 1

2(n− 1)2−2H (28)

Then the modified orders of the moments are obtained as:

p′ ≈ 2Θ + (1− 2Θ)(p− n1 + 1)((1+Θ)2) + n1 − 1 (29)

and their corresponding return periods are adjusted accordingly based on Equation (23).

It is obvious that n1 controls the maximum moment order, which is unaffected by
dependence. In the case that the stations have different lengths, n1 can be estimated as the
average record length of all stations (here, n1 = 42). An increased value of n1 suggests that
the information gain is also increasing, as fewer return periods are modified downwards,
while the opposite is true when n1 decreases. In order to bypass the uncertainty regarding
the modification of the return periods based on the estimated correlation structure, a good
strategy is to use for model calibration only the moment orders up to n1, and employ
the higher moments for validation. In so doing, the moments used in the calibration are
still much more than the ones used in regular moment fitting procedures (typically up to
3 or 4 orders), while a second-moment set is also available for validation.

To transform the parameters of the EV2 distribution (expressed as in Equation (10)) of
the standardized 24 h rainfall maxima to the final ombrian b(T) parameters, we use the
following procedure. Let uT denote the 24 h annual maximum rainfall value for return
period T standardized by its mean value µ. Then the rainfall intensity for any station at the
24 h timescale is x(24 h)

T = µ uT/24, where µ is the mean value used in the standardization.

Likewise, the quantity yT := x(24 h)
T (1 + 24/α)η , whose distribution defines the function
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b(T) of the ombrian relationship will be yT = µ uT(1 + 24/α)η/24. Consequently, the
variable y shares the same distribution function with the variable u with the same shape
and location parameters, and scale parameter proportional to the one of u by a factor of
µ (1 + 24/α)η/24, i.e.,

ξ = ξu, β = βu, λ = λu µ (1 + 24/α)η/24 (30)

where the subscript u denotes the standardized rainfall maxima at the 24 h scale and
α is expressed in h. It is recalled that the mean value µ for each location used in the
standardization is derived from the BSS/BSSE models.

In this way, parameters α and η, which are estimated simultaneously from all stations,
in combination with the parameters of the distribution of the standardized maximum
24 h rainfall values and the spatially modeled mean value of the process by the BSS/BSSE
models fully determine the ombrian curves, as given by Equations (6) and (12).

3. Data
3.1. Study Area

The study region is the geographic area of the Water District (WD) of Thessaly
(~13,700 km2) which is one of the 14 WD of Greece. The district extends mostly within
the administrative region of Thessaly, while it also includes a small part of the region
of Central Greece and a small part of the Western and Central Macedonia region. The
topography of the area is characterized by the existence of four mountain ranges in its
perimeters, Olympus-Kamvounia in the north, Pindus in the west, Othrys in the south, and
Pelion-Ossa in the east, which surround the Thessalian plain that rests in the central area
(Figure 1a). The Thessalian plain contains the largest part of the water bodies of the district
and is traversed by the Pineios river and its tributaries. It is also the largest agricultural area
in Greece, with lowland topography making it prone to frequent and heavy flooding [45,46].
A recent flood event of the 18–19 September 2020 triggered by a Mediterranean cyclone has
caused human and livestock losses and extensive structural and agricultural damages to
the area, sparking a revitalization of the decade-long initiatives for improving the area’s
flood protection design and strategy [47]. The climate of the Western region is continental,
while the Eastern region has a typical Mediterranean climate, while the rainfall pattern
exhibits strong differences between the lowlands and the mountain regions [48]. These
characteristics of the study region, namely its hydrometeorological diversity, vast spatial
extent, and criticality of flood risk, make it a challenging case study for the application of
the methodology.

3.2. Data Processing and Quality Control

The construction of ombrian curves is based on rainfall intensity data at a range of
timescales, typically starting from fine scales, i.e., 5 to 60 min, and extending to the 24 or
48 h scale for common applications. To this aim, we assemble a set of 17 rainfall records
from tipping buckets and telemetric stations, recording data at the 5–30 min timescale and
61 rainfall records from daily raingauges. The data are obtained from the Public Power
Corporation (PPC) of Greece, the Hellenic Ministry of Environment and Energy (HMEE),
the Hellenic Ministry of Agricultural Development and Food (HMADF), the Hellenic
Ministry of Agriculture (HMA), the Hellenic National Meteorological Service (HNMS)
and the meteo network [49] of the National Observatory of Athens. The properties of the
stations are detailed in Tables S1 and S2 of the Supplementary material.

We aggregate the original series at a range of timescales from 5 min to 48 h, with
k =0.08, 0.17, 0.25, 0.5, 1, 2, 6, 12, 24, 48 h (depending on data available at the finest
scale), and we extract the maximum rainfall depth at each scale h(k) for all hydrological
years. Accordingly, we compute the corresponding rainfall intensity at the given scale as
x(k) = h(k)/k, thus deriving the empirical rainfall intensities corresponding to the annual
maxima of the hydrological years. The reason for using AM series instead of POT or even



Hydrology 2022, 9, 67 12 of 22

the full data series for the estimation of the extremes is that several historical records are
available only in this form.
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We note that the choice of the starting point for the aggregation is arbitrary, and
a change thereof would likely result in adifferent estimate. For this reason, it was a common
hydrological practice in the past to either take the maximum estimate resulting from all
possible positions of the starting point or ‘inflate’ the given estimate by a specific factor,
known as the Hershfield coefficient [50]. Although this practice aims for safer estimates
from an engineering point of view, in theory, all realizations of a stochastic process are
equivalent, and there is no theoretical basis to ‘correct’ them. In fact, by correcting the
series, we distort its stochastic properties and, instead of studying xτ

(k), the behavior of
wτ

(k) := max
j

(
xτ+j

(k), j = 0, . . . k− 1
)

is studied, which is a different stochastic process [2].

Hence, we do not apply the Hershfield coefficient.
To ensure a good quality dataset for our analysis, we use stations that have at least

12 years of data, and we undertake quality checks based on hydrological experience in
the study area. In particular, we perform spatial consistency checks excluding stations
with systematically lower recordings in comparison to neighboring ones. In addition, we
perform hydrological consistency checks, i.e., to ensure that single-site empirical maximum
rainfall is consistent with hydrological experience worldwide, suggesting an unbounded
right tail of sub-exponential type [37,38]. We note that poorly maintained raingauge records
(e.g., in remote mountainous areas) sometimes exhibit maximum rainfall recordings of the
same (or nearly the same) amount due to spillage effects during storm events. In this case,
a bounded GEV distribution might falsely emerge.

After screening with these criteria and excluding stations with severe inconsisten-
cies, the resulting set of stations includes 48 daily raingauge stations, 7 of which are at
locations gauged by tipping buckets as well, and 14 sub-hourly tipping bucket/telemetric
stations. The estimation of the extreme properties and of the average 24 h AM rainfall
(Sections 2.3 and 2.5) is based on the set of daily raingauge stations due to the latter being
more and of larger record lengths. Yet, maximum rainfall data at the 24 h scale are also
employed from the fine-scale rainfall stations when daily raingauge data are not available
at the same location. Taking the latter into account, the distribution properties of the
maximum rainfall are estimated using a combined set of 55 samples of 24 h annual rainfall
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maxima, whose spatial distribution is depicted in Figure 1b. The set of the 14 fine-scale
rainfall stations is used in the estimation of the timescale parameters (Section 2.4).

4. Results
4.1. Fitting of the Bilinear Surface Smoothing Models

Before fitting the regional model, we explore the spatial variability of the rainfall
regime by identifying the variations in the mean and standard deviations of the rainfall
intensity and the possible association with the elevation of the stations. In Figure 2, it can
be seen that the first two moments of the rainfall intensity across scales follow a similar
statistical behavior, and, therefore, it is reasonable to apply common timescale parameters
(i.e., the function a(k)). In terms of the average annual maxima at the 24 h scale, there also
appears to be a positive association with the stations’ elevation, although this is not verified
in all cases (Figure 3). Therefore, it seems that the elevation might serve as an explanatory
variable, but it needs to be incorporated into a more general spatial model identifying
additional patterns of the rainfall maxima in space.
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To explore the suitability of elevation as an explanatory variable in an objective manner,
we evaluate its performance within the BSS/BSSE model framework, comparing the results
from both versions. In the BSSE case, the stations’ altitudes are derived from a digital
elevation model of the area (Thessaly and neighboring areas) with 90 m resolution at the
equator (SRTM; [43]), which is also used for the estimation of the average maximum rainfall
at each point in space.

The parameters deriving from the optimization are mx = 3, my = 5, τλx= 0.550,
τλy= 0.005 for the BSS model and mx = 4, my = 12, τλx= 0.068, τλy= 0.001, τµx= 0.621,
τµy= 0.451 for the BSSE model. In order to compare the model fits we compute RMSE
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and MAE (a) for the fit of both models using all the data and (b) for the fit applying the
leave-one-out cross validation method. Results are shown in Table 1.

Table 1. Results from the BSS and BSSE models fitting.

Spatial Smoothing Model BSS BSSE

Parameters mx= 3, my = 5,
τλx= 0.550, τλy= 0.005

mx= 4, my= 12,
τλx= 0.068, τλy= 0.001,
τµx= 0.621, τµy= 0.451

A. All data

RMSE (mm) 9.0 7.0

MAE (mm) 7.3 5.3

B. Leave-one-out cross validation

RMSE (mm) 12.5 10.8

MAE (mm) 9.8 8.1

It is seen that the BSSE model involving elevation as an additional explanatory variable
is found superior in both comparisons, which is expected by hydrological experience in the
area and also supported by previous applications for annual rainfall in Central Greece [19].
Accordingly, the BSSE model is applied to estimate the 24 h average annual maxima in the
center points of a 2 × 2 km grid of the study region, as shown in Figure 4. It is observed
that both the Thessaly plain and the surrounding mountain ranges are strongly identified
in the resulting rainfall patterns.
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BSSE model.

4.2. Construction of the Regional Ombrian Curves

To estimate a common value of the timescale parameters that would be representative
of all stations, we optimize the fit for all stations by simultaneously minimizing the sum of
all 14 variances as estimated from each station by Equation (17). This optimization results to
parameters α = 0.03 and η = 0.64 which are considered representative for the whole region.

To estimate the distribution parameters, we first divide each annual maxima value at
the 24 h scale by its modeled mean value as estimated by the BSSE model (Figure 4). To
take space dependence into account, as explained in Section 2.5, we compute the spatial
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correlation of the 55 standardized annual maxima series at the 24 h scale. This is estimated to
be ρ = 0.17 corresponding to H = 0.61 (Equation (27))—a moderate value. The standardized
series are then unified into one for the estimation of the b(T) parameters.

As explained above, we determine n1 as the mean record length of the stations
(n1 = 42), following the rationale outlined in Section 2.5. We recall that n1 is equal to
the maximum moment order, which need not be modified for spatial dependence bias.
Higher moment orders (corresponding to higher return periods) are adapted for spatial
dependence. In the approach we follow herein, we choose to fit the model only up to the
moment order not impacted by dependence bias. This set of 42 moments is to be used as
a calibration set, while we also use the remaining higher 2305 moments as a validation
set (Figure 5).
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Figure 5. Empirical K-moments of the pooled standardized 24 h rainfall annual maxima sample, their
theoretical values by the EV2 distribution and the corresponding return periods.

Using the method of the non-central K-moments, we fit the EV2 distribution to the
unified sample of all standardized annual maxima at the 24 h scale minimizing the MAE
between the empirical first 42 K-moments and the respective quantiles of the EV2 distri-
bution. In Figure 5, it is seen that the fit is excellent for all 42 K-moments (MAE = 0.00489,
RMSE = 0.00471), which constitute the calibration set, and there is also good agreement
between the theoretical and empirical moments for higher orders, albeit some deviations in
the area of higher return periods. Still, we have to note that very high orders are impacted
by the spatial dependence structure of the data, whose estimation is in turn impacted by
higher uncertainty. In any case, the use of higher return periods as a validation set proves
that the fitting is robust.

Taking into account the results of the BSSE model and following the parameter trans-
formations described in Section 2.5, the values of the four common parameters are derived
as shown in Table 2, whereas the spatial distribution of the regionally varying λ parameter
is shown in Figure 6. Note that the λ values are analogous to the average maxima values
predicted by the BSSE model (Figure 4), as implied by Equation (30).
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Table 2. Ombrian parameters α, η, ξ, β of Equations (6) and (12). Parameter λ is analytically derived
at any point in space through the BSSE model.

α (h) η (-) ξ (-) β (years) λ (mm/h)

0.03 0.64 0.18 0.013 Geographic distribution shown
in Figure 6 for all grid points.
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4.3. At-Site Verification

To ensure that the spatial model is in agreement with the at-site empirical behavior, we
compare the theoretical to the empirical curves as derived for various stations in characteris-
tic locations of the WD. In Figure 7, we show the theoretical quantiles (as given by Equation
(12)) of the rainfall intensities for the daily raingauges at six locations representative of the
different rainfall regimes of the area, while in Figure 8, the same plots are shown for a wider
range of scales that are available from the sub-daily rainfall stations. For the return period
estimation of the empirical intensities, we also plot the estimates from the order statistics
by Equation (26), in addition to the K-moments. Figures 7 and 8 show that the empirical
distribution functions are generally in good agreement with the theoretical ones, with some
notable yet non-systematic deviations in the area of higher return periods. The presence of
measurement uncertainty is also evident in certain deviations, in the area of higher return
periods, between the empirical intensities estimated from the daily raingauges and the
sub-daily resolution gauges (Figure 8). The latter are, however, of shorter length compared
to the daily gauges.

Taking into account the large sampling variability of rainfall and the spatial extent
of the area, the results are deemed acceptable. Yet there are also a few cases in which the
model does not capture well the single stations’ behavior due to spatial differences between
neighboring sites. Such an example is shown in Figure 9 for two stations in the Pertouli
area, where it becomes apparent that the approach favors modeling the spatially average
behavior between the two stations. It is obvious that in such cases of spatial uncertainty,
a model perfectly capturing single stations’ behaviors becomes less relevant; rather, the
importance of robustness in the regional framework is highlighted.
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Figure 7. Theoretical and empirical distributions of 24 h and 48 h annual maximum intensities
(depending on the available samples) in characteristic stations of Thessaly’s WD: (a) Agchialos,
(b) Amarantos, (c) Zappeio, (d) Farkadona, (e) Spilia and (f) Molocha. The empirical intensities
plotted based on order statistics are also shown for validation.
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Figure 8. Theoretical and empirical distributions of annual maximum intensities at 10 min to 48 h
scales (depending on the available samples) from sub-daily stations of Thessaly’s W.D.: (a) Trikala
(meteo), (b) Karditsa, (c) Metaxas and (d) Loutropigi. When available the empirical intensities at the
24 h and 48 h scales from the daily raingauges are shown as well. The empirical intensities plotted
based on order statistics are also shown for validation.
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5. Discussion and Conclusions

Ombrian curves have been around in hydrological engineering for approximately
a century and are considered a standard task for at-site modeling. In this work, we address
the more complex problem of constructing ombrian curves at regional scales that are of
practical interest to the hydrologist in regional flood studies and in the common case that
single-site data are either not available for the catchment of interest or the catchment is
too large to characterize based on single-site data, e.g., [51]. Even more, constructing the
curves by regional fitting is a powerful approach to limit estimation/sampling uncertainty
resulting from short-length single records. As such, regional rainfall modeling has been
an active research field in hydrological literature. The approach devised herein aims to
create a framework for regional ombrian curves that incorporates recent advances in the
field of regional frequency analysis and regionalization approaches within a theoretically
consistent formulation of ombrian curves. The approach is tested in a challenging case
study of the Thessaly WD in Greece, which shows a large variability of rainfall patterns
stemming from its complex topography and large extent (~13,700 km2).

The curves are constructed following the newly revisited mathematical formulation of
single-site curves by Koutsoyiannis [2] coupled with a new regionalization approach that
is developed herein. Four common parameters are identified, and one spatially varying
scale parameter is employed. The site-specific scale parameter is explicitly modeled by
a spatial smoothing model (BSSE) that employs elevation as an additional explanatory
variable and produces a continuous 2D surface for the average 24 h annual maxima regime.
This 2D surface suffices to model the spatial heterogeneity of the curves without involving
cluster analysis for delineation of homogenous regions and avoiding related discontinuities
and abrupt changes in the parameter space. The result is a model explicitly describing
maximum rainfall at any point in a given space, which simplifies hydrological design.
The BSSE model is selected for being more interpretable and less involved in parametric
choices than common geostatistical software, while its robustness in cases of high spatial
uncertainty has been documented [15]. We note that a map of the average maximum
regime could also be used instead if already available. Still, the explicit incorporation of
a surface smoothing model into the framework guarantees the consistency of the final
spatial estimates to the point data.

The approach is also based on recent advances in the analysis of extremes, namely
the use of reliable high-order moment estimators that account for the effect of the spatial
dependence structure in assigning return periods (K-moments; [2]). This enables a rigorous
fitting procedure aiming at minimizing the estimation uncertainty while respecting spatial
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dependence. To our knowledge, this is the first time that such a high number of moments
(42 for estimation and 2305 for validation) is estimated from a sample of spatially correlated
data with a provision for space dependence bias.

Results show that the model efficiently captures the spatial variability of extreme
rainfall in the area covering scales from 5 min to 48 h, and its estimates are robust even
under increased spatial uncertainty due to inconsistencies among the point data, which
were present in a few cases.

A few modifications to the present approach would be required if one were to general-
ize the model over greater time scales, above the order of a few days [2]. While this task is
not of direct use to flood estimation and typical applications, it is to be considered in view
of a multi-purpose rainfall model at the regional scale. Further research is also required
on the effect that spatial dependence exerts on the estimation of high return periods and
the accompanying uncertainty bounds. This task is demanding as results are expected to
depend on the assumed type and magnitude of the spatial dependence structure. Yet this
research represents a first step toward significantly increasing the number of moments that
can be justifiably employed in regional analyses of extremes.
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dinates, elevation, source and record length) of the sub-daily raingauges (tipping-buckets) used in
the analysis.
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