Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography
Abstract
:1. Introduction
2. Background of the Study Area
2.1. Site Background
2.2. Geology and Hydrogeology Information
3. Methodology
3.1. ERT Method
3.2. Infiltration Test
3.3. Borehole Data Analysis
4. Results
4.1. ERT Survey
4.2. Monitoring Results
4.3. Time-Lapse Monitoring of Artificial Infiltration Test
4.4. Borehole Data Verification
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNESCO. World Heritage List (Ordered by Year). Available online: https://whc.unesco.org/en/list/&order=year (accessed on 26 May 2020).
- Guo, F.; Jiang, G. Investigation into rock moisture and salinity regimes: Implications of sandstone weathering in Yungang Grottoes, China. Carbonates Evaporites 2015, 30, 1–11. [Google Scholar] [CrossRef]
- Liu, B.; Peng, W.; Li, H.; Qu, J. Increase of moisture content in Mogao Grottoes from artificial sources based on numerical simulations. J. Cult. Herit. 2020, 45, 135–141. [Google Scholar] [CrossRef]
- Singer, M.J.; Blackard, J. Slope angle-interrill soil loss relationships for slopes up to 50%. Soil Sci. Soc. Am. J. 1982, 46, 1270–1273. [Google Scholar] [CrossRef]
- Lili, M.; Bralts, V.F.; Yinghua, P.; Han, L.; Tingwu, L. Methods for measuring soil infiltration: State of the art. Int. J. Agric. Biol. Eng. 2008, 1, 22–30. [Google Scholar]
- Kodikara, J.; Rajeev, P.; Chan, D.; Gallage, C. Soil moisture monitoring at the field scale using neutron probe. Can. Geotech. J. 2014, 51, 332–345. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Turner, N.C.; Aogu, K.; Dyck, M.; Feng, H.; Si, B.; Wang, J.; Lv, J. Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agric. For. Meteorol. 2021, 306, 108442. [Google Scholar] [CrossRef]
- Binley, A.; Kemna, A. DC resistivity and induced polarization methods. In Hydrogeophysics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 129–156. [Google Scholar]
- Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A. Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol. J. 2012, 20, 617–658. [Google Scholar] [CrossRef]
- Weigand, M.; Zimmermann, E.; Michels, V.; Huisman, J.A.; Kemna, A. Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT). Geosci. Instrum. Methods Data Syst. Discuss. 2022, 1–35. [Google Scholar]
- Deiana, R.; Cassiani, G.; Kemna, A.; Villa, A.; Bruno, V.; Bagliani, A. An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring. Near Surf. Geophys. 2007, 5, 183–194. [Google Scholar] [CrossRef]
- Looms, M.C.; Jensen, K.H.; Binley, A.; Nielsen, L. Monitoring unsaturated flow and transport using cross-borehole geophysical methods. Vadose Zone J. 2008, 7, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Slater, L.; Binley, A.; Daily, W.; Johnson, R. Cross-hole electrical imaging of a controlled saline tracer injection. J. Appl. Geophys. 2000, 44, 85–102. [Google Scholar] [CrossRef]
- Kemna, A.; Vanderborght, J.; Kulessa, B.; Vereecken, H. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol. 2002, 267, 125–146. [Google Scholar] [CrossRef]
- Koestel, J.; Vanderborght, J.; Javaux, M.; Kemna, A.; Binley, A.; Vereecken, H. Noninvasive 3-D transport characterization in a sandy soil using ERT: 1. Investigating the validity of ERT-derived transport parameters. Vadose Zone J. 2009, 8, 711–722. [Google Scholar] [CrossRef]
- Koestel, J.; Vanderborght, J.; Javaux, M.; Kemna, A.; Binley, A.; Vereecken, H. Noninvasive 3-D transport characterization in a sandy soil using ERT: 2. Transport process inference. Vadose Zone J. 2009, 8, 723–734. [Google Scholar] [CrossRef]
- Huang, J.; Wan, L.; Peng, T.; Cao, W.; Wang, X. Exploration project of water source and some achievements in Yungang Grottoes. Eng. Investig. 2012, 40, 1–5. (In Chinese) [Google Scholar]
- Christoforou, C.S.; Salmon, L.G.; Cass, G.R. Air exchange within the Buddhist cave temples at Yungang, China. Atmos. Environ. 1996, 30, 3995–4006. [Google Scholar] [CrossRef]
- Liu, R.Z.; Zhang, B.J.; Zhang, H.; Shi, M.F. Deterioration of Yungang Grottoes: Diagnosis and research. J. Cult. Herit. 2011, 12, 494–499. [Google Scholar] [CrossRef]
- Wang, X.-S.; Wan, L.; Huang, J.; Cao, W.; Xu, F.; Dong, P. Variable temperature and moisture conditions in Yungang Grottoes, China, and their impacts on ancient sculptures. Environ. Earth Sci. 2014, 72, 3079–3088. [Google Scholar] [CrossRef]
- Wang, X.; Wan, L.; Peng, T.; Dong, P.; Qian, J. Formation and Migration of Infiltration Water in Yungang Grottoes. Eng. Investig. 2021, 11, 12–16. (In Chinese) [Google Scholar]
- LaBrecque, D.; Daily, W. Assessment of measurement errors for galvanic-resistivity electrodes of different composition. Geophysics 2008, 73, 55–64. [Google Scholar] [CrossRef]
- Wilkinson, P.B.; Loke, M.H.; Meldrum, P.I.; Chambers, J.E.; Kuras, O.; Gunn, D.A.; Ogilvy, R.D. Practical aspects of applied optimized survey design for electrical resistivity tomography. Geophys. J. Int. 2012, 189, 428–440. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.; Wilkinson, P.; Uhlemann, S.; Chambers, J.; Oxby, L. Computation of optimized arrays for 3-D electrical imaging surveys. Geophys. J. Int. 2014, 199, 1751–1764. [Google Scholar] [CrossRef] [Green Version]
- Loke, M. Time-Lapse resistivity imaging inversion. In Proceedings of the EEGS-ES 1999, Budapest, Hungary, 6–9 September 1999; p. 1. [Google Scholar]
- Chambers, J.; Gunn, D.; Wilkinson, P.; Meldrum, P.; Haslam, E.; Holyoake, S.; Kirkham, M.; Kuras, O.; Merritt, A.; Wragg, J. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surf. Geophys. 2014, 12, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Descloitres, M.; Ruiz, L.; Sekhar, M.; Legchenko, A.; Braun, J.-J.; Mohan Kumar, M.; Subramanian, S. Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol. Process. 2008, 22, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Clément, R.; Descloitres, M.; Günther, T.; Ribolzi, O.; Legchenko, A. Influence of shallow infiltration on time-lapse ERT: Experience of advanced interpretation. C. R. Geosci. 2009, 341, 886–898. [Google Scholar] [CrossRef]
- Reynolds, W.D. Measuring Soil Hydraulic Properties Using a Cased Borehole Permeameter: Steady Flow Analyses. Vadose Zone J. 2010, 9, 637–652. [Google Scholar] [CrossRef]
- Rodgers, M.; Mulqueen, J. Field-saturated hydraulic conductivity of soils from laboratory constant-head well tests. Irrig. Drain. Syst. 2004, 18, 315–327. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, D.; Wang, X.; Meng, J.; Ma, X.; Jiang, X.; Wan, L.; Yan, H.; Fan, Y. Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography. Hydrology 2022, 9, 77. https://doi.org/10.3390/hydrology9050077
Mao D, Wang X, Meng J, Ma X, Jiang X, Wan L, Yan H, Fan Y. Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography. Hydrology. 2022; 9(5):77. https://doi.org/10.3390/hydrology9050077
Chicago/Turabian StyleMao, Deqiang, Xudong Wang, Jian Meng, Xinmin Ma, Xiaowei Jiang, Li Wan, Hongbin Yan, and Yao Fan. 2022. "Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography" Hydrology 9, no. 5: 77. https://doi.org/10.3390/hydrology9050077
APA StyleMao, D., Wang, X., Meng, J., Ma, X., Jiang, X., Wan, L., Yan, H., & Fan, Y. (2022). Infiltration Assessments on Top of Yungang Grottoes by Time-Lapse Electrical Resistivity Tomography. Hydrology, 9(5), 77. https://doi.org/10.3390/hydrology9050077