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Abstract: This paper aims to present the result of commonly used extreme wave analysis distribution
methods applied to a long-term wave hindcast at a point in the Arabian Gulf near the coastline
of Dubai, United Arab Emirates. The wave data were hindcasted for a total period of 40 years,
starting from 1 January 1979 to 31 December 2018. This analysis aims to support the design, repair,
and maintenance of coastal structures near the Dubai coast. A 2.5 m threshold is selected using
the Peak Over Threshold method to filter the storm data for the extreme wave analysis. Different
distribution methods are used for this analysis such as Log-normal, Gumbel, Weibull, Exponential,
and Generalized Pareto Distribution (GPD). The significant wave heights are predicted for different
return periods. The GPD distribution appears to fit the data best compared to the other distribution
methods. Many coastal projects are being planned near the Dubai coastline. Hence, the analysis
presented in this paper would be useful in designing safe and efficiently designed projects.
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1. Introduction

Recently, coastal areas around the world have been under significant marine and
coastal development [1]. In particular, the coastline of Dubai, United Arab Emirates has
experienced significant offshore and onshore landscape development over the past years [2].
Designing different types of marine and coastal structures requires accurate knowledge
and analysis of long-term data about different environmental conditions such as waves.
For instance, the design of safe and economic coastal and offshore structures is based on
the design wave heights for different return periods [3]. Similarly, the safety of existing
structures is affected by climate change as it influences extreme wave heights [1]. Therefore,
the proper quantification of wave statistics, such as the extreme wave height, is a critical
part of coastal structure design. For example, the poor estimation of the design wave height
of a structure could result in a poor design that could lead to structural failure or expensive
overdesign [4,5].

Climate change is one of the challenges that affects cities, coasts, agriculture, water
resources, and natural ecosystems [6,7] all over the world [8,9]. However, coastal zones are
very vulnerable to its impacts. Coasts and beaches suffer from coastal processes such as
sea-level rise, coastal flooding and erosion, and storm surge, which substantially damage
the coastal infrastructure [10–14]. Chini et al. (2010) performed extreme event analysis
to estimate climate change implications on inshore waves and the occurrence of extreme
events [7]. The study showed that wave statistics are sensitive to sea-level rise. Additionally,
the authors suggest that climate change leads to a significant increase in extreme wave
heights and the frequency of occurrence of extreme waves [7].

Poor knowledge of the nature of the wave climate can increase the risk associated
with a coastal or marine project [15]. Neelamani et al. (2007) suggest that many coastal
structures in the Arabian Gulf appear to be overdesigned since there is not sufficient
extreme wave analysis work done for different return periods [16]. Generally, extreme
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wave analysis provides a theoretical distribution of the probability of occurrence of different
wave parameters over a long period of time [17,18]. Various studies regarding extreme
wave analysis have been conducted to date. Mathiesen et al. (1994) argue that using
statistical analysis of extreme waves for selecting a proper design wave height is central in
coastal engineering [19]. The authors also present recommended methods and practices
for statistical analysis of extreme significant wave heights. Similarly, Goda (2010) provides
an in-depth review on this topic [20]. This paper uses extreme wave analysis distributions
to develop relationships between large wave heights and their corresponding reduced
variates. These relationships are then used to extrapolate significant wave heights at
different return periods.

In this study, a long-term wave hindcast record of 40 years (1979–2018) is analyzed to
estimate accurate significant wave heights for different return periods by fitting different
statistical distributions. Numerical wave hindcasts are often used for extreme wave analysis
due to the lack of long-term observational wave records [21,22]. Furthermore, threshold
selection is a critical part of extreme wave analysis [23]. The Peak Over Threshold (POT)
method is implemented to extract statistically independent storm peaks above a specific
threshold. The distribution methods used for this analysis are conventional methods such
as Log-normal, Gumbel, Weibull, and Exponential distributions. In addition to these
conventional methods, the Generalized Pareto Distribution (GPD) will be used as it is
considered a good-performing candidate distribution [4,24]. These methods are all used
and compared as there is not a single distribution method that could fit all wave datasets.
Therefore, the selected method is the one that provides the best fit for the wave data. The
least squares method presented by Goda (2010) is selected among the several available
fitting methods for this study [20]. In this study, the best-fitting distribution is identified
using the value of the correlation coefficient (r) between the ordered data and their reduced
variates, which is a test for goodness of fit. The extreme values are extracted for different
return periods, such as 1, 20, 50, 100, and 200 years.

The study area of this paper is a point in the Arabian Gulf near the coastline of Dubai,
United Arab Emirates. The Arabian Gulf is a strategically important and very active marine
area that includes the largest offshore oil and gas fields in the world [25]. The Arabian Gulf
is an extension of the Indian Ocean through the Strait of Hormuz. The total area of the gulf
is approximately 226,000 km2. It is 990 km long and varies in width from 56 to 338 km with
an average depth of about 35 m, separating Iran from the Arabian Peninsula. The Arabian
Gulf is located between the longitude of 48◦–57◦ East and the latitude of 24◦–30◦ North [3].
In the UAE’s territorial waters in the Arabian Gulf, the water depths extend to a maximum
of 50 m [26]. The data point is at a depth of 15 m below the Dubai municipality Datum
and is located about 2.5 km from the Palm Jumeirah Island, offshore the Dubai coastline
(25◦09′00.0′′ N, 55◦06′00.0′′ E), as shown in Figure 1.
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2. Materials and Methods

The wave data in this analysis are a hindcast of 40 years of hourly data computed nu-
merically starting from the 1 January 1979 to 31 December 2018 [26]. The numerical model
is forced with Climate Forecast System Reanalysis (CFSR) wind fields from the National
Centers for Environmental Prediction (NCEP) reanalysis dataset, which is available from
January 1979 to 2010 [27]. The hindcast is developed using a SWAN wave model, which is
validated against a set of field measurements and satellite altimeter data. This hindcast is
composed of hourly spectral wave data that specify significant wave height, peak wave
period, and peak wave direction. In general, the northwest direction is the most dominant
wave direction in the Arabian Gulf [16,26]. Therefore, the wave data are filtered by wave
direction to consider only the waves coming from the most critical direction (northwest)
to be used in the extreme wave analysis, which makes the analysis more specific. On
the other hand, by considering all directions, minor or no changes might be seen in the
results as the waves coming from the other directions are much smaller compared to the
northwest direction.

The choice of the candidate probability distribution methods is an empirical step
before starting the extreme wave analysis of the data. Several extreme value distribution
methods could be used for extreme wave analysis, for example, Gumbel, Fréchet, FT-III,
Lognormal, Weibull, Exponential, GPD, and others. However, some of them might not
be suitable for this study. For instance, FT-III might not be a suitable distribution method
as it converges quite slowly [28]. Similarly, some authors seem to argue that the Fréchet
distribution tends to overestimate wave heights for long return periods [29]. Therefore, the
distribution methods adopted in this study are Log-normal, Gumbel, Weibull, Exponential,
and GPD distributions.

The Peak Over Threshold method is a commonly accepted method for the extraction
of storms or extreme waves [30]. The basic definition of a storm can be the time when
wave height exceeds a certain threshold [1]. Therefore, a threshold is selected first, and all
unique storms above that threshold are filtered and represented by their corresponding
peak wave heights. However, deciding on a threshold using the POT method could be a
subjective and difficult decision. A high threshold could produce too few storm events and
a low threshold could produce too many. In this case, a 2.5 m threshold is selected, which
yields 113 independent storms in the span of 40 years. This selected threshold corresponds
to the 99th percentile of the used wave data. To ensure that storms are independent, two
consecutive storms must be at least one day apart; otherwise, the two storms are counted as
a single storm. The obtained storms are ranked in descending order of peak wave heights
to be further analyzed. Figure 2 shows a plot of the significant wave heights of the ordered
113 storm events. Each isolated storm is represented by its peak wave height.
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The plotting position formula is used to calculate the probability of exceedance (Q) and
the probability of non-exceedance (P) of the wave heights of the ordered storms. Several
plotting position formulas are available for unbiased estimation of the return value. The
unbiased plotting position formula that satisfies the different distribution functions is
shown in Equation (1)

Q =
i− c1

N + c2
; P = 1−Q (1)

where (i) and (N) are the ranking of the data points and the total number of points, re-
spectively. Additionally, c1 and c2 are constants for unbiased plotting position for each
distribution shown in Table 1. For the Weibull and GPD distributions, the constants are a
function of (α), which is the shape parameter for the function [17,28]. Tyralisa et al. (2019)
suggest that the significance of the shape parameters comes from the fact that it determines
the behavior or the shape of the upper tail of the distribution [31]. The higher the value of
the shape parameter, the heavier is the tail of the distribution. In this case, the value for
α is determined by trial and error, since it influences both the plotting position and the
curvature of the graph.

Table 1. Constants of unbiased position plotting.

Distribution c1 c2

Log-Normal 0.25 0.125
Gumbel 0.44 0.12

Exponential 0.47 0.43
Weibull 0.20 + 0.27/

√
α 0.20 + 0.23/

√
α

GPD 0.45 0

The general formulas for the distribution methods are provided in the equations
below [1]. The least squares method is used by transforming these distribution functions
into a simple linear form and then fitting the linear equation shown below to the wave data
to estimate the distribution parameters [20,30].

Y = AX + B (2)

where Y and X are the transformed probability axis and the transformed wave height
axis, respectively. The coefficients A and B are the slope and intercept of the straight-line
relationship, respectively.

The Log-Normal, Gumbel, Weibull, Exponential, and GPD distributions are candi-
date distributions for the extreme value analysis of the ordered data. The Log-normal
distribution is one of the distributions that were first used for extreme-value analysis [28]

P = Φ

(
lnH − lnH

SlnH

)
(3)

The equation is transformed to be

Y = Φ−1(P); X = lnH; A =
1

SlnH
; B = − lnH

SlnH
(4)

In addition to Log-normal distribution, the Gumball distribution is developed specifi-
cally for the analysis of extreme values shown in Equation (5)

P = exp
(
−exp

(
−H − γ

β

))
(5)
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The equation is transformed to be

Y = −ln
(

ln
1
P

)
= G; X = H; A =

1
β

; B = −γ

β
(6)

where β and γ are the scale and location parameters, respectively. The Weibull distribution
is a three-parameter distribution function shown in Equation (6) and is the most used
distribution method for extreme wave analysis [28].

P = 1− exp
(
−
(

H − γ

β

)α)
(7)

The equation is transformed to be

Y =

(
ln

1
Q

) 1
α

; X = H; A =
1
β

; B = −γ

β
(8)

In addition to the scale and location parameters, the Weibull distribution has a third
parameter, which is the shape parameter (α). The Exponential distribution shown in
Equation (9) is a candidate distribution method. It is a reduced version of the Weibull
distribution when α is equal to 1 [28].

P = 1− exp
(
−
(

H − γ

β

))
(9)

The equation is transformed to be

Y =

(
ln

1
Q

)
; X = H; A =

1
β

; B = −γ

β
(10)

Sulis et al. (2017) suggest that the Generalized Pareto Distribution is one of the most
performing credible candidate distributions for extreme wave analysis [24]. It is a three-
parameter function that works in two forms depending on the shape parameter α as shown
in Equation (11) [32].

P =

1−
(

1− α
(

H−γ
β

))α
α 6= 0

1− exp
(
−
(

H−γ
β

))
α = 0

(11)

When α = 0, the GPD distribution is said to correspond to the Exponential distribution
and is linearly transformed as shown in Equation (10). When α 6= 0, the GPD function is
transformed to

Y =
1− (Q)α

α
; X = H; A =

1
β

; B = −γ

β
(12)

Extreme waves are defined in terms of their wave heights and return periods. The
return period is the average recurring interval between successive storms at a given wave
height [28]. The wave heights for different return periods are extrapolated from the different
distribution models created. The exceedance probability of an event could be estimated
using Equation (13)

Q =
1

λTR
(13)

where λ is the number of events per year on which the analysis is based, and TR is the
return period. The exceedance probability is then used with the general formula for each
distribution to extrapolate the wave heights.

The Log-normal, Gumbel, Weibull, Exponential, and GPD distributions could all be a
good fit for the storm data. However, the best-fit distribution should meet the goodness-of-
fit selection criteria [20,28]. You and Yin (2013) argue that the goodness of fit criterion could
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be used to select the best-fit distribution function between several candidate distributions
used on the same wave data [28]. An indicator for this criterion is the correlation coefficient
(r) or the sum of squares of the error (R2). The closer either of these values to 1, the better
this distribution fits the data points. Therefore, the best-fit distribution should be the
adopted distribution for further wave height analysis and design.

3. Results

Five extreme wave analysis distribution methods are compared for the goodness to
fit the storm data. The Weibull and GPD distributions have a third parameter in their
distribution functions that needs to be determined, which is the shape parameter (α).
For these distributions, the value for α is determined by trial and error. For the Weibull
distribution, the value of the shape parameter is restricted between 1 and 2 for extreme
wave analysis as suggested by You (2013) [28]. The shape parameter for the GPD function
is tested for values between −1 and 1. Figure 3 shows the value of α that yields different
correlation coefficient r for each of the candidate distribution functions. In particular, α = 1.2
gives the highest correlation coefficient for the Weibull distribution function. Similarly, the
shape parameter for the GPD function with the highest correlation coefficient is α = 0.2.
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Figure 3. Correlation coefficient (r) values for different shape parameter values (α) for the selected can-
didate distribution functions. The maximum value of r gives the value of α of the candidate function
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The ordered 113 peak storms above the 2.5 m threshold are extracted, and their
probability of exceedance is calculated. By using the probability of exceedance for each
storm, the reduced variates are calculated for each distribution. Table 2 shows sample
calculations for the first 12 peak storms for the distribution methods. The variables titled Z,
G, W, E, and U correspond to the reduced variates for the Log-normal, Gumbel, Weibull,
Exponential, and GPD distributions, respectively. Different plots are generated for the
different extreme wave analysis methods used. Figure 4 shows the different plots generated
for peak wave heights for each method. The plots represent the relationship between the
wave heights of the peak storms against the reduced variates. The figure also shows the
equation of the best fit and the sum of squares of the error (R2) for each distribution.
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Table 2. Sample calculations using four different distributions.

i H(m) LN(H) Q P Z
(Log-normal)

G
(Gumbel)

W
(Weibull)

E
(Exponential)

U
(GPD)

1 4.383 1.478 0.007 0.993 2.477 5.306 4.028 5.366 3.192
2 4.266 1.451 0.015 0.985 2.158 4.277 3.366 4.306 2.817
3 3.903 1.362 0.024 0.976 1.972 3.777 3.038 3.803 2.605
4 3.705 1.310 0.033 0.967 1.836 3.443 2.815 3.470 2.452
5 3.688 1.305 0.042 0.958 1.728 3.191 2.646 3.220 2.330
6 3.685 1.304 0.051 0.949 1.637 2.988 2.510 3.021 2.227
7 3.674 1.301 0.060 0.940 1.558 2.818 2.394 2.855 2.138
8 3.627 1.289 0.069 0.931 1.487 2.671 2.294 2.712 2.059
9 3.622 1.287 0.077 0.923 1.423 2.542 2.206 2.588 1.988

10 3.596 1.280 0.086 0.914 1.365 2.427 2.127 2.477 1.923
11 3.581 1.276 0.095 0.905 1.310 2.323 2.056 2.377 1.864
12 3.575 1.274 0.104 0.896 1.260 2.227 1.990 2.286 1.808

Each distribution model could be used to extrapolate and predict the wave heights
for different return periods as shown in Table 3. The wave height was predicted for the
1-, 20-, 50-, 100-, and 200-year return periods. The table shows variation in the wave
heights as suggested by the different wave height models. For instance, the wave height
for the 100-year return period ranges from 4.10 to 4.84 m. Hence, Goda (2010) suggests
that the degree of goodness of fit could be used to select the distribution model that fits the
data the best [20]. This is done simply through the value of the correlation coefficient (r)
between the wave heights of the ordered data and the corresponding reduced variate for
each distribution. The model with the correlation coefficient value closest to 1 is judged to
be the best-fitting distribution. Table 4 shows the shape, scale, and location (α, β, and γ)
parameters of the best-fitting candidate distribution functions, in addition to the sum of
squares of the error (R2) and the correlation coefficient (r) of the distribution functions.

Table 3. Wave height predictions (m) for different return periods.

Distribution 1 20 50 100 200

Log-Normal 3.06 3.81 3.98 4.10 4.22
Gumbel 3.02 4.04 4.33 4.56 4.78
Weibull 2.99 4.10 4.41 4.63 4.85

Exponential 2.96 4.18 4.55 4.84 5.12
GPD 3.00 4.03 4.24 4.37 4.48

Table 4. Parameter values (α: shape parameter; β: scale parameter; γ: location parameter) of the
best-fitting candidate distribution functions, sum of squares of the error R2, and correlation coefficient r.

Distribution α β γ R2 r

Log-Normal - 0.13 1.07 0.8934 0.9452
Gumbel - 0.32 2.76 0.9679 0.9838
Weibull 1.2 0.51 2.46 0.9875 0.9937

Exponential - 0.41 2.53 0.9764 0.9881
GPD 0.2 0.57 2.47 0.9905 0.9953

4. Discussion

A long-term wave dataset at a site on the Dubai coastline is used to estimate extreme
wave heights at different return periods. A comparison between five different extreme
wave distribution methods is used for the analysis, namely, Log-normal, Gumbel, Weibull,
Exponential, and GPD. The Peak Over Threshold method is used at 2.5 m to extract
113 storm events from the wave dataset. However, this threshold selection method is
subjective. Alternatively, for example, Thompson et al. (2009) present automated threshold
selection methods for extreme wave analysis [33]. The authors argue that it is a new,
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automated, simple, and computationally inexpensive method for selecting an appropriate
threshold for a given dataset. Additionally, the automated threshold selection method
has shown that it compares well with the subjective method. After threshold selection,
different plots are generated to show the relationship between the wave heights of the
113 peak storms and reduced variates of the corresponding distributions. The decision on
the best-fitting distribution among all candidate functions is based on the goodness-of-fit
criteria, which consider the correlation coefficient and the sum of squares of the error.

The results of the analysis provide estimations for the significant wave heights at
different return periods as shown in Table 3. However, a selection of a distribution that best
fits the data might be necessary. The Generalized Pareto Distribution with α = 0.2 appears
to be the distribution that best fits the storm data, as it has the highest correlation coefficient
(r = 0.9953) compared to the other distribution models. Therefore, this distribution method
is preferred over the others for this dataset. Similarly, the Weibull distribution with α = 1.2
relatively has a very good fit to the wave data with r = 0.9937. The Weibull and GPD distri-
butions are also favored and suggested by Sulis et al. (2017) in the Gulf of Cagliari (South
Sardinia, Italy) [24]. This conclusion could be justified as the Weibull and GPD distributions
have an extra parameter (α) and, therefore, they are more likely to produce a good fit to
a straight line. The value of the shape parameter α is determined by trial and error until
the best-fitting straight line is produced. Compared to the GPD model, the extrapolated
extreme wave estimates are relatively in agreement with the other models for lower return
periods. However, for higher return periods, the other models significantly overestimate
or underestimate extrapolated values. These conclusions should not be generalized to all
datasets and the best-fitting distribution might not always be the GPD distribution. There-
fore, extreme wave analysis should be conducted per dataset in order to obtain accurate
predictions of significant wave heights. For instance, the study shows that the Exponential
distribution provides the highest predictions of significant wave heights for higher return
periods. For example, for the 100-year return period, the Exponential distribution estimate
(4.84 m) is around 10% higher compared to the best-fitting distribution (4.37 m).

Climate change and sea-level rise affect significant wave heights [34]. A difference
in significant wave height values could be observed by comparing the obtained results in
this study with the design wave heights of existing projects. For example, according to
Hellebrand et al. (2004), the recorded design wave height for the Palm Jumeirah Island
revetment for the 100-year return period was 4 m, which is a close project to the wave
data location [35]. This wave height is significantly lower than the significant wave height
of 4.37 m that was estimated using the GPD distribution for the 100-year return period.
Although the type of extreme wave analysis used for the Palm Jumeirah revetment was
not specified, which could certainly be a reason behind the difference in the design wave
heights, this study could support the reassessment of the existing revetment at Palm
Jumeirah Island. Additionally, the results presented in this paper provide estimates of
the significant wave heights, which would be used for the design and upgrade of new
and existing coastal structures in Dubai such as man-made islands. However, the used
wave hindcast is modeled by the dependence between wind forcings and wave heights.
There are other climate change-driven factors that influence wave dynamics. Hence, a
multivariate analysis could be performed to better identify the influence of sea-level rise on
the significant wave height [36–38].

Further studies could be conducted on the wave hindcast dataset. For instance, other
distribution methods could be used in order to obtain more accurate results. A three-
parameter distribution that could be adopted is the Generalized Extreme Value distribution
(GEV), which has become more popular recently [17]. With this dataset, this method
could be used, in which extreme events are grouped into annual intervals and the GEV
distribution is fitted into the annual maxima dataset. Additionally, other methods could
also be tested to measure the goodness of fit of the storm data such as the Chi-square,
Kolmogorov–Smirnov, and Anderson–Darling tests.
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5. Conclusions

In this study, extreme wave analysis distributions are compared to estimate significant
wave heights for different return periods to support engineers with the design, repair, and
maintenance of structures on the Dubai coast. A 40-year long-term wave hindcast data set
covering 1971–2018 obtained from numerical modeling is used for this study. The Peak
Over Threshold method at a threshold of 2.5 m is used for filtering the storms from the
raw data. Significant wave heights for different return periods are estimated by fitting
some of the most widely used distribution methods such as Log-normal, Gumbel, Weibull,
Exponential, and GPD distributions. The different distribution methods were used to
predict significant wave heights for different return periods. The GPD distribution with
α = 0.2 has shown the best degree of fitting to the wave data with the correlation coefficient
closest to 1 as compared to the other distribution methods. The obtained significant wave
heights show a noticeable difference when compared to the design wave height of the
Palm Jumeirah revetment. Hence, this study would help in the reassessment of the existing
structure. There are many coastal and offshore projects in the Dubai coastal area, and many
others are being planned and designed for the future. Therefore, the results presented in
this study are expected to be of great benefit for the design of optimal and safe projects in
the area.
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