Ghufran, M.; Ullah, M.; Khan, H.A.; Ghufran, S.; Ayaz, M.; Siddiq, M.; Abbas, S.Q.; Hassan, S.S.u.; Bungau, S.
In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations. Bioengineering 2023, 10, 100.
https://doi.org/10.3390/bioengineering10010100
AMA Style
Ghufran M, Ullah M, Khan HA, Ghufran S, Ayaz M, Siddiq M, Abbas SQ, Hassan SSu, Bungau S.
In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations. Bioengineering. 2023; 10(1):100.
https://doi.org/10.3390/bioengineering10010100
Chicago/Turabian Style
Ghufran, Mehreen, Mehran Ullah, Haider Ali Khan, Sabreen Ghufran, Muhammad Ayaz, Muhammad Siddiq, Syed Qamar Abbas, Syed Shams ul Hassan, and Simona Bungau.
2023. "In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations" Bioengineering 10, no. 1: 100.
https://doi.org/10.3390/bioengineering10010100
APA Style
Ghufran, M., Ullah, M., Khan, H. A., Ghufran, S., Ayaz, M., Siddiq, M., Abbas, S. Q., Hassan, S. S. u., & Bungau, S.
(2023). In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations. Bioengineering, 10(1), 100.
https://doi.org/10.3390/bioengineering10010100