A Decade of Cave Drip Hydrographs Shows Spatial and Temporal Variability in Epikarst Storage and Recharge to Appalachian Karst Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Instrumentation
2.2. Cave Drip and Precipitation Data
2.3. Recession Methods
3. Results
3.1. Cave Drip Rate and Precipitation Records
3.2. Recession Analysis
3.2.1. Correlation Method
3.2.2. Matching Strip Method
3.2.3. Hydrograph Separation Method
4. Discussion
4.1. Diffuse vs. Rapid Recharge in James Cave
4.2. Conceptual Model of Storage and Recharge in the Epikarst at James Cave
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; John Wiley and Sons: New York, NY, USA, 2007; p. 562. [Google Scholar]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Borsato, A.; Tooth, A.F.; Frisia, S.; Hawkesworth, C.J.; Huang, Y.M.; McDermott, F.; Spiro, B. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 2000, 166, 255–269. [Google Scholar] [CrossRef]
- Kaufmann, G.; Braun, J. Karst aquifer evolution in fractured, porous rocks. Water Resour. Res. 2000, 36, 1381–1391. [Google Scholar] [CrossRef]
- Liu, A.W.; Brancelj, A.; Ellis Burnet, J. Interpretation of epikarstic cave drip water recession curves: A case study from Velika Pasica Cave, central Slovenia. Hydrol. Sci. J. 2016, 61, 2754–2762. [Google Scholar] [CrossRef]
- White, W.B. Karst hydrology: Recent developments and open questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Eagle, S.; Orndorff, W.; Schwartz, B.; Doctor, D.H.; Gerst, J.; Schreiber, M. Analysis of hydrologic and geochemical time-series data at James Cave, Virginia: Implications for epikarst influence on recharge in Appalachian karst aquifers. Geol. Soc. Am. Spec. Pap. 2015, 516, SPE516-15. [Google Scholar] [CrossRef]
- Taylor, C.J.; Greene, E.A. Hydrogeologic characterization and methods used in the investigation of karst hydrology. In Field Techniques for Estimating Water Fluxes between Surface Water and Ground Water; Rosenberry, D., LaBaugh, J., Eds.; US Geological Survey: Reston, VA, USA, 2008; pp. 71–114. [Google Scholar]
- Padilla, A.; Pulido-Bosch, A.; Mangin, A. Relative importance of baseflow and quickflow from hydrographs of karst spring. Groundwater 1994, 32, 267–277. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Arbel, Y.; Greenbaum, N.; Lange, J.; Inbar, M. Infiltration processes and flow rates in developed karst vadose zone using tracers in cave drips. Earth Surf. Processes Landf. 2010, 35, 1682–1693. [Google Scholar] [CrossRef]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Massei, N.; Wang, H.Q.; Field, M.S.; Dupont, J.P.; Bakalowicz, M.; Rodet, J. Interpreting tracer breakthrough tailing in a conduit-dominated karstic aquifer. Hydrogeol. J. 2006, 14, 849–858. [Google Scholar] [CrossRef]
- Aquilina, L.; Ladouche, B.; Dorfliger, N. Water storage and transfer in the epikarst of karstic systems during high flow periods. J. Hydrol. 2006, 327, 472–485. [Google Scholar] [CrossRef]
- Frank, S.; Goeppert, N.; Ohmer, M.; Goldscheider, N. Sulfate variations as a natural tracer for conduit-matrix interaction in a complex karst aquifer. Hydrol. Processes 2019, 33, 1292–1303. [Google Scholar] [CrossRef]
- Nannoni, A.; Piccini, L. Mixed recharge and epikarst role in a complex metamorphic karst aquifer: The Pollaccia System, Apuan Alps (Tuscany, Italy). Hydrology 2022, 9, 83. [Google Scholar] [CrossRef]
- Li, Q.; Sun, H.; Wang, J. Hydrochemical response of epikarst spring to rainfall: Implications of nutrition element loss and groundwater pollution. Pol. J. Environ. Stud. 2010, 19, 441–448. [Google Scholar]
- Baker, A.; Berthelin, R.; Cuthbert, M.O.; Treble, P.C.; Hartmann, A. Rainfall recharge thresholds in a subtropical climate determined using a regional cave drip water monitoring network. J. Hydrol. 2020, 587, 125001. [Google Scholar] [CrossRef]
- Baker, A.; Scheller, M.; Oriani, F.; Mariethoz, G.; Hartmann, A.; Wang, Z.; Cuthbert, M.O. Quantifying temporal variability and spatial heterogeneity in rainfall recharge thresholds in a montane karst environment. J. Hydrol. 2021, 594, 125965. [Google Scholar] [CrossRef]
- Geyer, T.; Birk, S.; Liedl, R.; Sauter, M. Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J. Hydrol. 2008, 348, 452–463. [Google Scholar] [CrossRef]
- Hartmann, A.; Lange, J.; Weiler, M.; Arbel, Y.; Greenbaum, N. A new approach to model the spatial and temporal variability of recharge to karst aquifers. Hydrol. Earth Syst. Sci. 2012, 16, 2219–2231. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.M.; Plummer, L.N.; Kauffman, L.J.; Doctor, D.H.; Nelms, D.L.; Schlosser, P. Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA. Hydrogeol. J. 2013, 21, 1193–1217. [Google Scholar] [CrossRef]
- Herman, E.K.; Toran, L.; White, W.B. Quantifying the place of karst aquifers in the groundwater to surface water continuum: A time series analysis study of storm behavior in Pennsylvania water resources. J. Hydrol. 2009, 376, 307–317. [Google Scholar] [CrossRef]
- Amit, H.; Lyakhovsky, V.; Katz, A.; Starinsky, A.; Burg, A. Interpretation of spring recession curves. Groundwater 2002, 40, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, O.; Pipan, T.; Culver, D.C. A framework for karst ecohydrology. Environ. Geol. 2009, 56, 891–900. [Google Scholar] [CrossRef]
- Fiorillo, F. The recession of spring hydrographs, focused on karst aquifers. Water Resour. Manag. 2014, 28, 1781–1805. [Google Scholar] [CrossRef]
- Healy, R.W. Estimating Groundwater Recharge; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Arnold, J.; Allen, P.; Muttiah, R.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Chapman, T. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Processes 1999, 13, 701–714. [Google Scholar] [CrossRef]
- Vitvar, T.; Burns, D.A.; Lawrence, G.B.; McDonnell, J.J.; Wolock, D.M. Estimation of baseflow residence times in watersheds from the runoff hydrograph recession: Method and application in the Neversink watershed, Catskill Mountains, New York. Hydrol. Processes 2002, 16, 1871–1877. [Google Scholar] [CrossRef]
- Bonacci, O. Karst springs hydrographs as indicators of karst aquifers. Hydrol. Sci. J. 1993, 38, 51–62. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Giacopetti, M.; Materazzi, M.; Pambianchi, G.; Posavec, K. Analysis of mountain springs discharge time series in the Tennacola stream catchment (central Apennine, Italy). Environ. Earth Sci. 2016, 76, 20. [Google Scholar] [CrossRef]
- Sarker, S.K.; Fryar, A.E. Characterizing hydrological functioning of three large karst springs in the Salem Plateau, Missouri, USA. Hydrology 2022, 9, 96. [Google Scholar] [CrossRef]
- Bishop, D.A.; Williams, A.P.; Seager, R.; Fiore, A.M.; Cook, B.I.; Mankin, J.S.; Singh, D.; Smerdon, J.E.; Rao, M.P. Investigating the causes of increased twentieth-century fall precipitation over the southeastern United States. J. Clim. 2019, 32, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Hergenroder, J.D. Geology of the Radford Area, Virginia. Master’s Thesis, Virginia Polytechnic Institute (Virginia Tech), Blacksburg, VA, USA, 1957. [Google Scholar]
- SRCC. Historical Climate Summaries for Virginia. Available online: http://www.sercc.com/climateinfo/historical/historical_va.html (accessed on 15 February 2021).
- Gerst, J.D. Epikarst control on flow and storage at James Cave, VA: An Analog for Water Resource Characterization in the Shenandoah Valley Karst. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2010. [Google Scholar]
- Schreiber, M.E.; Schwartz, B.F.; Orndorff, W.D.; Doctor, D.H.; Eagle, S.D.; Gerst, J.D. Instrumenting caves to collect hydrologic and geochemical data: Example from James Cave, Virginia. In Advances in Watershed Science and Assessment; Younos, T., Parece, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 33, pp. 205–231. [Google Scholar]
- Eagle, S.D. Analysis of Hydrologic and Geochemical Time Series Data at James Cave, Virginia: Implications for Epikarst Influence on Recharge. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2013. [Google Scholar]
- Weary, D.J.; Doctor, D.H. Karst in the United States: A Digital Map Compilation and Database; U.S. Geological Survey: Reston, VA, USA, 2014.
- U.S. Geological Survey. USGS 1 Meter 17 x53y412 VA_FEMA-NRCS_SouthCentral_2017_D17; U.S. Geological Survey: Reston, VA, USA, 2017.
- Aquatic Informatics. AQUARIUS 3.0 R3, Aquatic Informatics: Vancouver, BC, Canada, 2011.
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Groce-Wright, N.; Eagle, S.; Gerst, J.; Orndorff, W.; Malabad, T.; Ficco, K.; Schwartz, B.F.; Junod, M.; Schreiber, M.E. James Cave Epikarst Monitoring Drip Data: 2007–2018. In University Libraries; Virginia Tech: Blacksburg, VA, USA, 2021. [Google Scholar] [CrossRef]
- NOAA (Ed.) National Centers for Environmental Information. 2021. Climate Data Online (CDO). Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 15 February 2021).
- Barnes, B.S. The structure of discharge-recession curves. Eos Trans. Am. Geophys. Union 1939, 20, 721–725. [Google Scholar] [CrossRef]
- Fairley, J.P. Models and Modeling: An introduction for Earth and Environmental Scientists; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Brutsaert, W.; Nieber, J.L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 1977, 13, 637–643. [Google Scholar] [CrossRef]
- Posavec, K.; Bacani, A.; Nakic, Z. A visual basic spreadsheet macro for recession curve analysis. Ground Water 2006, 44, 764–767. [Google Scholar] [CrossRef]
Year | Precip (mm) |
---|---|
2008 | 537.7 |
2009 | 674.1 |
2010 | 619.8 |
2011 | 587.8 |
2012 | 389.6 |
2013 | 399.03 |
2014 | 1257.3 |
2015 | 1593.3 |
2016 | 1236.2 |
2017 | 1217.4 |
2018 | 1441.7 |
Drip Site | k | Calculated α (1/day) | Calculated α (1/min) | R2 |
---|---|---|---|---|
MS1 | 0.925 | 7.80 × 10−2 | 5.41 × 10−5 | 0.92 |
MS2 | 0.90 | 1.05 × 10−1 | 7.32 × 10−5 | 0.96 |
MS3 | 0.92 | 8.34 × 10−2 | 5.79 × 10−5 | 0.98 |
Drip Site | Q0 (mL/min) | α (1/Day) | α (1/min) | R2 |
---|---|---|---|---|
MS1 | 147.26 | 1.73 × 100 | 1.20 × 10−3 | 0.99 |
MS2 | 223.67 | 7.05 × 10−1 | 4.88 × 10−4 | 0.99 |
MS3 | 702.8 | 3.41 × 100 | 2.37 × 10−3 | 0.98 |
Drip Site | Date | V1 (L) | V2 (L) | V1 + V2 (L) | α1 (min−1) | α2 (min−1) | % Rapid Flow | % Diffuse Flow |
---|---|---|---|---|---|---|---|---|
MS1 | 1–28 April 2008 (recharge) | 364.89 | 88.6 | 453.49 | 2.00 × 10−4 | 6.21 × 10−5 | 80.5 | 19.5 |
8 July–30 August 2013 (recession) | 207.5 | 1013.88 | 1221.38 | 7.71 × 10−5 | 3.50 × 10−5 | 17.0 | 83.0 | |
15 May–15 June 2018 (recession) | 74.15 | 106.9 | 181.06 | 2.30 × 10−4 | 4.34 × 10−5 | 41.0 | 59.0 | |
MS2 | 1–28 April 2008 (recharge) | 163.96 | 36.46 | 200.42 | 6.30 × 10−4 | 5.69 × 10−5 | 81.8 | 18.2 |
1–20 April 2009 (recharge) | 837.63 | 198.31 | 1035.94 | 1.00 × 10−4 | 5.27 × 10−5 | 80.9 | 19.1 | |
1 July–10 August 2013 (recession) | 728.44 | 419.3 | 1147.74 | 2.00 × 10−4 | 6.00 × 10−5 | 63.5 | 36.5 | |
25 April–1 June 2014 (recession) | 868.89 | 208.32 | 1077.21 | 1.00 × 10−4 | 2.21 × 10−5 | 80.7 | 19.3 | |
20 April–15 June 2015 (recession) | 485.87 | 182.35 | 668.21 | 1.20 × 10−4 | 2.45 × 10−5 | 72.7 | 27.3 | |
25 May–1 July 2018 (recession) | 82.69 | 10.14 | 92.83 | 2.00 × 10−4 | 6.19 × 10−6 | 89.1 | 10.9 | |
MS3 | 1–25 May 2009 (recharge) | 369.18 | 19.52 | 388.69 | 1.70 × 10−3 | 3.79 × 10−5 | 95.0 | 5.0 |
25 April–1 June 2014 (recession) | 168.1 | 75.02 | 243.12 | 1.20 × 10−3 | 1.30 × 10−4 | 84.0 | 16.0 | |
20 May–1 June 2017 (recession) | 105.51 | 6.73 | 112.24 | 5.00 × 10−4 | 2.75 × 10−5 | 69.1 | 30.9 |
Drip Site | Matching Strip (Average) | Individual (α1) (Rapid) | Individual (α2) (Base/Diffuse) | Correlation (Base/Diffuse) |
---|---|---|---|---|
MS1 | 1.20 × 10−3 | 1.70 × 10−4 | 4.67 × 10−5 | 5.41 × 10−5 |
MS2 | 4.88 × 10−4 | 2.25 × 10−4 | 3.67 × 10−5 | 7.32 × 10−5 |
MS3 | 2.37 × 10−3 | 1.27 × 10−3 | 4.67 × 10−5 | 5.79 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groce-Wright, N.C.; Benton, J.R.; Hammond, N.W.; Schreiber, M.E. A Decade of Cave Drip Hydrographs Shows Spatial and Temporal Variability in Epikarst Storage and Recharge to Appalachian Karst Systems. Hydrology 2022, 9, 131. https://doi.org/10.3390/hydrology9080131
Groce-Wright NC, Benton JR, Hammond NW, Schreiber ME. A Decade of Cave Drip Hydrographs Shows Spatial and Temporal Variability in Epikarst Storage and Recharge to Appalachian Karst Systems. Hydrology. 2022; 9(8):131. https://doi.org/10.3390/hydrology9080131
Chicago/Turabian StyleGroce-Wright, Nigel C., Joshua R. Benton, Nicholas W. Hammond, and Madeline E. Schreiber. 2022. "A Decade of Cave Drip Hydrographs Shows Spatial and Temporal Variability in Epikarst Storage and Recharge to Appalachian Karst Systems" Hydrology 9, no. 8: 131. https://doi.org/10.3390/hydrology9080131
APA StyleGroce-Wright, N. C., Benton, J. R., Hammond, N. W., & Schreiber, M. E. (2022). A Decade of Cave Drip Hydrographs Shows Spatial and Temporal Variability in Epikarst Storage and Recharge to Appalachian Karst Systems. Hydrology, 9(8), 131. https://doi.org/10.3390/hydrology9080131