Is Greenhouse Rainwater Harvesting Enough to Satisfy the Water Demand of Indoor Crops? Application to the Bolivian Altiplano
Abstract
:1. Introduction
2. Data and Methods
2.1. Greenhouse Characteristics
2.2. Rainfall Data
2.3. Temperature Data
2.4. Simulations of Rainwater Collected by Greenhouse Roofs
2.4.1. Type 1: Simulations Considering Water Irrigation Data from Farmers
2.4.2. Type 2: Simulation of Water Balance Considering Theoretical Irrigation Crop Requirements
2.5. Computation of Indoor Crop Water Requirements
2.5.1. Reference Crop Outdoor Evapotranspiration
2.5.2. Crop Indoor Evapotranspiration
2.6. Other Greenhouse Parameters
- The runoff coefficient (). This coefficient accounts for losses due to leakage, spillage, catchment surface wetting, and evaporation [36,40,41]. In our study, all greenhouse roofs are constructed with polyethylene, which has a under good conditions, and it decreases as it degrades [48,49]. Therefore, we have selected values of 0.8 and 0.9 for our Type 1 simulations.
- The maximum volume of rainfall water that can store a tank (). According to the tanks available on the market, we have selected the following values to perform the simulations: L.
- Irrigation frequency (). Based on the data we collected, farmers tend to irrigate every 2 or 3 days. Therefore, we will take both values to perform Type 1 simulations.
- The volume of water used to irrigate indoor greenhouse crops (, see last column of Table 1) in Type 1 simulations. The volume depends on the characteristics of the irrigation system, the duration of every irrigation event and the percentage of surface cultivated. With the following data provided by farmers, we have established two volumes according to the more common drip irrigation systems (because of different separation between hoses available in the market) and an average irrigation time of 30 min per event (Table 1).
- Surface of the greenhouse cultivated in Type 2 simulations (). Based on the standard greenhouse margins collected in the project (50 cm in all sides) and the distance between furrows, where the drip irrigation system is located, the surface cultivated is about 80% of the surface ground of a greenhouse, although it can vary (0.75–0.85) between greenhouses. Therefore, in our simulations, we multiply the greenhouse surface () by a factor of 0.8.
2.7. Example of Type 1 and Type 2 Simulations
3. Results and Discussions
3.1. Analysis of the Satisfied Irrigation Demand According to Farmers’ Information (Type 1 Simulations)
3.2. Analysis of Satisfied Irrigation Demand According to the Theoretical Crop Requirement (Type 2 Simulations)
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramírez, E.; Francou, B.; Ribstein, P.; Descloitres, M.; Guérin, R.; Mendoza, J.; Gallaire, R.; Pouyaud, B.; Jordan, E. Small glaciers disappearing in the tropical Andes: A case-study in Bolivia: Glaciar Chacaltaya (16° S). J. Glaciol. 2001, 47, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C. Weather whiplash: Trends in rapid temperature changes in a warming climate. Int. J. Climatol. 2021, 42, 4214–4222. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Rabatel, A.; Rivera, A.; Ruiz, L.; Pitte, P.; Ceballos, J.L.; Barcaza, G.; Soruco, A.; Bown, F.; Berthier, E.; et al. A Review of the Current State and Recent Changes of the Andean Cryosphere. Front. Earth Sci. 2020, 8, 99. [Google Scholar] [CrossRef]
- Thibeault, J.M.; Seth, A.; Garcia, M. Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J. Geophys. Res. Atmos. 2010, 115, 1–18. [Google Scholar] [CrossRef]
- Seiler, C.; Hutjes, R.W.A.; Kabat, P. Likely Ranges of Climate Change in Bolivia. J. Appl. Meteorol. Climatol. 2013, 52, 1303–1317. [Google Scholar] [CrossRef]
- Andrade, M.F. (Ed.) Atlas-Clima y Eventos Extremos del Altiplano Central perú-Boliviano/Climate and Extreme Events from the Central Altiplano of Peru and Bolivia 1981–2010; Geographica Bernensia: Bern, Switzerland, 2018; p. 118. [Google Scholar] [CrossRef]
- Soruco, A.; Vincent, C.; Rabatel, A.; Francou, B.; Thibert, E.; Sicart, J.E.; Condom, T. Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann. Glaciol. 2015, 56, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Rangecroft, S.; Harrison, S.; Anderson, K. Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance. Arct. Antarct. Alp. Res. 2015, 47, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere 2016, 10, 2399–2413. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Raes, D.; Jacobsen, S.E.; Michel, T. Agroclimatic constraints for rainfed agriculture in the Bolivian Altiplano. J. Arid. Environ. 2007, 71, 109–121. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Kenawy, A.E.; Azorin-Molina, C.; Chura, O.; Trujillo, F.; Aguilar, E.; Martín-Hernández, N.; López-Moreno, J.; Sanchez-Lorenzo, A.; Moran-Tejeda, E.; et al. Average monthly and annual climate maps for Bolivia. J. Maps 2016, 12, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Canedo-Rosso, C.; Uvo, C.B.; Berndtsson, R. Precipitation variability and its relation to climate anomalies in the Bolivian Altiplano. Int. J. Climatol. 2019, 39, 2096–2107. [Google Scholar] [CrossRef] [Green Version]
- Satgé, F.; Ruelland, D.; Bonnet, M.P.; Molina, J.; Pillco, R. Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow-hydrological modelling in the Lake Titicaca region. Hydrol. Earth Syst. Sci. 2019, 23, 595–619. [Google Scholar] [CrossRef] [Green Version]
- Miranda, G.; Chávez, R.; Argollo, J.; Figueroa, F. Dinamica de las precipitaciones pliviales en el Altiplano Boliviano. In Simposio Nacional de Cambios Globales; Argollo, J., Miranda, G., Eds.; Centro Investigaciones Cambios Globales: La Paz, Bolivia, 2000; pp. 56–67. [Google Scholar]
- François, C.; Bosseno, R.; Vacher, J.; Seguin, B. Frost risk mapping derived from satellite and surface data over the Bolivian Altiplano. Agric. For. Meteorol. 1999, 95, 113–137. [Google Scholar] [CrossRef]
- Buxton, N.; Escobar, M.; Purkey, D.; Lima, N. Water Scarcity, Climate Change and Bolivia: Planning for Climate Uncertainties; Technical Report; Stockholm Environment Institute: Stockholm, Sweden, 2013. [Google Scholar]
- Seiler, C.; Hutjes, R.W.A.; Kabat, P. Climate Variability and Trends in Bolivia. J. Appl. Meteorol. Climatol. 2013, 52, 130–146. [Google Scholar] [CrossRef] [Green Version]
- Canedo-Rosso, C.; Hochrainer-Stigler, S.; Pflug, G.; Condori, B.; Berndtsson, R. Drought impact in the Bolivian Altiplano agriculture associated with the El Niño–Southern Oscillation using satellite imagery data. Nat. Hazards Earth Syst. Sci. 2021, 21, 995–1010. [Google Scholar] [CrossRef]
- Tito, C.; Wanderley, F. Contribución de la Agricultura Familiar Campesina e Indígena a la Producción y Consumo de Alimentos en Bolivia, 1st ed.; CIPCA: La Paz, Bolivia, 2021; p. 137. [Google Scholar]
- INE. Encuesta Agropecuaria 2015; Technical Report; Instituto Nacional de Estadística: La Paz, Bolivia, 2017. [Google Scholar]
- Urioste, M. Concentration and “foreignisation” of land in Bolivia. Can. J. Dev. Stud. 2012, 33, 439–457. [Google Scholar] [CrossRef]
- Winkel, T.; Alvarez-Flores, R.; Bommel, P.; Bourliaud, J.; Chevarria Lazo, M. The Southern Altiplano of Bolivia. State of the Art Report on Quinoa around the World in 2013; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 589. [Google Scholar]
- FAO. El Alto; Technical Report; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Roma, Italy, 2014. [Google Scholar]
- Torrico Albino, J.C. Desarrollo Rural y Agroalimentario en Bolivia: Procesos, Problemática y Perspectivas, 1st ed.; ePubli: Cologne, Germany, 2014; p. 333. [Google Scholar]
- Gianotten, V. CIPCA y Poder Campesino Indígena. 35 años de Historia, 1st ed.; CIPCA: La Paz, Bolivia, 2006; p. 412. [Google Scholar]
- Pérez Mamani, V. (Ed.) Beneficios de los Sistemas Agroecológicos Familiares en el Altiplano, 1st ed.; CIPCA: La Paz, Bolivia, 2021; p. 238. [Google Scholar]
- MDRyT. Plan del Sector Agropecuario y Rural con Desarrollo Integral Para Vivir Bien-PSARDI; Technical Report; Ministerio de Desarrollo Rural y Tierras: La Paz, Bolivia, 2017. [Google Scholar]
- FAO. Carpas Solares de Hampaturi en Plena Producción; Technical Report; Food and Agriculture Organization: Roma, Italy, 2015. [Google Scholar]
- MMAyA. Más de Mil Millones de Bolivianos en Inversión en Proyectos de Agua a Nivel Nacional; Technical Report; Ministerio de Medio Ambiente y Agua: La Paz, Bolivia, 2021. [Google Scholar]
- MDRyT. Inversión Histórica: Gobierno Nacional Aprueba Presupuesto Para Fortalecer la Producción Agrícola Urbana y Periurbana; Technical Report; Ministerio de Desarrollo Rural y Tierras: La Paz, Bolivia, 2021. [Google Scholar]
- Doss, C.R. Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agric. Econ. 2006, 34, 207–219. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agric. Syst. 2012, 110, 41–53. [Google Scholar] [CrossRef]
- Mugambi, D.M. Factors Influencing the Adoption of Greenhouse Farming by Smallholders in Central Imenti Subcounty in Meru County. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2020. [Google Scholar]
- Muriithi, D.I.; Wambua, B.N.; Omoke, K.J. Constraints and Opportunities for Greenhouse Farming Technology as an Adaptation Strategy to Climate Variability by Smallholder Farmers of Nyandarua County of Kenya. East Afr. J. Sci. Technol. Innov. 2021, 2, 1–13. [Google Scholar]
- Gossweiler, B.; Wesström, I.; Messing, I.; Romero, A.M.; Joel, A. Spatial and Temporal Variations in Water Quality and Land Use in a Semi-Arid Catchment in Bolivia. Water 2019, 11, 2227. [Google Scholar] [CrossRef] [Green Version]
- Aladenola, O.O.; Adeboye, O.B. Assessing the Potential for Rainwater Harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- Clifford, A. Multivariate Error Analysis: A Handbook of Error Propagation and Calculation in Many-Parameter Systems; John Wiley & Sons: Hoboken, NJ, USA, 1973. [Google Scholar]
- Imteaz, M.A.; Shanableh, A.; Rahman, A.; Ahsan, A. Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia. Resour. Conserv. Recycl. 2011, 55, 1022–1029. [Google Scholar] [CrossRef]
- Kakoulas, D.A.; Golfinopoulos, S.K.; Koumparou, D.; Alexakis, D.E. The Effectiveness of Rainwater Harvesting Infrastructure in a Mediterranean Island. Water 2022, 14, 716. [Google Scholar] [CrossRef]
- Thomas, T.H.; Martinson, D.B. Roofwater Harvesting: A Handbook for Practitioners; Technical Report Technical Paper Series; IRC International Water and Sanitation Centre: Delft, The Netherlands, 2007. [Google Scholar]
- Ishaku, H.T.; Majid, M.R.; Johar, F. Rainwater Harvesting: An Alternative to Safe Water Supply in Nigerian Rural Communities. Water Resour. Manag. 2012, 26, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Chura, O.; López-Moreno, J.I.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Aguilar, E.; Moran-Tejeda, E.; Trujillo, F.; Martínez, R.; Nieto, J.J. Spatio-temporal variability of droughts in Bolivia: 1955–2012. Int. J. Climatol. 2015, 35, 3024–3040. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Choueiter, D.; Farajalla, N. National Guidelines for Greenhouse Rainwater Harvesting Systems in the Agriculture Sector; Technical Report; Ministry of Environment and United Nations Development Programme: Beirut, Lebanon, 2016. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of Greenhouse Crops. Horticulturae 2019, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; Technical Report; FAO-Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Ghisi, E.; da Fonseca Tavares, D.; Rocha, V.L. Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis. Resour. Conserv. Recycl. 2009, 54, 79–85. [Google Scholar] [CrossRef]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Tayà, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef]
- Lupia, F.; Baiocchi, V.; Lelo, K.; Pulighe, G. Exploring Rooftop Rainwater Harvesting Potential for Food Production in Urban Areas. Agriculture 2017, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Rowe, M.P. Rain Water Harvesting in Bermuda. J. Am. Water Resour. Assoc. 2011, 47, 1219–1227. [Google Scholar] [CrossRef]
- Londra, P.A.; Kotsatos, I.E.; Theotokatos, N.; Theocharis, A.T.; Dercas, N. Reliability Analysis of Rainwater Harvesting Tanks for Irrigation Use in Greenhouse Agriculture. Hydrology 2021, 8, 132. [Google Scholar] [CrossRef]
- Red-Hábitat. Gestión Integral del Agua. Available online: https://cambioclimatico-bolivia.org/archivos/20120806044617_0.pdf (accessed on 4 October 2021).
- Marengo, J.A.; Jones, R.; Alves, L.M.; Valverde, M.C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol. 2009, 29, 2241–2255. [Google Scholar] [CrossRef] [Green Version]
- Cabré, M.F.; Solman, S.; Núñez, M. Regional climate change scenarios over southern South America for future climate (2080–2099) using the MM5 Model. Mean, interannual variability and uncertainties. Atmósfera 2016, 29, 35–60. [Google Scholar] [CrossRef] [Green Version]
Greenhouse | Position | Greenhouse Surface (m2) | Closest Rain Gauge | Distance (km) | Catchment Surface (m2) | Ca [L] |
---|---|---|---|---|---|---|
1 | (16.266 S, 68.475 W) | 261.3 | Chirapaca | 0.4 | 300.0 | (156.96, 77.76) |
2 | (16.269 S, 68.470 W) | 19.3 | Chirapaca | 4.3 | 22.0 | (11.88, 5.58 ) |
3 | (16.272 S, 68.470 W) | 49.5 | Chirapaca | 4.4 | 57.3 | (18.30, 8.91 ) |
4 | (16.272 S, 68.470 W) | 29.3 | Chirapaca | 4.4 | 46.2 | (9.90, 4.77) |
5 | (16.272 S, 68.459 W) | 19.3 | Chirapaca | 4.4 | 22.4 | (14.65, 6.88) |
6 | (16.260 S, 68.456 W) | 18.4 | Chirapaca | 6.2 | 20.5 | (23.04, 10.80) |
7 | (16.261 S, 68.459 W) | 18.9 | Chirapaca | 6.3 | 20.5 | (23.04, 10.80) |
8 | (16.258 S, 68.499 W) | 18.4 | Chirapaca | 6.3 | 21.1 | (11.52, 5.40) |
9 | (16.307 S, 68.465 W) | 44 | Chirapaca | 0.9 | 46.1 | (19.80, 9.68) |
10 | (16.292 S, 68.482 W) | 89.3 | Chirapaca | 3.8 | 140.1 | (47.52, 23.40) |
11 | (16.281 S, 68.544 W) | 60.0 | Chirapaca | 2.7 | 72.0 | (49.14, 23.94) |
12 | (16.338 S, 68.475 W) | 80.3 | Huayrocondo | 5.1 | 126.0 | (125.82, 61.83 ) |
13 | (16.335 S, 68.571 W) | 35.0 | Huayrocondo | 8.0 | 38.8 | (34.63, 16.87) |
14 | (16.316 S, 68.546 W ) | 75.0 | Chirapaca | 5.6 | 118.5 | (138.24, 68.04) |
15 | (16.305 S, 68.546 W) | 100.0 | Chirapaca | 5.4 | 158.0 | (181.44, 89.64) |
16 | (16.323 S, 68.546 W) | 75.0 | Huayrocondo | 5.8 | 118.5 | (69.12, 34.02) |
17 | (16.308 S, 68.552 W) | 75.0 | Chirapaca | 6.0 | 118.5 | (23.04, 11.34) |
18 | (16.308 S, 68.552 W) | 113.9 | Chirapaca | 6.0 | 178.0 | (32.76, 16.17) |
19 | (16.348 S, 68.571 W) | 106.2 | Huayrocondo | 8.0 | 167.4 | (105.23, 51.95) |
20 | (16.308 S, 68.524 W) | 168.0 | Chirapaca | 3.0 | 178.3 | (184.70, 91.46) |
21 | (16.319 S, 68.519 W) | 108.0 | Chirapaca | 3.2 | 169.2 | (199.08, 98.28) |
22 | (16.258 S, 68.568 W) | 250.0 | Copancara | 2.1 | 292.3 | (266.18, 131.87) |
23 | (16.262 S, 68.561 W) | 255.0 | Copancara | 2.6 | 306.0 | (441.54, 218.79) |
24 | (16.259 S, 68.567 W) | 57.5 | Copancara | 2.2 | 67.3 | (100.44, 49.14) |
25 | (16.019 S, 68.517 W ) | 39.2 | Corpaputo | 6.4 | 39.6 | (51.84, 24.84) |
Windows | Rain Gauge | Coverage | Daily Max. (mm) | Total Rainfall (mm) | % of Rainy Days |
---|---|---|---|---|---|
Chirapaca | 1 January 1992–31 December 2001 | 40.0 | 5703.3 | 25.4 % | |
Chirapaca | 1 July 2004–30 June 2014 | 30.0 | 5020.8 | 23.2 % | |
Huayrocondo | 1 January 1992–31 December 2001 | 40.6 | 4869.5 | 22.8 % | |
Huayrocondo | 1 July 2004–30 June 2014 | 37.4 | 5186.7 | 30.5 % | |
Copancara | 1 January 1990–31 December 1999 | 37 | 4323.5 | 16.8 % | |
Copancara | 1 July 2001–30 June 2011 | 42.0 | 4589.8 | 14.0 % | |
Corpaputo | 1 January 1981–31 December 1990 | 32.9 | 7149.7 | 34.3 % | |
Corpaputo | 1 July 1992–30 June 2002 | 23.2 | 6769.8 | 32.1 % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayol, J.-M.; Azeñas, V.; Quezada, C.E.; Vigo, I.; Benavides López, J.-P. Is Greenhouse Rainwater Harvesting Enough to Satisfy the Water Demand of Indoor Crops? Application to the Bolivian Altiplano. Hydrology 2022, 9, 107. https://doi.org/10.3390/hydrology9060107
Sayol J-M, Azeñas V, Quezada CE, Vigo I, Benavides López J-P. Is Greenhouse Rainwater Harvesting Enough to Satisfy the Water Demand of Indoor Crops? Application to the Bolivian Altiplano. Hydrology. 2022; 9(6):107. https://doi.org/10.3390/hydrology9060107
Chicago/Turabian StyleSayol, Juan-Manuel, Veriozka Azeñas, Carlos E. Quezada, Isabel Vigo, and Jean-Paul Benavides López. 2022. "Is Greenhouse Rainwater Harvesting Enough to Satisfy the Water Demand of Indoor Crops? Application to the Bolivian Altiplano" Hydrology 9, no. 6: 107. https://doi.org/10.3390/hydrology9060107
APA StyleSayol, J. -M., Azeñas, V., Quezada, C. E., Vigo, I., & Benavides López, J. -P. (2022). Is Greenhouse Rainwater Harvesting Enough to Satisfy the Water Demand of Indoor Crops? Application to the Bolivian Altiplano. Hydrology, 9(6), 107. https://doi.org/10.3390/hydrology9060107