A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future
Abstract
:1. Introduction
2. Role of Evapotranspiration in Agricultural Water Management
2.1. Climate Change and Agricultural Water Crisis/Demand
2.2. Importance of Accurate ET Estimation in Precision Agriculture
2.3. Current Status of the ET Estimation in Agricultural Water Management
3. Future Research Developments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griepentrog, H.W.; Uppenkamp, N.; Hörner, R.; DLG Committee. Opportunities. Risks. Acceptance: Digital Agriculture; Food and Agriculture Organization of the United Nations: Frankfurt, Germany, 2018. [Google Scholar]
- Van Mourik, S.; van der Tol, R.; Linker, R.; Reyes-Lastiri, D.; Kootstra, G.; Koerkamp, P.G.; van Henten, E.G. Introductory overview: Systems and control methods for operational management support in agricultural production systems. Environ. Model. Softw. 2021, 139, 105031. [Google Scholar] [CrossRef]
- Vanschoenwinkel, J.; Van Passel, S. Climate response of rainfed versus irrigated farms: The bias of farm heterogeneity in irrigation. Clim. Chang. 2018, 147, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, S.; Graterol, E.; Pulver, E. Sustainable Transformation of Rainfed to Irrigated Agriculture through Water Harvesting and Smart Crop Management Practices. Front. Sustain. Food Syst. 2020, 4, 437086. [Google Scholar] [CrossRef]
- Water in Agriculture. Available online: https://www.worldbank.org/en/topic/water-in-agriculture#1 (accessed on 8 May 2020).
- Asmamaw, D.K.; Janssens, P.; Dessie, M.; Tilahun, S.; Adgo, E.; Nyssen, J.; Walraevens, K.; Cornelis, W.M. Deficit irrigation as a sustainable option for improving water productivity in Sub-Saharan Africa: The case of Ethiopia. A critical review. Environ. Res. Commun. 2021, 3, 102001. [Google Scholar] [CrossRef]
- Meybeck, A.; Redfern, S. Knowledge and Information for Sustainable Food Systems—A Workshop of the FAO/UNEP Programme on Sustainable Food Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Zongo, B.; Barbier, B.; Diarra, A.; Zorom, M.; Atewamba, C.; Combary, O.S.; Ouédraogo, S.; Toé, P.; Hamma, Y.; Dogot, T. Economic analysis and food security contribution of supplemental irrigation and farm ponds: Evidence from northern Burkina Faso. Agric. Food Secur. 2022, 11, 4. [Google Scholar] [CrossRef]
- World Bank. World Bank Data: Annual Freshwater Withdrawals, Agriculture (% of Total Freshwater Withdrawal). 2020. Available online: https://data.worldbank.org/indicator/ER.H2O.FWAG.ZS?end=2016&start=2011&view=chart (accessed on 14 October 2020).
- Bruinsma, J. How to Feed the World in 2050; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef] [Green Version]
- OECD. Education at a Glance 2014; OECD Indicators; OECD Publishing: Paris, France, 2014. [Google Scholar]
- OECD. Sustainable Management of Water Resources in Agriculture; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Islam, S.M.F.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination—Challenges and Opportunities; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Aryalekshmi, B.; Biradar, R.C.; Chandrasekar, K.; Ahamed, J.M. Analysis of various surface energy balance models for evapotranspiration estimation using satellite data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1119–1126. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Entezari, A.; Wang, R.; Zhao, S.; Mahdinia, E.; Wang, J.; Tu, Y.; Huang, D. Sustainable agriculture for water-stressed regions by air-water-energy management. Energy 2019, 181, 1121–1128. [Google Scholar] [CrossRef]
- de Jong, I.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N. Improving agricultural water productivity with a focus on rural transformation. Irrig. Drain. 2020, 70, 458–469. [Google Scholar] [CrossRef]
- Ku, L. New Agriculture Technology in Modern Farming. Available online: https://www.plugandplaytechcenter.com/resources/new-agriculture-technology-modern-farming/ (accessed on 7 January 2020).
- Sun, T.; Huang, Q.; Wang, J. Estimation of Irrigation Water Demand and Economic Returns of Water in Zhangye Basin. Water 2017, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, S.; Chen, H.; Wang, J.; Tao, Y.; Liu, J. Evaluation of Water-Storage and Water-Saving Potential for Paddy Fields in Gaoyou, China. Water 2018, 10, 1176. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, Y.; Yadav, S.; Evangelista, G.K.; Villanueva, D.; Burac, M.A.; Pede, V. Disentangling Challenges to Scaling Alternate Wetting and Drying Technology for Rice Cultivation: Distilling Lessons From 20 Years of Experience in the Philippines. Front. Sustain. Food Syst. 2021, 5, 194. [Google Scholar] [CrossRef]
- Altobelli, F.; Meybeck, A.; Gitz, V. Accounting for water use in agriculture. In Knowledge and Information for Sustainable Food Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef] [Green Version]
- Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements. Water 2022, 14, 734. [Google Scholar] [CrossRef]
- Moiwo, J.P.; Tao, F. Contributions of precipitation, irrigation and soil water to evapotranspiration in (semi)-arid regions. Int. J. Clim. 2014, 35, 1079–1089. [Google Scholar] [CrossRef]
- Althoff, D.; Alvino, F.C.G.; Filgueiras, R.; Aleman, C.C.; Da Cunha, F.F. Evapotranspiration for irrigated agriculture using orbital satellites. Biosci. J. 2019, 670–678. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V. Precipitation and Potential Evapotranspiration Temporal Variability and Their Relationship in Two Forest Ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
- Zheng, Q.; Hao, L.; Huang, X.; Sun, L.; Sun, G. Effects of Urbanization on Watershed Evapotranspiration and Its Components in Southern China. Water 2020, 12, 645. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Gonzalez, A. Using Remote Sensing to Estimate Crop Water Use to Improve Irrigation Water Management. Published Doctoral Dissertation, South Dakota State University, Brookings, SD, USA, 2017. [Google Scholar]
- Afzaal, H.; Farooque, A.A.; Abbas, F.; Acharya, B.; Esau, T. Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island. Sustainability 2020, 12, 2419. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Song, X.; Han, D.; Zhang, Y.; Zhang, B. Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation. Agric. Water Manag. 2012, 105, 32–37. [Google Scholar] [CrossRef]
- Bogawski, P.; Bednorz, E. Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe). Water Resour. Manag. 2014, 28, 5021–5038. [Google Scholar] [CrossRef] [Green Version]
- Nolz, R. A review on the quantification of soil water balance components as a basis for agricultural water management with a focus on weighing lysimeters and soil water sensors. J. Land Manag. Food Environ. 2016, 67, 133–144. [Google Scholar]
- Krishna, P.A. Evapotranspiration and agriculture—A review. Agric. Rev. 2018, 40, 1–11. [Google Scholar]
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Di, L.; Guo, L. Estimation of crop evapotranspiration from MODIS data by combining random forest and trapezoidal models. Agric. Water Manag. 2021, 259, 107249. [Google Scholar] [CrossRef]
- Kharrou, M.; Simonneaux, V.; Er-Raki, S.; Le Page, M.; Khabba, S.; Chehbouni, A. Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco. Remote Sens. 2021, 13, 1133. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; El-Kassaby, Y.A. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacifc Northwest historical data. Sci. Rep. 2018, 8, 8228. [Google Scholar] [CrossRef] [Green Version]
- Gowda, P.H.; Chávez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Remote Sensing Based Energy Balance Algorithms for Mapping ET: Current Status and Future Challenges. Trans. ASABE 2007, 50, 1639–1644. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Casanova, J.; Heng, L.K. Soil water sensing for water balance, ET and WUE. Agric. Water Manag. 2012, 104, 1–9. [Google Scholar] [CrossRef]
- Geli, H.M.E.; González-Piqueras, J.; Neale, C.M.U.; Balbontín, C.; Campos, I.; Calera, A. Effects of Surface Heterogeneity Due to Drip Irrigation on Scintillometer Estimates of Sensible, Latent Heat Fluxes and Evapotranspiration over Vineyards. Water 2020, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, B.C.C.; Pinto, E.J.D.A.; Ruhoff, A.; Senay, G.B. Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: A case study of the Urucuia Aquifer System. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2021, 98, 102298. [Google Scholar] [CrossRef]
- Alexandris, S.; Psomiadis, E.; Proutsos, N.; Philippopoulos, P.; Charalampopoulos, I.; Kakaletris, G.; Papoutsi, E.-M.; Vassilakis, S.; Paraskevopoulos, A. Integrating Drone Technology into an Innovative Agrometeorological Methodology for the Precise and Real-Time Estimation of Crop Water Requirements. Hydrology 2021, 8, 131. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Wu, P.; Zhao, X.; Wang, Y. Evaluation of agricultural water demand under future climate change scenarios in the Loess Plateau of Northern Shaanxi, China. Ecol. Indic. 2018, 84, 811–819. [Google Scholar] [CrossRef]
- Hardelin, J.; Lankoski, J. Climate Change, Water and Agriculture: Challenges and Adaptation Strategies. EuroChoices 2015, 14, 10–15. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef]
- Lopez, J.R.; Winter, J.M.; Elliott, J.; Ruane, A.C.; Porter, C.; Hoogenboom, G.; Anderson, M.; Hain, C. Sustainable Use of Groundwater May Dramatically Reduce Irrigated Production of Maize, Soybean, and Wheat. Earth Future 2022, 10, e2021EF002018. [Google Scholar] [CrossRef]
- Bhatt, R.; Hossain, A. Concept and Consequence of Evapotranspiration for Sustainable Crop Production in the Era of Climate Change. In Advanced Evapotranspiration Methods and Applications; Bucur, D., Ed.; University of Applied Life Sciences and Environment in Iasi: Iasi, Romania, 2019; pp. 535–548. [Google Scholar]
- Mo, X.-G.; Hu, S.; Lin, Z.-H.; Liu, S.-X.; Xia, J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv. Clim. Change Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Stefanidis, S. Ability of Different Spatial Resolution Regional Climate Model to Simulate Air Temperature in a Forest Ecosystem of Central Greece. J. Environ. Prot. Ecol. 2021, 22, 1488–1495. [Google Scholar]
- Giménez, P.O.; García-Galiano, S.G. Assessing Regional Climate Models (RCMs) Ensemble-Driven Reference Evapotranspiration over Spain. Water 2018, 10, 1181. [Google Scholar] [CrossRef] [Green Version]
- Tolika, K.; Anagnostopoulou, C.; Velikou, K.; Vagenas, C. A comparison of the updated very high resolution model RegCM3_10km with the previous version RegCM3_25km over the complex terrain of Greece: Present and future projections. Theor. Appl. Climatol. 2015, 126, 715–726. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Afan, H.A.; Shiru, M.S.; Al-Ansari, N.; Yaseen, Z.M. Changes in Climatic Water Availability and Crop Water Demand for Iraq Region. Sustainability 2020, 12, 3437. [Google Scholar] [CrossRef] [Green Version]
- Séronie, J.-M. The Digital Revolution, Precision Agriculture and Conservation Farming. 2020. Available online: https://www.willagri.com/2020/01/20/the-digital-revolution-precision-agriculture-and-conservation-farming/?lang=en (accessed on 30 October 2020).
- Kingra, P.K.; Majumder, D.; Singh, S.P. Application of Remote Sensing and Gis in Agriculture and Natural Resource Management under Changing Climatic Conditions. Agric. Res. J. 2016, 53, 295. [Google Scholar] [CrossRef]
- Djaman, K.; O’Neill, M.; Owen, C.K.; Smeal, D.; Koudahe, K.; West, M.; Allen, S.; Lombard, K.; Irmak, S. Crop Evapotranspiration, Irrigation Water Requirement and Water Productivity of Maize from Meteorological Data under Semiarid Climate. Water 2018, 10, 405. [Google Scholar] [CrossRef] [Green Version]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Blatchford, M.L.; Mannaerts, C.M.; Zeng, Y.; Nouri, H.; Karimi, P. Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: A review. Remote Sens. Environ. 2019, 234, 111413. [Google Scholar] [CrossRef]
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine Vision Systems in Precision Agriculture for Crop Farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef] [Green Version]
- Sanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2019, 7, 1–19. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maina, M.; Amin, M.; Rowshon, M.; Aimrun, W.; Samsuzana, A.; Yazid, M. Effects of crop evapotranspiration estimation techniques and weather parameters on rice crop water requirement. Aust. J. Crop Sci. 2014, 8, 495–501. [Google Scholar]
- Subedi, A.; Chávez, J.L. Crop Evapotranspiration (ET) Estimation Models: A Review and Discussion of the Applicability and Limitations of ET Methods. J. Agric. Sci. 2015, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Surový, P. Estimation and Extrapolation of Tree Parameters Using Spectral Correlation between UAV and Pléiades Data. Forests 2018, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Yang, A. Evaluation of Evapotranspiration Estimation Methods and Their Impacts on Crop Yield Simulations; Carleton University: Ottawa, ON, Canada, 2010. [Google Scholar]
- Zhao, W.L.; Qiu, G.Y.; Xiong, Y.J.; Paw U, K.T.; Gentine, P.; Chen, B.Y. Uncertainties Caused by Resistances in Evapotranspiration Estimation Using High-Density Eddy Covariance Measurements. J. Hydrometeorol. 2020, 21, 1349–1365. [Google Scholar] [CrossRef]
- Meraz-Maldonado, N.; Flores-Magdaleno, H. Maize Evapotranspiration Estimation Using Penman-Monteith Equation and Modeling the Bulk Canopy Resistance. Water 2019, 11, 2650. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Tegos, A. State-of-the-Art Approach for Potential Evapotranspiration Assessment; National Technical University of Athens: Athens, Greece, 2019. [Google Scholar]
- Alvino, A.; Marino, S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Zeyliger, A.; Ermolaeva, O. Water Stress Regime of Irrigated Crops Based on Remote Sensing and Ground-Based Data. Agronomy 2021, 11, 1117. [Google Scholar] [CrossRef]
- Tegos, A.; Malamos, N.; Koutsoyiannis, D. RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. Hydrology 2022, 9, 32. [Google Scholar] [CrossRef]
- Chen, A.; Orlov-Levin, V.; Meron, M. Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management. Agric. Water Manag. 2019, 216, 196–205. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Nsiah, J.; Gyamfi, C.; Anornu, G.; Odai, S. Estimating the spatial distribution of evapotranspiration within the Pra River Basin of Ghana. Heliyon 2021, 7, e06828. [Google Scholar] [CrossRef]
- Wu, G.; Hu, Z.; Keenan, T.F.; Li, S.; Zhao, W.; Cao, R.C.; Li, Y.; Guo, Q.; Sun, X. Incorporating Spatial Variations in Parameters for Improvements of an Evapotranspiration Model. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005504. [Google Scholar] [CrossRef]
- Corbari, C.; Jovanovic, D.; Nardella, L.; Sobrino, J.; Mancini, M. Evapotranspiration Estimates at High Spatial and Temporal Resolutions from an Energy-Water Balance Model and Satellite Data in the Capitanata Irrigation Consortium. Remote Sens. 2020, 12, 4083. [Google Scholar] [CrossRef]
- Stisen, S.; Soltani, M.; Mendiguren, G.; Langkilde, H.; Garcia, M.; Koch, J. Spatial Patterns in Actual Evapotranspiration Climatologies for Europe. Remote Sens. 2021, 13, 2410. [Google Scholar] [CrossRef]
- Sadras, V.; Cassman, K.; Bastiaanssen, W.; Laborte, A.; Milne, A.; Sileshi, G.; Steduto, P. Yield Gap Analysis of Field Crops: Methods and Case Studies; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Ma, Y.; Liu, S.M.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote. Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Singh, P.K.; Jain, S.K.; Mishra, P.K.; Goel, M.K. An assessment of water consumption patterns and land productivity and water productivity using WA+ framework and satellite data inputs. Phys. Chem. Earth Parts A/B/C 2022, 126. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H. Editorial for the Special Issue “Remote Sensing of Evapotranspiration (ET)”. Remote Sens. 2019, 11, 2146. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, T.; Huntington, J.; Scanlon, B.; Joros, A.; Howard, T. Improving Irrigation Water Use Estimates with Remote Sensing Technologies: A Feasibility Study for TEXAS; Texas Water Development Board: Austin, TX, USA, 2017.
- Reyes-González, A.; Kjaersgaard, J.; Trooien, T.; Hay, C.; Ahiablame, L. Estimation of Crop Evapotranspiration Using Satellite Remote Sensing-Based Vegetation Index. Adv. Meteorol. 2018, 2018, 4525021. [Google Scholar] [CrossRef]
- Neupane, J.; Guo, W. Agronomic Basis and Strategies for Precision Water Management: A Review. Agronomy 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Andriambeloson, J.A.; Paris, A.; Calmant, S.; Rakotondraompiana, S. Re-initiating depth-discharge monitoring in small-sized ungauged watersheds by combining remote sensing and hydrological modelling: A case study in Madagascar. Hydrol. Sci. J. 2020, 65, 2709–2728. [Google Scholar] [CrossRef]
- Jing, W.; Yaseen, Z.M.; Shahid, S.; Saggi, M.K.; Tao, H.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Chau, K.-W. Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions. Eng. Appl. Comput. Fluid Mech. 2019, 13, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Hutchinson, P.A.; May, T.; Jamali, H.; Deery, D.M. A practical method using a network of fixed infrared sensors for estimating crop canopy conductance and evaporation rate. Biosyst. Eng. 2018, 165, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Winbourne, J.B.; Jones, T.S.; Garvey, S.M.; Harrison, J.L.; Wang, L.; Li, D.; Templer, P.H.; Hutyra, L.R. Tree Transpiration and Urban Temperatures: Current Understanding, Implications, and Future Research Directions. BioScience 2020, 70, 576–588. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [Green Version]
- Zia, S.; Spohrer, K.; Merkt, N.; Wenyong, D.; He, X.; Müller, J. Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography. Int. J. Agric. Biol. Eng. 2009, 2, 46–54. [Google Scholar]
- Howell, T.A. Irrigation scheduling research and its impact on water use. In Evapotranspiration and Irrigation Scheduling; American Society of Agricultural Engineers: San Antonio, TX, USA, 1996. [Google Scholar]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Review of concepts and future trends. J. Irrig. Drain. Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Bhattarai, N.; Wagle, P. Recent Advances in Remote Sensing of Evapotranspiration. Remote Sens. 2021, 13, 4260. [Google Scholar] [CrossRef]
- Sattari, M.T.; Apaydin, H.; Band, S.S.; Mosavi, A.; Prasad, R. Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol. Earth Syst. Sci. 2021, 25, 603–618. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1. [Google Scholar] [CrossRef]
- Mhawej, M.; Elias, G.; Nasrallah, A.; Faour, G. Dynamic calibration for better SEBALI ET estimations: Validations and recommendations. Agric. Water Manag. 2019, 230, 105955. [Google Scholar] [CrossRef]
- Yu, H.; Cao, C.; Zhang, Q.; Bao, Y. Construction of an evapotranspiration model and analysis of spatiotemporal variation in Xilin River Basin, China. PLoS ONE 2021, 16, e0256981. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanniarachchi, S.; Sarukkalige, R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology 2022, 9, 123. https://doi.org/10.3390/hydrology9070123
Wanniarachchi S, Sarukkalige R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology. 2022; 9(7):123. https://doi.org/10.3390/hydrology9070123
Chicago/Turabian StyleWanniarachchi, Susantha, and Ranjan Sarukkalige. 2022. "A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future" Hydrology 9, no. 7: 123. https://doi.org/10.3390/hydrology9070123
APA StyleWanniarachchi, S., & Sarukkalige, R. (2022). A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology, 9(7), 123. https://doi.org/10.3390/hydrology9070123