Water Quality Assessment of Urban Ponds and Remediation Proposals
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
2.2. Water Sampling
2.3. Remediation Measures
3. Results and Discussion
3.1. On-Site Water Quality Measurements and Sulfate Analysis
3.2. Assessment of Water Organics and Total Suspended Solids Content
3.3. Nutrients Analysis
3.4. Relevance of FTW for Water Quality Management
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Arroyo, A.; Jáuregui, E. On the environmental role of urban lakes in Mexico City. Urban Ecosyst. 2000, 4, 145–166. [Google Scholar] [CrossRef]
- Persson, J. Urban Lakes And Ponds. In Encyclopedia of Lakes and Reservoirs; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Robitu, M.; Musy, M.; Inard, C.; Groleau, D. Modeling the influence of vegetation and water pond on urban microclimate. Sol. Energy 2006, 80, 435–447. [Google Scholar] [CrossRef]
- Gledhill, D.G.; James, P. Socio-economic variables as indicators of pond conservation value in an urban landscape. Urban Ecosyst. 2012, 15, 849–861. [Google Scholar] [CrossRef]
- Oertli, B.; Parris, K.M. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 2019, 10, e02810. [Google Scholar] [CrossRef] [Green Version]
- Céréghino, R.; Boix, D.; Cauchie, H.-M.; Martens, K.; Oertli, B. The ecological role of ponds in a changing world. Hydrobiologia 2013, 723, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bennion, H.; Smith, M.A. Variability in the water chemistry of shallow ponds in southeast England, with special reference to the seasonality of nutrients and implications for modelling trophic status. Hydrobiologia 2000, 436, 145–158. [Google Scholar] [CrossRef]
- Sharip, Z.; Mohamad, M.F. Microbial Contamination in Urban Tropical Lentic Waterbodies and Ponds along an Urbanization Gradient, Pertanika. J. Trop. Agric. Sci. 2019, 42, 165–184. [Google Scholar]
- World Health Organization. Guidelines for Safe Recreational Water Environments. Volume 1: Coastal and fresh Waters; World Health Organization: Geneve, Switzerland, 2003. [Google Scholar]
- Ferreira, V.; Magalh, R.; Teixeira, P.; Maria, P.; Castro, L.; Sousa, C.; Calheiros, C. Occurrence of Fecal Bacteria and Zoonotic Pathogens in Different Water Bodies: Supporting Water Quality Management. Water 2022, 14, 780. [Google Scholar] [CrossRef]
- Waajen, G.; van Oosterhout, F.; Douglas, G.; Lürling, M. Geo-engineering experiments in two urban ponds to control eutrophication. Water Res. 2016, 97, 69–82. [Google Scholar] [CrossRef]
- Turner, A.M.; Ruhl, N. Phosphorus Loadings Associated with a Park Tourist Attraction: Limnological Consequences of Feeding the Fish. Environ. Manag. 2007, 39, 526–533. [Google Scholar] [CrossRef]
- Scherer, N.M.; Gibbons, H.L.; Stoops, K.B.; Muller, M. Phosphorus Loading of an Urban Lake by Bird Droppings. Lake Reserv. Manag. 1995, 11, 317–327. [Google Scholar] [CrossRef]
- Daniel, T.C.; Wendt, R.C.; McGuire, P.E.; Stoffel, D. Nonpoint Source Loading Rates From Selected Land Uses. J. Am. Water Resour. Assoc. 1982, 18, 117–120. [Google Scholar] [CrossRef]
- Zhao, J.-W.; Shan, B.-Q.; Yin, C.-Q. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area. J. Environ. Sci. 2007, 19, 464–468. [Google Scholar] [CrossRef]
- Kunimatsu, T.; Sudo, M.; Kawachi, T. Loading rates of nutrients discharging from a golf course and a neighboring forested basin. Water Sci. Technol. 1999, 39, 99–107. [Google Scholar] [CrossRef]
- Toor, G.S.; Occhipinti, M.L.; Yang, Y.-Y.; Majcherek, T.; Haver, D.; Oki, L. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff. PLoS ONE 2017, 12, e0179151. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Fisher, M.M.; Wang, Y.; White, J.R.; James, R.T. Potential Effects of Sediment Dredging on Internal Phosphorus Loading in a Shallow, Subtropical Lake. Lake Reserv. Manag. 2007, 23, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Ramm, K.; Scheps, V. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia 1997, 342, 43–53. [Google Scholar] [CrossRef]
- James, W.F.; Barko, J.W.; Eakin, H.L.; Sorge, P.W. Phosphorus Budget and Management Strategies for an Urban Wisconsin Lake. Lake Reserv. Manag. 2002, 18, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Internal phosphorus loading in shallow Danish lakes. In Developments in Hydrobiologia; Walz, N., Nixdorf, B., Eds.; Springer: Dordrecht, The Netherlands, 1999; Volume 143, pp. 408–409. [Google Scholar] [CrossRef]
- Reddy, K.R.; Fisher, M.M.; Ivanoff, D. Resuspension and Diffusive Flux of Nitrogen and Phosphorus in a Hypereutrophic Lake. J. Environ. Qual. 1996, 25, 363–371. [Google Scholar] [CrossRef]
- Christensen, V.G.; Maki, R.P.; Stelzer, E.A.; Norland, J.E.; Khan, E. Phytoplankton community and algal toxicity at a recurring bloom in Sullivan Bay, Kabetogama Lake, Minnesota, USA. Sci. Rep. 2019, 9, 16129. [Google Scholar] [CrossRef]
- Stoianov, I.; Chapra, S.; Maksimovic, C. A framework linking urban park land use with pond water quality. Urban Water 2000, 2, 47–62. [Google Scholar] [CrossRef]
- Lijklema, L. Nutrient dynamics in shallow lakes: Effects of changes in loading and role of sediment-water interactions. Hydrobiologia 1994, 275-276, 335–348. [Google Scholar] [CrossRef]
- Welch, E.B.; Cooke, G.D. Internal Phosphorus Loading in Shallow Lakes: Importance and Control. Lake Reserv. Manag. 2005, 21, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Limnology, 3rd ed.; Academic Press: San Diego, CA, USA, 2001; pp. 395–488. [Google Scholar] [CrossRef]
- Dodkins, I.; Mendzil, A.F.; O’Dea, L. Enterprise Assist: Floating Treatment Wetlands (FTWs) in Water Treatment: Treatment Efficiency and Potential Benefits of Activated Carbon; Swansea University: Swansea, UK, 2014. [Google Scholar]
- O’Dell, K.M.; VanArman, J.; Welch, B.H.; Hill, S.D. Changes in Water Chemistry in a Macrophyte-Dominated Lake Before and After Herbicide Treatment. Lake Reserv. Manag. 1995, 11, 311–316. [Google Scholar] [CrossRef]
- Wagner, K.I.; Hauxwell, J.; Rasmussen, P.W.; Koshere, F.; Toshner, P.; Aron, K.; Helsel, D.R.; Provost, S.; Gansberg, M.; Masterson, J.; et al. Whole-lake Herbicide Treatments for Eurasian Watermilfoil in Four Wisconsin Lakes: Effects on Vegetation and Water Clarity. Lake Reserv. Manag. 2007, 23, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Brookes, J.; Burch, M.; Gruützmacher, G.; Klitzke, S. Chapter 9. Remedial Measures. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; CRC Press: London, UK, 1999. [Google Scholar]
- Oberholster, P.J.; Botha, A.; Cloete, T.E. Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2006, 11, 111–123. [Google Scholar] [CrossRef]
- Rosińska, J.; Kozak, A.; Dondajewska, R.; Gołdyn, R. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. J. Environ. Manag. 2017, 198, 340–347. [Google Scholar] [CrossRef]
- Shan, M.; Wang, Y.; Xue, S. Study on bioremediation of eutrophic lake. J. Environ. Sci. 2009, 21, S16–S18. [Google Scholar] [CrossRef]
- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association/American Water Works Association/Water Pollution Control Federation: Washington, DC, USA, 1995. [Google Scholar]
- Composites, A.C. Technical bulletin Cork Floating Island®, 2018. ACC.851. 2018. Available online: https://amorimcorkcomposites.com/media/5627/tb-cork-floating-island.pdf (accessed on 1 June 2022).
- Ravikumar, P.; Prakash, K.L.; Somashekar, R.K. Evaluation of water quality using geochemical modeling in the Bellary Nala Command area, Belgaum district, Karnataka State, India. Carbonates Evaporites 2013, 28, 365–381. [Google Scholar] [CrossRef]
- Figueiredo, A.; Amaral, L.; Pacheco, J. Assessment for which tide level occurs saltwater intrusion in a sewer network. Case study: Barreiro/Moita WWTP, Portugal. Water Pract. Technol. 2020, 15, 723–733. [Google Scholar] [CrossRef]
- Bhat, M.M.; Yazdani, T.; Narain, K.; Yunus, M.; Shukla, R.N. Water Quality Status of Some Urban Ponds of Lucknow, Uttar Pradesh. J. Wetl. Ecol. 1970, 2, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Chang, X.; Duan, T.; Wang, X.; Wei, T.; Li, Y. Water quality responses to rainfall and surrounding land uses in urban lakes. J. Environ. Manag. 2021, 298, 113514. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Carecho, J.; Tomasino, M.P.; Almeida, C.M.R.; Mucha, A.P. Floating Wetland Islands Implementation and Biodiversity Assessment in a Port Marina. Water 2020, 12, 3273. [Google Scholar] [CrossRef]
- Pavlineri, N.; Skoulikidis, N.T.; Tsihrintzis, V.A. Constructed Floating Wetlands: A review of research, design, operation and management aspects, and data meta-analysis. Chem. Eng. J. 2017, 308, 1120–1132. [Google Scholar] [CrossRef]
- Colares, G.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Headley, T.; Tanner, C. Application of Floating Wetlands for Enhanced Stormwater Treatment: A Review; National Institute of Water & Atmospheric Research Ltd: Hamilton, New Zealand, 2006. [Google Scholar]
- Calheiros, C.S.C.; Silva, G.; Quitério, P.V.B.; Crispim, L.F.C.; Brix, H.; Moura, S.C.; Castro, P.M.L. Toxicity of High Salinity Tannery Wastewater and Effects on Constructed Wetland Plants. Int. J. Phytoremediation 2012, 14, 669–680. [Google Scholar] [CrossRef]
- Barco, A.; Bona, S.; Borin, M. Plant species for floating treatment wetlands: A decade of experiments in North Italy. Sci. Total Environ. 2021, 751, 141666. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Zhang, S.; Zhou, Q.; Xu, D.; Lin, J.; Cheng, S.; Wu, Z. Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. J. Environ. Sci. 2010, 22, 218–224. [Google Scholar] [CrossRef]
- Lloyd, P.; Alexander, P. Wetlands Watch. A Field Guide for Monitoring Wetlands in the Southern Section of the Murray-Darling Basin; Speciality Press: Albury, NSW, Australia, 2002. [Google Scholar]
- Suski, J.G.; Swan, C.M.; Salice, C.J.; Wahl, C.F. Effects of pond management on biodiversity patterns and community structure of zooplankton in urban environments. Sci. Total Environ. 2018, 619–620, 1441–1450. [Google Scholar] [CrossRef]
Pond | Surface Area (m2) | Volume (m3) | Water Sources | Coordinates |
---|---|---|---|---|
QC | 2500 | 1262 | GW | (38.76985, −9.15837) |
PO3 | 565 | 450 | GW + PWS | (38.77816, −9.15005) |
PO5 | 17000 | 17443 | SW + GW * | (38.78023, −9.15486) |
JE | 465 | 252 | PWS | (38.71494, −9.15837) |
EF | 3685 | 2011 | PWS | (38.72884, −9.15477) |
DC | 2607 | 3650 | river Tagus (BW) | (38.70668, −9.13811) |
Parameter | QC | PO3 | PO5 | JE | EF | DC | |
---|---|---|---|---|---|---|---|
T | max | 23.7 | 19.4 | 22.8 | 24.5 | 26.4 | 23.7 |
(°C) | min | 13.8 | 14.3 | 13.5 | 13.4 | 15.5 | 15.4 |
average | 18.9 | 17.4 | 18.6 | 18.3 | 20.6 | 20.2 | |
n | 13 | 6 | 10 | 12 | 13 | 13 | |
pH | max | 9.2 | 8.9 | 9.3 | 8.4 | 9.8 | 9.4 |
min | 8.0 | 8.0 | 8.0 | 7.4 | 8.0 | 7.0 | |
average | 8.6 | 8.4 | 8.5 | 7.9 | 9.0 | 8.1 | |
n | 14 | 7 | 10 | 13 | 14 | 16 | |
DO | max | 10.1 | 12.0 | 12.3 | 10.6 | 12.5 | 15.2 |
(mg/L) | min | 4.3 | 7.2 | 7.4 | 4.9 | 9.1 | 1.3 |
average | 8.5 | 9.5 | 9.7 | 8.2 | 10.7 | 6.8 | |
n | 13 | 7 | 10 | 13 | 13 | 13 | |
EC | max | 1160 | 1058 | 610 | 407 | 459 | 2000 |
(µS/cm) | min | 301 | 355 | 373 | 286 | 269 | 847 |
average | 584 | 610 | 482 | 334 | 332 | 1255 | |
n | 10 | 5 | 7 | 10 | 9 | 10 |
Parameter | QC | PO3 | PO5 | JE | EF | DC | |
---|---|---|---|---|---|---|---|
BOD5 (mg O2/L) | max | nd | nd | nd | 14 | 20 | 24 |
min | nd | nd | nd | 4 | 2 | 4 | |
average | nd | nd | nd | 8 | 9 | 11 | |
n | nd | nd | nd | 5 | 5 | 6 | |
COD (mg O2/L) | max | 150 | 56 | 225 | 115 | 136 | 149 |
min | 30 | 17 | 25 | 37 | 5 | 32 | |
average | 73 | 36 | 90 | 74 | 64 | 74 | |
n | 13 | 7 | 10 | 13 | 13 | 13 | |
TSS (mg/L) | max | 28 | 20 | 220 | 100 | 35 | 86 |
min | 6 | 2 | 20 | 6 | 4 | 8 | |
average | 15 | 7 | 93 | 27 | 14 | 23 | |
n | 13 | 7 | 10 | 13 | 11 | 13 |
Parameter | JE | EF | DC | |
---|---|---|---|---|
NO3−-N (mg N/L) | max | 1.24 | 1.35 | 4.20 |
min | 0.33 | 0.33 | 0.86 | |
average | 0.65 | 0.70 | 2.46 | |
n | 4 | 4 | 5 | |
NH3-N (mg N/L) | max | <dl (0.1) | 0.1 | 2.94 |
min | <dl (0.1) | 0.1 | 0.12 | |
average | - | 0.10 | 1.32 | |
n | 5 | 5 | 6 | |
KN (mg N/L) | max | 2.82 | 3.49 | 9.40 |
min | 0.98 | 0.45 | 1.78 | |
average | 1.50 | 1.69 | 4.46 | |
n | 5 | 5 | 6 | |
TP (mg P/L) | max | 0.34 | nd | 1.50 |
min | 0.125 | nd | 0.62 | |
average | 0.20 | nd | 1.09 | |
n | 3 | nd | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, A.; Calheiros, C.S.C.; Teixeira, P.; Galvão, A. Water Quality Assessment of Urban Ponds and Remediation Proposals. Hydrology 2022, 9, 114. https://doi.org/10.3390/hydrology9070114
Rodrigues A, Calheiros CSC, Teixeira P, Galvão A. Water Quality Assessment of Urban Ponds and Remediation Proposals. Hydrology. 2022; 9(7):114. https://doi.org/10.3390/hydrology9070114
Chicago/Turabian StyleRodrigues, Andreia, Cristina Sousa Coutinho Calheiros, Pedro Teixeira, and Ana Galvão. 2022. "Water Quality Assessment of Urban Ponds and Remediation Proposals" Hydrology 9, no. 7: 114. https://doi.org/10.3390/hydrology9070114
APA StyleRodrigues, A., Calheiros, C. S. C., Teixeira, P., & Galvão, A. (2022). Water Quality Assessment of Urban Ponds and Remediation Proposals. Hydrology, 9(7), 114. https://doi.org/10.3390/hydrology9070114