Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication
Abstract
:1. Introduction
2. Experimental Section
2.1. Electrospinning
Fiber Density Variation
2.2. Composite Nanofiber/Cell Sheets
2.3. Mechanical Testing
2.4. Multilayered Nanofiber/Cell Sheet Constructs
2.5. Self-Assembled Aligned 3D Cable Structures
2.6. Intramuscular Implantation of 3D Cable Structures
2.7. Histology/Immunohistochemistry
2.8. Microscopy/Image Processing
2.9. Statistical Analysis
3. Results and Discussion
3.1. Electrospinning
3.2. Composite Nanofiber/Cell Sheets
3.3. Fiber Density Variation
3.4. Mechanical Properties
3.5. Multilayered Nanofiber/Cell Sheet Constructs
3.6. 3D Aligned Cable Structures
Structural support for cell sheet | Detachment procedures | Mechanical Properties (elastic modulus: Primary source | Porosity (for cell-cell contacts between layers in multilayer construct) | Synthetic material (associated potential for foreign body response) | Multilayer biofabrication | |
---|---|---|---|---|---|---|
Material-Free Cell Sheet | · Cell-generated ECM | · Thermal (20–25 °C) [13,18,32] · Mechanical [40] | 8.95 MPa: ECM deposited after 10 wk culture with ascorbic acid [40] | 100% | None | Gelatin stamp: Cell-cell adhesions Required (~30 min) for addition of each layer [32] |
Nanofiber Cell Sheet (0.5–0.85 fibers/µm) | · Electrospun polymer nanofibers · Cell-generated ECM | Not required | 10–16 MPa: Polymer nanofibers | 40–65% | 20–40 µg/cm2 | Simple stacking: cell-cell adhesions for multiple layers were adhered simultaneously |
Porous Film Cell Sheet [34] (3–5 µm thickness) | · Solvent cast polymer film · Cell-generated ECM | Not required | 20–35 MPa (estimated): Porous polymer film | 50% | 170–290 µg/cm2 | Not reported |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hannachi, I.E.; Yamato, M.; Okano, T. Cell sheet technology and cell patterning for biofabrication. Biofabrication 2009, 1. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Kohno, C.; Nishimoto, A.; Sekine, H.; Fukai, F.; Okano, T. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials 2005, 26, 6415–6422. [Google Scholar] [CrossRef]
- Sekiya, S.; Shimizu, T.; Yamato, M.; Kikuchi, A.; Okano, T. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem. Biophys. Res. Commun. 2006, 341, 573–582. [Google Scholar] [CrossRef]
- Shimizu, T.; Yamato, M.; Isoi, Y.; Akutsu, T.; Setomaru, T.; Abe, K.; Kikuchi, A.; Umezu, M.; Okano, T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 2002, 90, e40–e48. [Google Scholar] [CrossRef]
- Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Maeda, N.; Watanabe, H.; Yamamoto, K.; Nagai, S.; Kikuchi, A.; Tano, Y.; Okano, T. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004, 77, 379–385. [Google Scholar] [CrossRef]
- Ohki, T.; Yamato, M.; Murakami, D.; Takagi, R.; Yang, J.; Namiki, H.; Okano, T.; Takasaki, K. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 2006, 55, 1704–1710. [Google Scholar] [CrossRef]
- Watanabe, K.; Yamato, M.; Hayashida, Y.; Yang, J.; Kikuchi, A.; Okano, T.; Tano, Y.; Nishida, K. Development of transplantable genetically modified corneal epithelial cell sheets for gene therapy. Biomaterials 2007, 28, 745–749. [Google Scholar] [CrossRef]
- Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. Cell sheet detachment affects the extracellular matrix: A surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. A 2005, 75, 1–13. [Google Scholar]
- Ide, T.; Nishida, K.; Yamato, M.; Sumide, T.; Utsumi, M.; Nozaki, T.; Kikuchi, A.; Okano, T.; Tano, Y. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006, 27, 607–614. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Mano, J.F.; Reis, R.L. Smart thermoresponsive coatings and surfaces for tissue engineering: Switching cell-material boundaries. Trends Biotechnol. 2007, 25, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Yamato, M.; Kikuchi, A.; Okano, T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 2001, 7, 141–151. [Google Scholar] [CrossRef]
- Diehl, C.; Schlaad, H. Thermo-responsive polyoxazolines with widely tuneable LCST. Macromol. Biosci. 2009, 9, 157–161. [Google Scholar] [CrossRef]
- Ernst, O.; Lieske, A.; Jager, M.; Lankenau, A.; Duschl, C. Control of cell detachment in a microfluidic device using a thermo-responsive copolymer on a gold substrate. Lab Chip 2007, 7, 1322–1329. [Google Scholar] [CrossRef]
- Takezawa, T.; Mori, Y.; Yoshizato, K. Cell culture on a thermo-responsive polymer surface. Nat. Biotechnology 1990, 8, 854–856. [Google Scholar] [CrossRef]
- Tian, H.Y.; Yan, J.J.; Wang, D.; Gu, C.; You, Y.Z.; Chen, X.S. Synthesis of thermo-responsive polymers with both tunable UCST and LCST. Macromol. Rapid Commun. 2011, 32, 660–664. [Google Scholar] [CrossRef]
- Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 2005, 21, 1949–1955. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lim, J.Y.; Donahue, H.J.; Lowe, T.L. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting. Tissue Eng. 2005, 11, 30–40. [Google Scholar] [CrossRef]
- Kwon, O.H.; Kikuchi, A.; Yamato, M.; Sakurai, Y.; Okano, T. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater Res. 2000, 50, 82–89. [Google Scholar] [CrossRef]
- Asran, A.; Razghandi, K.; Aggarwal, N.; Michler, G.H.; Groth, T. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 2010, 11, 3413–3421. [Google Scholar] [CrossRef]
- Fang, R.; Zhang, E.; Xu, L.; Wei, S. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J. Nanosci. Nanotechnol. 2010, 10, 7747–7751. [Google Scholar] [CrossRef]
- Tambralli, A.; Blakeney, B.; Anderson, J.; Kushwaha, M.; Andukuri, A.; Dean, D.; Jun, H.W. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 2009, 1. [Google Scholar] [CrossRef]
- Huang, L.; Nagapudi, K.; Apkarian, R.P.; Chaikof, E.L. Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 2001, 12, 979–993. [Google Scholar] [CrossRef]
- Beachley, V.; Katsanevakis, E.; Zhang, N.; Wen, X. A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications. Adv. Healthc. Mater. 2013, 2, 343–351. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Fabrication of Three Dimensional Aligned Nanofiber Array. U.S. Patent 7,828,539, 2010. [Google Scholar]
- Beachley, V.; Wen, X.J. Fabrication of nanofiber reinforced protein structures for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2009, 29, 2448–2453. [Google Scholar] [CrossRef]
- Boudaoud, A.; Burian, A.; Borowska-Wykret, D.; Uyttewaal, M.; Wrzalik, R.; Kwiatkowska, D.; Hamant, O. Fibriltool, an imagej plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 2014, 9, 457–463. [Google Scholar] [CrossRef]
- Choi, J.S.; Lee, S.J.; Christ, G.J.; Atala, A.; Yoo, J.J. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 2008, 29, 2899–2906. [Google Scholar] [CrossRef]
- Mathur, A.B.; Collinsworth, A.M.; Reichert, W.M.; Kraus, W.E.; Truskey, G.A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 2001, 34, 1545–1553. [Google Scholar] [CrossRef]
- Shiroyanagi, Y.; Yamato, M.; Yamazaki, Y.; Toma, H.; Okano, T. Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int. 2004, 93, 1069–1075. [Google Scholar] [CrossRef]
- Hasegawa, M.; Yamato, M.; Kikuchi, A.; Okano, T.; Ishikawa, I. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng. 2005, 11, 469–478. [Google Scholar] [CrossRef]
- L’Heureux, N.; Dusserre, N.; Konig, G.; Victor, B.; Keire, P.; Wight, T.N.; Chronos, N.A.F.; Kyles, A.E.; Gregory, C.R.; Hoyt, G.; Robbins, R.C.; McAllister, T.N. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 2006, 12, 361–365. [Google Scholar]
- Takahashi, H.; Shimizu, T.; Nakayama, M.; Yamato, M.; Okano, T. The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials 2013, 34, 7372–7380. [Google Scholar] [CrossRef]
- Dang, J.M.; Leong, K.W. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. Deerfield 2007, 19, 2775–2779. [Google Scholar] [CrossRef]
- Birch, M.A.; Tanaka, M.; Kirmizidis, G.; Yamamoto, S.; Shimomura, M. Microporous “honeycomb” films support enhanced bone formation in vitro. Tissue Eng. A 2013, 19, 2087–2096. [Google Scholar] [CrossRef]
- Kikuchi, A.; Okano, T. Nanostructured designs of biomedical materials: Applications of cell sheet engineering to functional regenerative tissues and organs. J. Control Release 2005, 101, 69–84. [Google Scholar] [CrossRef]
- Yamato, M.; Konno, C.; Utsumi, M.; Kikuchi, A.; Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 2002, 23, 561–567. [Google Scholar] [CrossRef]
- Yamato, M.; Kwon, O.H.; Hirose, M.; Kikuchi, A.; Okano, T. Novel patterned cell coculture utilizing thermally responsive grafted polymer surfaces. J. Biomed. Mater. Res. 2001, 55, 137–140. [Google Scholar] [CrossRef]
- Hirose, M.; Kwon, O.H.; Yamato, M.; Kikuchi, A.; Okano, T. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 2000, 1, 377–381. [Google Scholar] [CrossRef]
- Konig, G.; McAllister, T.N.; Dusserre, N.; Garrido, S.A.; Iyican, C.; Marini, A.; Fiorillo, A.; Avila, H.; Wystrychowski, W.; Zagalski, K.; Maruszewski, M.; Jones, A.L.; Cierpka, L.; de la Fuente, L.M.; L’Heureux, N. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 2009, 30, 1542–1550. [Google Scholar] [CrossRef]
- Isenberg, B.C.; Backman, D.E.; Kinahan, M.E.; Jesudason, R.; Suki, B.; Stone, P.J.; Davis, E.C.; Wong, J.Y. Micropatterned cell sheets with defined cell and extracellular matrix orientation exhibit anisotropic mechanical properties. J. Biomech. 2012, 45, 756–761. [Google Scholar] [CrossRef]
- Takahashi, H.; Nakayama, M.; Shimizu, T.; Yamato, M.; Okano, T. Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials 2011, 32, 8830–8838. [Google Scholar] [CrossRef]
- Matsusaki, M.; Kadowaki, K.; Nakahara, Y.; Akashi, M. Fabrication of cellular multilayers with nanometer-sized extracellular matrix films. Angew. Chem. Int. Ed. 2007, 46, 4689–4692. [Google Scholar] [CrossRef]
- Tsuda, Y.; Shimizu, T.; Yamato, M.; Kikuchi, A.; Sasagawa, T.; Sekiya, S.; Kobayashi, J.; Chen, G.; Okano, T. Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 2007, 28, 4939–4946. [Google Scholar] [CrossRef]
- Reed, C.R.; Han, L.; Andrady, A.; Caballero, M.; Jack, M.C.; Collins, J.B.; Saba, S.C.; Loboa, E.G.; Cairns, B.A.; van Aalst, J.A. Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann. Plast. Surg. 2009, 62, 505–512. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Soleimani, M.; Zargarian, S.S.; Haddadi-Asl, V.; Ahmadbeigi, N.; Soudi, S.; Gheisari, Y.; Hajarizadeh, A.; Mohammadi, Y. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-caprolactone) nanofiber scaffolds. Cells Tissues Organs 2009, 190, 135–149. [Google Scholar] [CrossRef]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration. Ann. Biomed. Eng. 2012, 40, 2098–2110. [Google Scholar] [CrossRef]
- Gumusderelioglu, M.; Dalkiranoglu, S.; Aydin, R.S.; Cakmak, S. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J. Biomed. Mater. Res. A 2011, 98, 461–472. [Google Scholar] [CrossRef]
- Hoppen, H.J.; Leenslag, J.W.; Pennings, A.J.; van der Lei, B.; Robinson, P.H. Two-ply biodegradable nerve guide: Basic aspects of design, construction and biological performance. Biomaterials 1990, 11, 286–290. [Google Scholar] [CrossRef]
- Den Dunnen, W.F.; van der Lei, B.; Robinson, P.H.; Holwerda, A.; Pennings, A.J.; Schakenraad, J.M. Biological performance of a degradable poly(lactic acid-epsilon-caprolactone) nerve guide: Influence of tube dimensions. J. Biomed. Mater. Res. 1995, 29, 757–766. [Google Scholar] [CrossRef]
- Den Dunnen, W.F.; van der Lei, B.; Schakenraad, J.M.; Blaauw, E.H.; Stokroos, I.; Pennings, A.J.; Robinson, P.H. Long-term evaluation of nerve regeneration in a biodegradable nerve guide. Microsurgery 1993, 14, 508–515. [Google Scholar] [CrossRef]
- Ekholm, M.; Hietanen, J.; Lindqvist, C.; Rautavuori, J.; Santavirta, S.; Suuronen, R. Histological study of tissue reactions to epsilon-caprolactone-lactide copolymer in paste form. Biomaterials 1999, 20, 1257–1262. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci. 2010, 35, 868–892. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Beachley, V.; Hepfer, R.G.; Katsanevakis, E.; Zhang, N.; Wen, X. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication. Bioengineering 2014, 1, 114-133. https://doi.org/10.3390/bioengineering1030114
Beachley V, Hepfer RG, Katsanevakis E, Zhang N, Wen X. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication. Bioengineering. 2014; 1(3):114-133. https://doi.org/10.3390/bioengineering1030114
Chicago/Turabian StyleBeachley, Vince, R. Glenn Hepfer, Eleni Katsanevakis, Ning Zhang, and Xuejun Wen. 2014. "Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication" Bioengineering 1, no. 3: 114-133. https://doi.org/10.3390/bioengineering1030114
APA StyleBeachley, V., Hepfer, R. G., Katsanevakis, E., Zhang, N., & Wen, X. (2014). Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication. Bioengineering, 1(3), 114-133. https://doi.org/10.3390/bioengineering1030114