Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Google Earth Engine
3.2. Spectral Water-Related Indices
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W.; Valdes-Weaver, L.M.; Joyner, A.R.; Winkelmann, V. Phytoplankton Indicators of Ecological Change in the Eutrophying Pamlico Sound System, North Carolina. Ecol. Appl. 2007, 17, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Yüksek, A. The Reasons for Occurrence of Sea Snot/Mucilage in the Sea of Marmara. In Ecology of the Marmara Sea: Formation and Interactions of Marine Mucilage, and Recommendations for Solutions; Öztürk, İ., Şeker, M., Eds.; Turkish Academy of Science: Ankara, Turkey, 2021; pp. 85–104. [Google Scholar]
- Precali, R.; Giani, M.; Marini, M.; Grilli, F.; Ferrari, C.R.; Pečar, O.; Paschini, E. Mucilaginous Aggregates in the Northern Adriatic in the Period 1999–2002: Typology and Distribution. Sci. Total Environ. 2005, 353, 10–23. [Google Scholar] [CrossRef]
- Degobbis, D.; Malej, A.; Umani, S.F. The Mucilage Phenomenon in the Northern Adriatic Sea. A Critical Review of the Present Scientific Hypotheses. Ann. Ist. Super. Sanita 1999, 35, 373–381. [Google Scholar]
- Rinaldi, A.; Vollenweider, R.A.; Montanari, G.; Ferrari, C.R.; Ghetti, A. Mucilages in Italian Seas: The Adriatic and Tyrrhenian Seas, 1988-1991. Sci. Total Environ. 1995, 165, 165–183. [Google Scholar] [CrossRef]
- Tomasino, M.G. Is It Feasible to Predict “Slime Blooms” or “Mucilage” in the Northern Adriatic Sea? Ecol. Modell. 1996, 84, 189–198. [Google Scholar] [CrossRef]
- Gigliotti, A. Extracting Temporal and Spatial Distributions Information about Marine Mucilage Phenomenon Based on Modis Satellite Images: A Case Study of the Tyrrhenian and the Adriatic Sea, 2010–2012. Master’s Thesis, Universidade Nova, Lisbon, Portugal, 2013. [Google Scholar]
- Yentür, R.E.; Büyükateş, Y.; Özen, Ö.; Altin, A. The Environmental and Socio-Economical Effects of a Biologic Problem: Mucilage. Mar. Sci. Technol. Bull. 2013, 2, 13–15. [Google Scholar]
- Gotsis-Skretas, O. Mucilage Appearances in Greek Waters during 1982–1994. Sci. Total Environ. 1995, 165, 229–230. [Google Scholar] [CrossRef]
- Innamorati, M.; Nuccio, C.; Massi, L.; Mori, G.; Melley, A. Mucilages and Climatic Changes in the Tyrrhenian Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 289–298. [Google Scholar] [CrossRef]
- MacKenzie, L.; Sims, I.; Beuzenberg, V.; Gillespie, P. Mass Accumulation of Mucilage Caused by Dinoflagellate Polysaccharide Exudates in Tasman Bay, New Zealand. Harmful Algae 2002, 1, 69–83. [Google Scholar] [CrossRef]
- Fukao, T.; Kimoto, K.; Yamatogi, T.; Yamamoto, K.; Yoshida, Y.; Kotani, Y. Marine Mucilage in Ariake Sound, Japan, Is Composed of Transparent Exopolymer Particles Produced by the Diatom Coscinodiscus Granii. Fish. Sci. 2009, 75, 1007–1014. [Google Scholar] [CrossRef]
- Aktan, Y.; Dede, A.; Ciftci, P.S. Mucilage Event Associated with Diatoms and Dinoflagellates in Sea of Marmara, Turkey. Harmful Algae News 2008, 1–3, 36. [Google Scholar]
- Tüfekçi, V.; Balkıs, N.; Polat Beken, Ç.; Ediger, D.; Mantıkçı, M. Phytoplankton Composition and Environmental Conditions of a Mucilage Event in the Sea of Marmara. Turkish J. Biol. 2010, 34, 199–210. [Google Scholar] [CrossRef]
- İşinibilir Okyar, M.; Üstün, F.; Orun, D.A. Changes in Abundance and Community Structure of the Zooplankton Population during the 2008 Mucilage Event in the Northeastern Marmara Sea. Turkish J. Zool. 2015, 39, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Özalp, H.B. First Massive Mucilage Event Observed in Deep Waters of Çanakkale Strait (Dardanelles), Turkey. J. Black Sea / Mediterr. Environ. 2021, 27, 49–66. [Google Scholar]
- Balkıs-Ozdelice, N.; Durmus, T.; Balcı, M. A Preliminary Study on the Intense Pelagic and Benthic Mucilage Phenomenon Observed in the Sea of Marmara. Int. J. Environ. Geoinform. 2021, 8, 414–422. [Google Scholar] [CrossRef]
- Beşiktepe, Ş.T.; Sur, H.İ.; Özsoy, E.; Latif, M.A.; Oǧuz, T.; Ünlüata, Ü. The Circulation and Hydrography of the Marmara Sea. Prog. Oceanogr. 1994, 34, 285–334. [Google Scholar] [CrossRef]
- Alpar, B.; Yüce, H. Sea-Level Variations and Their Interactions Between the Black Sea and the Aegean Sea. Estuar. Coast. Shelf Sci. 1998, 46, 609–619. [Google Scholar] [CrossRef]
- Tas, S.; Kus, D.; Yilmaz, I.N. Temporal Variations in Phytoplankton Composition in the Northeastern Sea of Marmara: Potentially Toxic Species and Mucilage Event. Mediterr. Mar. Sci. 2020, 21, 668–683. [Google Scholar] [CrossRef]
- Kavzoglu, T. Determination of Environmental Degradation Due to Urbanization and Industrialization in Gebze, Turkey. Environ. Eng. Sci. 2008, 25, 429–438. [Google Scholar] [CrossRef]
- Ergül, H.A.; Aksan, S.; İpşiroğlu, M. Assessment of the Consecutive Harmful Dinoflagellate Blooms During 2015 in the Izmit Bay (the Marmara Sea). Acta Oceanol. Sin. 2018, 37, 91–101. [Google Scholar] [CrossRef]
- Artüz, M.I.; Baykut, F. Hydrography of the Sea of Marmara and Scientific Research on Pollution. Istanbul University Appl. Res. Cent. Environ. Publ 1986, 3, 138. [Google Scholar]
- Aktan, Y.; Tüfekçi, V.; Tüfekçi, H.; Aykulu, G. Distribution Patterns, Biomass Estimates and Diversity of Phytoplankton in İzmit Bay (Turkey). Estuar. Coast. Shelf Sci. 2005, 64, 372–384. [Google Scholar] [CrossRef]
- Ergul, H.; Aksan, S.; Ipsiroglu, M.; Baysal, A. Assessment of Consecutive Phytoplankton Blooms on March and April 2014 in Izmit Bay (the Marmara Sea). In Proceedings of the HydroMedit 2014, Volos, Greece, 13–15 November 2014; pp. 127–131. [Google Scholar]
- Ergul, H.A.; Aksan, S.; Ipsiroglu, M.; Kucuk, A. Assessment of the Spring 2015 Phytoplankton Blooms in Izmit Bay (the Marmara Sea). In Proceedings of the 3rd Science for the Environment Conference, Aarhus, Denmark, 1–2 October 2015. [Google Scholar]
- Taş, S.; Ergül, H.; Balkıs, N. Harmful Algal Blooms (HABs) and Mucilage Formations in the Sea of Marmara. In The Sea of Marmara: Marine biodiversity, Fisheries, Conservation and Governance; Özsoy, E., Cağatay, M., Balkis, N., Özturk, B., Eds.; Turkish Marine Research Foundation: Istanbul, Turkey, 2016; pp. 768–786. [Google Scholar]
- Kavzoglu, T.; Colkesen, I.; Sefercik, U.G. Detection and Monitoring of the Mucilage Occurrence in the Marmara Sea with Remote Sensing Technologies. In Ecology of the Marmara Sea: Formation and Interactions of Marine Mucilage, and Recommendations for Solutions; Turkish Academy of Science: Ankara, Turkey, 2021; pp. 199–224. [Google Scholar] [CrossRef]
- Tassan, S. An Algorithm for the Detection of the White-Tide (“mucilage”) Phenomenon in the Adriatic Sea Using AVHRR Data. Remote Sens. Environ. 1993, 45, 29–42. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Tonbul, H.; Colkesen, İ.; Sefercik, U.G. The Use of Object-Based Image Analysis for Monitoring 2021 Marine Mucilage Bloom in the Sea of Marmara. Int. J. Environ. Geoinform. 2021, 8, 529–536. [Google Scholar] [CrossRef]
- Yagci, A.L.; Colkesen, I.; Kavzoglu, T.; Sefercik, U.G. Daily Monitoring of Marine Mucilage Using the MODIS Products: A Case Study of 2021 Mucilage Bloom in the Sea of Marmara, Turkey. Environ. Monit. Assess. 2022, 194, 170. [Google Scholar] [CrossRef]
- Isinibilir, M. Changes in Jellyfish Populations during Mucilage Event in Izmit Bay (the Northeastern Marmara Sea). In Proceedings of the ICES Annual Science Conference 2014: Sustainability in a Changing Ocean, A Coruna, Spain, 15–19 September 2014; Available online: https://www.ices.dk/sites/pub/CM%20Doccuments/CM-2014/Theme%20Session%20A%20contributions/A1914.pdf (accessed on 20 June 2022).
- Erdik, T.; Beji, S. Wave Climate in the Sea of Marmara. In Oil Spill along the Turkish Straits Sea Area; Accidents, Environmental Pollution, Socio-Economic Impacts and Protection; Ünlü, S., Alpar, B., Öztürk, B., Eds.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2018; p. 92. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Fekri, E.; Latifi, H.; Amani, M.; Zobeidinezhad, A. A Training Sample Migration Method for Wetland Mapping and Monitoring Using Sentinel Data in Google Earth Engine. Remote Sens. 2021, 13, 4169. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Mitraka, Z.; Gorelick, N. Exploiting Satellite Observations for Global Surface Albedo Trends Monitoring. Theor. Appl. Climatol. 2019, 137, 1171–1179. [Google Scholar] [CrossRef]
- Saah, D.; Johnson, G.; Ashmall, B.; Tondapu, G.; Tenneson, K.; Patterson, M.; Poortinga, A.; Markert, K.; Quyen, N.H.; San Aung, K.; et al. Collect Earth: An Online Tool for Systematic Reference Data Collection in Land Cover and Use Applications. Environ. Model. Softw. 2019, 118, 166–171. [Google Scholar] [CrossRef]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A Scalable Satellite-Based Crop Yield Mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Singh, P.; Maurya, V.; Dwivedi, R. Pixel Based Landslide Identification Using Landsat 8 and GEE. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8444–8447. [Google Scholar]
- Mehravar, S.; Amani, M.; Moghimi, A.; Dadrass Javan, F.; Samadzadegan, F.; Ghorbanian, A.; Stein, A.; Mohammadzadeh, A.; Mirmazloumi, S.M. Temperature-Vegetation-Soil Moisture-Precipitation Drought Index (TVMPDI); 21-Year Drought Monitoring in Iran Using Satellite Imagery within Google Earth Engine. Adv. Sp. Res. 2021, 68, 4573–4593. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Vescovi, F.D.; Merletto, V.; Montanari, G. Monitoraggio MODIS Di Mucillagini Nel Mare Adriatico. In Proceedings of the Atti della VII Conferenza nazionale ASITA, Verona, Italy, 28–31 October 2003; pp. 28–31. [Google Scholar]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.S.; Shang, Y.X.; Ma, J.H.; Wen, Z.D.; Du, J. Remote Sensing of Harmful Algal Blooms Variability for Lake Hulun Using Adjusted FAI (AFAI) Algorithm. J. Environ. Informatics 2019, 34, 108–122. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Meriç, E.; Yokes, M.B.; Yümün, Z.Ü.; Eryılmaz, M.; Yücesoy-Eryılmaz, F. Alien Benthic Foraminifers from Turkish Strait System. Int. J. Environ. Geoinform. 2018, 5, 68–75. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, J.; Zhang, D.D. Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water 2021, 13, 1647. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Griffin, R.; Dix, M.; Romero-Oliva, C.S.; Ochaeta, G.; Skinner-Alvarado, J.; Ramirez Moran, M.V.; Hernandez, B.; Cherrington, E.; Page, B.; et al. Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala. Front. Environ. Sci. 2020, 8, 7. [Google Scholar] [CrossRef]
- Zhang, F.; Chan, N.W.; Liu, C.; Wang, X.; Shi, J.; Kung, H.-T.; Li, X.; Guo, T.; Wang, W.; Cao, N. Water Quality Index (WQI) as a Potential Proxy for Remote Sensing Evaluation of Water Quality in Arid Areas. Water 2021, 13, 3250. [Google Scholar] [CrossRef]
- Lei, J.; Li, Z.; Bruce, W. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 11, 1307–1317. [Google Scholar] [CrossRef]
- Kutser, T.; Miller, I.; Jupp, D.L.P. Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries. Estuar. Coast. Shelf Sci. 2006, 70, 449–460. [Google Scholar] [CrossRef]
- Olmedo-Masat, O.M.; Raffo, M.P.; Rodríguez-Pérez, D.; Arijón, M.; Sánchez-Carnero, N. How Far Can We Classify Macroalgae Remotely? An Example Using a New Spectral Library of Species from the South West Atlantic (Argentine Patagonia). Remote Sens. 2020, 12, 3870. [Google Scholar] [CrossRef]
- Colkesen, I.; Ozturk, M..; Kavzoglu, T.; Sefercik, U.G. Determination of Sea Surface Mucilage Formations Using Multitemporal Sentinel-2 Imagery. In Proceedings of the the 42nd Asian Conference on Remote Sensing (ACRS2021), Can Tho City, Vietnam, 22–24 November 2021. [Google Scholar]
- Acar, U.; Yılmaz, O.A.; Çelen, M.; Ateş, A.M.; Gülgen, F.; Şanlı, F.B. Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. Int. J. Environ. Geoinfo. 2021, 8, 423–434. [Google Scholar] [CrossRef]
Band Number | Band Name | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|
1 | Coastal Blue | 443 | 60 |
2 | Blue | 490 | 10 |
3 | Green | 560 | 10 |
4 | Red | 665 | 10 |
5 | Vegetation Red-Edge | 705 | 20 |
6 | Vegetation Red-Edge | 740 | 20 |
7 | Vegetation Red-Edge | 783 | 20 |
8 | NIR | 842 | 10 |
8A | NIR (narrow) | 865 | 20 |
9 | Water Vapor | 945 | 60 |
10 | SWIR-Cirrus | 1375 | 60 |
11 | SWIR-1 | 1610 | 20 |
12 | SWIR-2 | 2190 | 20 |
Image Date | AFAI | MI | NDTI | NDWI | NDWIGao | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km²) | Ratio (%) | Area (km²) | Ratio (%) | Area (km²) | Ratio (%) | Area (km²) | Ratio (%) | Area (km²) | Ratio (%) | |
14 May | 6.05 | 2.11 | 6.39 | 2.22 | 5.66 | 1.97 | 8.86 | 3.08 | 4.82 | 1.68 |
19 May | 8.45 | 2.94 | 10.78 | 3.75 | 11.21 | 3.90 | 11.71 | 4.08 | 10.43 | 3.63 |
24 May | 32.12 | 11.18 | 34.93 | 12.75 | 36.07 | 12.55 | 39.22 | 13.65 | 25.27 | 8.79 |
13 June * | 21.99 | 7.65 | 21.92 | 7.63 | 21.75 | 7.57 | 22.30 | 7.76 | 13.03 | 4.53 |
13 July | 2.45 | 0.85 | 3.72 | 1.30 | 5.08 | 1.77 | 3.20 | 1.11 | 2.13 | 0.74 |
18 July | 2.06 | 0.72 | 3.32 | 1.16 | 4.76 | 1.66 | 2.78 | 0.97 | 1.95 | 0.68 |
28 July | 6.06 | 2.11 | 8.53 | 2.97 | 10.63 | 3.70 | 7.58 | 2.64 | 4.41 | 1.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavzoglu, T.; Goral, M. Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021. Hydrology 2022, 9, 135. https://doi.org/10.3390/hydrology9080135
Kavzoglu T, Goral M. Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021. Hydrology. 2022; 9(8):135. https://doi.org/10.3390/hydrology9080135
Chicago/Turabian StyleKavzoglu, Taskin, and Merve Goral. 2022. "Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021" Hydrology 9, no. 8: 135. https://doi.org/10.3390/hydrology9080135
APA StyleKavzoglu, T., & Goral, M. (2022). Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021. Hydrology, 9(8), 135. https://doi.org/10.3390/hydrology9080135