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Abstract: New technologies for monitoring grip forces during hand and finger movements in non-
standard task contexts have provided unprecedented functional insights into somatosensory cog-
nition. Somatosensory cognition is the basis of our ability to manipulate and transform objects
of the physical world and to grasp them with the right amount of force. In previous work, the
wireless tracking of grip-force signals recorded from biosensors in the palm of the human hand has
permitted us to unravel some of the functional synergies that underlie perceptual and motor learning
under conditions of non-standard and essentially unreliable sensory input. This paper builds on
this previous work and discusses further, functionally motivated, analyses of individual grip-force
data in manual robot control. Grip forces were recorded from various loci in the dominant and
non-dominant hands of individuals with wearable wireless sensor technology. Statistical analyses
bring to the fore skill-specific temporal variations in thousands of grip forces of a complete novice
and a highly proficient expert in manual robot control. A brain-inspired neural network model that
uses the output metric of a self-organizing pap with unsupervised winner-take-all learning was
run on the sensor output from both hands of each user. The neural network metric expresses the
difference between an input representation and its model representation at any given moment in
time and reliably captures the differences between novice and expert performance in terms of grip-
force variability.Functionally motivated spatiotemporal analysis of individual average grip forces,
computed for time windows of constant size in the output of a restricted amount of task-relevant
sensors in the dominant (preferred) hand, reveal finger-specific synergies reflecting robotic task skill.
The analyses lead the way towards grip-force monitoring in real time. This will permit tracking
task skill evolution in trainees, or identify individual proficiency levels in human robot-interaction,
which represents unprecedented challenges for perceptual and motor adaptation in environmental
contexts of high sensory uncertainty. Cross-disciplinary insights from systems neuroscience and
cognitive behavioral science, and the predictive modeling of operator skills using parsimonious
Artificial Intelligence (AI), will contribute towards improving the outcome of new types of surgery,
in particular the single-port approaches such as NOTES (Natural Orifice Transluminal Endoscopic
Surgery) and SILS (Single-Incision Laparoscopic Surgery).

Keywords: wearable biosensors; human grip force; spatiotemporal analysis; somatosensory neurons;
motor control; robotic task expertise; variability; neural networks; self-organizing functional principles

1. Introduction

Analysis of grip-force signals tailored to hand and finger movement evolution for
grip-force control during task execution provides insight into the fundamental mechanisms
of somatosensory cognition [1]. Recent technology has permitted the wireless monitoring
of grip-force signals recorded from biosensors in the palm of the human hand to track and
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trace human grip forces deployed in image-guided precision tasks under conditions of
restricted sensory input [2,3]. Such grip-force sensing permits profiling operator strategies
and, at the same time, exploring functional interactions between somatosensory and motor
control during the strategic planning and execution of hand movements, with a potential
for generating benchmarks for human–robot interaction [4–6]. Somatosensory cognition
is the basis of our ability to manipulate and transform physical objects [1,7], to recognize
them on the basis of touch alone [8,9], and to grasp them with the right amount of force
for lifting, manipulation, or transformation [10–14]. Sensorial and cognitive processes
underlying hand-specific grip-force variation (dominant versus non-dominant hand) in
manual tasks have been studied in a variety of contexts by selectively probing multiple
measurement locations in the fingers and palm of the human hand [12–17]. Grip-force
modulation is governed by neuronal connections that are potentiated on the basis of self-
organized learning [18–20], which drives the development of functionally specific neural
networks in the continuously learning brain. The neural activities in these networks are
modulated by sensory signals processed in the somatosensory cortex, the so-called S1
map [21]. S1 corresponds to a neocortical area that responds primarily to tactile stimulation
on the skin or hair and plays a critical role in grip-force control in interaction with multiple
sensory areas. Somatosensory neurons have the smallest receptive fields, receiving the
shortest-latency input from their peripheral receptors. Their cortical functional organization
is conceptualized in the current state of the art [22–24] in terms of a single neural network
map of the receptor periphery, with a modular functional architecture and highly specific
connectivity patterns, coordinating functionally distinct neuronal subpopulations from
other cortical areas involved in sensory processing into motor circuit modules at several
hierarchical levels [23–27]. These functionally specific modules display a hierarchy of
interleaved circuitry connecting via inter-neurons in the spinal cord, in the visual, auditory,
and olfactory sensory areas, and in the motor cortex, with feedback loops and bilateral
communication with the supraspinal centers [21,22]. Anatomically adjacent to the motor
cortex, S1 is thus functionally connected to all sensory areas [28,29] responding to stimuli
from the environment (Figure 1).
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Figure 1. Anatomically adjacent to the motor cortex, the somatosensory brain (S1) controls mechanore-
ceptors and plays a critical role in grip-force production through functional interactions with multiple
sensory areas. The prefrontal lobe controls the conscious modulation of grip forces and motor
behavior (not illustrated here).

Somatosensory afferents reach the frontal lobe and feed into circuitry for prefrontal
responses to somatosensation (touch) and the conscious control of motor and grip-force
behaviors [30,31]. There is a strong functional link between visual and somatosensory
cognition in sighted individuals, who have learnt to rely on visual input for motor planning
and control, as visual input permits anticipation of the grip forces required for manipu-
lating objects [32]. When visual cues are suddenly no longer available and the subject is
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confronted with high uncertainty about digit-force-related object properties, sensorimotor
memories take over [9,33]. Such memories form during life-long brain learning on the basis
of previous grasp experience to permit cognitively controlled grip-force adaptation when
physical object properties and behavioral consequences cannot be reliably sensed. The
contribution of each finger to overall grip strength, coarse adjustments, and finer grip-force
control vary across cognitive tasks and their diverse requirements for motor planning and
execution. While the middle finger is critical for lifting and manipulating heavy objects in
three dimensions [12], the ring finger and the small finger mostly control fine grip-force
modulation [34–40]. Subtle grip-force deployment with minimal variation is necessary for
precision tasks such as surgery. In precision tasks, the contribution of the index finger to
total grip force is often the smallest, and there seem to be no significant differences between
men and women, yet, the amount of force applied by each digit depends on several factors
including where the digits are placed when grasping [34]. In the absence of external con-
straints, the complex anatomy of the human hand allows for a large variety of postures
and force combinations to attain stable grips, generating functional synergies that permit
solving the problem of motor redundancy [15,35]. Multi-finger grip-force control relies on
the self-organizing principles of from-local-to-global functional interaction and multiple
feedback loops at several hierarchical stages, from hand to brain and back [3,10–12]. The
adaptive scaling of both magnitude and rate of hand or finger force is skill-specific and
controlled centrally by memory processes [33]. In the true expert, such scaling relies on
high-level cognitive control mechanisms, finely tailored to the skill in question [1,3,36].
Expert surgeons, for example, not only deploy grip forces more parsimoniously than
novices [41,42], but their spatiotemporal grip-force profiles reveal patterns characteristic
of expertise in comparison with novices or trainee surgeons [2,3]. Robot-assisted surgical
training illustrates novel perspectives offered by modern grip-force sensor technology for
the study of functionally significant changes during task skill acquisition. Hand and finger
grip forces directly impact on the trajectory and velocity of surgical tool displacements.
Optimal hand grip force produces optimal object displacement trajectories and move-
ment [10,11]. Minimally invasive robotic surgery is an image-guided high-precision task
where the absence of haptic force feedback spontaneously yields stronger, often excessive
(i.e., non-optimal) hand grip forces, especially in novices [42]. This can result in unnecessary
or excessive tissue damage in a patient, and novices therefore have to learn to overcome
this problem by scaling their finger forces accordingly. Such learning requires adaptation to
unusual constraints, because robot-assisted surgical systems impose conditions of limited
Degrees of Freedom (DoF) for hand and finger movements during the manipulation of
the surgical tools attached to the system. The tools cannot straightforwardly be moved in
any direction as in traditional surgery. This represents a considerable constraint for motor
planning and control to which novices need to adapt. Also, veridical information about
real-world depth is missing from the image representations on the screen of such surgical
systems, and instead of looking down on his/her hands, the surgeon only sees the tool-ends
controlled by the system. Camera and image calibration problems added, the tool move-
ments displayed on a screen may not match the real-world movements in time and space,
and the combined loss of real-world depth input and veridical space scale information
significantly affects the performance of novices and experts who are not familiar with the
system [4,5]. Robot-assisted surgery thus profoundly challenges solidly formed perceptual,
somatosensory, and cognitive representations of space, scale, and relative distance for
eye-hand coordination [1,3,10,32,33]. Here in this work, we exploit thousands of individual
grip-force data recorded from wireless sensors in functionally relevant locations of the
dominant hands of an expert and a novice to account for the evolution of each individual’s
motor behaviour during training in a four-step pick-and-drop simulation task on a robotic
platform designed for single-access transluminal endoscopic surgery.
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2. Materials and Methods

A wireless wearable (glove) sensor system was used for collecting thousands of grip-
force data per sensor location and individual user in real time. The glove system does not
provide haptic user feedback, and the sensors therein were positioned to fit the cylindrical
shape of the control handles of a robotic system designed for bi-manual intervention in
transluminal endoscopic surgery. Task simulations may solicit either the dominant, the
non-dominant, or both hands at the same time depending on the complexity of the task.
Here, grip-force data recorded from the dominant and non-dominant hands of an expert
and a novice tested in ten successive sessions, performed without breaks between sessions,
of a four-step pick-and-drop task were generated. All sensors of the glove system were
carefully calibrated, as explained in further detail below in Section 2.2. The calibration
results are displayed in the Results sections.

2.1. Robotic System

The robotic system is built on the Anubis® platform of Karl Storz. The slave system
consists of three flexible, cable-driven sub-units for robot-assisted endoscopic surgery with
ten motorized DoF, which are described in further detail in previous work [5,35,38]. The
main endoscope carries a fisheye camera at its end, providing visual feedback. The lateral
and longitudinal control of the endoscope is user-dependent, and the endoscope can be
bent in two orthogonal directions, moving the endoscopic view from left to right, and
up and down at any given position. The distal instruments at the tool-end are inserted
in the channels of the endoscope, and they have bending extremities. This system has
a tree-like architecture, where movements of the endoscope, controlled by the user via
two cylindrically shaped handles, impact also upon the position and orientation of the
distal extremities (tool-tips) (Figure 2). Each of these has three DoF, two for translation
and rotation in the endoscope channel, and one for the deflection of the active distal
extremity/tool-tip. Translation, rotation, and deflection are electrically actuated (motorized)
via cables running through the endoscope from its proximal part to the distal end. The distal
extremities/tool-tips open and close mechanically when a trigger is pulled by the user. The
slave robot is controlled by a position loop running at 1000 Hz on the CPU of the master
system, which consists of two specially designed interfaces, which are passive mobile
mechanical systems. The user is to put his hands tightly around each of the two handles,
each of which has three DoF for controlling the tool-tips’ translational and rotational
movements, and those around the axis of movement of the initial DoF for the lateral or
longitudinal control of the endoscope via a given handle, which the user manipulates
with the left or the right hand depending on the task. The master interfaces are statically
balanced and all joints exhibit low friction, which means that only minimal forces are
required to produce movement in any direction.

The controller of the robot master system runs on a DELL Precision T5810 model
computer equipped with an Intel Xeon CPU E5-1620 with 16 Gigabytes memory (RAM)
under real-time Linux. The real-time Linux mapping control software communicates with
the master interface and the slave system.

Joint positions of the master interfaces are obtained from encoders read at 1 kHz by
the central controller of the master CPU, which maps the positions individually to the
corresponding joints of the slave systems to compute reference positions. The master
CPU sends these reference positions to the drivers controlling the slave motors at 1 kHz.
The slave joints are individually servoed to their reference positions by their drivers. The
master–slave control flow chart of the robotic system is illustrated schematically here
above (Figure 3). The mapping scales from master to slave are 1:1 for rotations, 1:2 for
bending, and 1:2:1 for translations. Each of the two handles has a trigger for controlling
the mechanical opening and closing of the grippers at the tool-tips, and a small four-way
joystick for controlling specific camera movements not required for the study (NB, this
joystick was not used in any of the experimental sessions here). In the experimental task,
the trigger controlling the tool-tip graspers was operated with the index finger of the hand
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in action. The user sits in front of the master console and looks at the endoscopic camera
view displayed on the screen in front of him/her at a distance of about 80 cm while holding
the two master handles, which are about 50 cm away from each other. Seat and screen
heights are adjustable to optimal individual comfort. Left and right master interfaces are
identical and the two slave instruments they control are also identical. Therefore, for a
given task the same movements need to be produced by the user whatever the hand he/she
uses (left or right). A snapshot view of a user wearing the sensor gloves while manipulating
the handles of the system is shown above (Figure 2 top left).
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Figure 3. Master–slave control flow chart of the robotic system. In the ‘mapping’ block, the horizontal
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master is mapped to that of the follower, and the vertical rotation of the master is mapped to the
bending angle of the follower as shown at the bottom of Figure 2. The mapping scales are indicated
in the text here below.
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2.2. Sensor Gloves

A wearable sensor system consisting of two gloves, one for each hand, with inbuilt
Force Sensitive Resistors (FSR) was developed. Each of the two gloves has 12 FSR that
are in contact with specific locations on the inner surface of the hand, as illustrated below
(Figure 4). The sensor locations were chosen for optimal contact with the surface of the
cylindrically shaped robotic handles when holding them with each hand. The FSR were
inserted between two layers of cloth and did not interact directly with either the skin
of the subject or the surface of the master handles, which provided a comfortable feel
during manipulations. FSR were sewn with needle and thread into the cloth layer around
their conducting surfaces (active areas). The electrical connections of the sensors were
individually routed to the dorsal side of the hand and brought to a soft ribbon cable,
connected to a small and very light electrical casing, strapped onto the upper part of the
forearm and equipped with an Arduino microcontroller. Eight of the FSR, positioned in
the palm of the hand and on the finger tips, had a 10 mm diameter, while the remaining
four located on middle phalanges had a 5 mm diameter. Each FSR was soldered to 10 KΩ
pull-down resistors to create a voltage divider, and the voltage read by the analog input of
the Arduino is given by

Vout = RPDV3.3/(RPD + RFSR) (1)

where RPD is the resistance of the pull-down resistor, RFSR is the FSR resistance, and
V3.3 is the 3.3 V supply voltage. FSR resistances can vary from 250 Ω when subject to
20 Newtons (N) to more than 10 MΩ when no force is applied at all. The generated voltage
varies monotonically between 0 and 3.22 Volts, as a function of the force applied, which
is assumed uniform on the sensor surface. In the experimental task here, forces applied
did not exceed 1100 grams (g), which corresponds to ~10 Newtons. The relation between
force and voltage is linear within the range of output voltages measured in the experiments
here for variations within the range of [0; 1500] mV. Careful calibration of all sensors was
performed prior to the experiments to ensure that all sensors provided similar calibration
curves. The relationship between force (g) and tension (mV) here is shown graphically in
the Results section. Regulated 3.3 V was provided to the sensors from the Arduino. Power
was provided using a 4.2 V Li-Po battery enabling use of the glove system without any cable
connections. The battery voltage level was controlled during the whole duration of the
experiments with the Arduino electronic prototyping platform and displayed continuously
via the user interface. The glove system was connected to a computer for data storage via
Bluetooth-enabled wireless communication at a rate of 115,200 bits per second (bps).

2.3. Software

The software of the glove system has two parts: one running on the gloves, and one
for data collection. Each of the two gloves sends data to the computer separately, and
the software reads the input values and stores them on the computer according to their
header values indicating their origin. The software is run on Arduino and designed to
acquire analog voltages provided by each FSR every 20 milliseconds (50 Hz). In every
loop, input voltages were merged with their time stamps and sensor identification. This
data package was sent to the computer via Bluetooth, and was decoded by the computer
software. The voltage data were saved in a text file for each sensor with their time stamps
and identifications. Furthermore, the computer software monitored the voltage values
received from the gloves via a user interface showing the battery level. In case the battery
level drops below 3.7 V, the system warns the user to change or charge the battery. However,
this never occurred during the experiments reported here.



Bioengineering 2023, 10, 59 7 of 18Bioengineering 2023, 10, x FOR PEER REVIEW 7 of 19 
 

 
Figure 4. The sensor glove system has twelve sensors positioned mirror-symmetrically across the 
left and right hands. The spatiotemporal grip-force profiles for expert and novice described under 
3.3 in the Results section were drawn from a functionally relevant subset of three sensors (red cir-
cles) in the dominant hand, translating optimal grip-force deployment by the pinky (S7), and mini-
mized gross grip-force deployment by the ring and middle fingers (S5, S6) characteristic of expertise 
in controlling the master–slave system of the surgical robot. The data from ten of the twelve sensors 
(S2, S3, S5, S6, S7, S8, S9, S10, S11, S12) in the dominant and non-dominant hands of the two users 
were fed into the variability (standard deviations) and neural network analyses (SOM). Sensors S4 
and S1 produced too little significant output and were not taken into account. 

2.3. Software 
The software of the glove system has two parts: one running on the gloves, and one 

for data collection. Each of the two gloves sends data to the computer separately, and the 
software reads the input values and stores them on the computer according to their header 
values indicating their origin. The software is run on Arduino and designed to acquire 
analog voltages provided by each FSR every 20 milliseconds (50 Hz). In every loop, input 
voltages were merged with their time stamps and sensor identification. This data package 
was sent to the computer via Bluetooth, and was decoded by the computer software. The 
voltage data were saved in a text file for each sensor with their time stamps and identifi-
cations. Furthermore, the computer software monitored the voltage values received from 
the gloves via a user interface showing the battery level. In case the battery level drops 
below 3.7 V, the system warns the user to change or charge the battery. However, this 
never occurred during the experiments reported here. 

2.4. Experimental Precision Grip Task 
A 4-step pick-and-drop precision grip task requiring specific device movements in 

all directions (left, right, forwards, and backwards) had to be performed as swiftly and 
accurately as possible. A verbal description for each task step is provided below (Table 1). 
Visual illustrations are shown further below (Figure 5). 

Table 1. Verbal description of each of the four task steps. The colored boxes correspond to task steps 
as visualized in the spatiotemporal profiles shown in the Results section. 

Task Step Hand–Tool Interaction Required 
1 Activate and move tool forwards towards the pick-up target box 

2 Move tool downwards towards object, open grippers, close grippers on 
object, lift object 

3 Move tool in lateral direction towards the destination box for dropping object 

Figure 4. The sensor glove system has twelve sensors positioned mirror-symmetrically across the left
and right hands. The spatiotemporal grip-force profiles for expert and novice described under 3.3 in
the Results section were drawn from a functionally relevant subset of three sensors (red circles) in the
dominant hand, translating optimal grip-force deployment by the pinky (S7), and minimized gross
grip-force deployment by the ring and middle fingers (S5, S6) characteristic of expertise in controlling
the master–slave system of the surgical robot. The data from ten of the twelve sensors (S2, S3, S5, S6,
S7, S8, S9, S10, S11, S12) in the dominant and non-dominant hands of the two users were fed into the
variability (standard deviations) and neural network analyses (SOM). Sensors S4 and S1 produced
too little significant output and were not taken into account.

2.4. Experimental Precision Grip Task

A 4-step pick-and-drop precision grip task requiring specific device movements in
all directions (left, right, forwards, and backwards) had to be performed as swiftly and
accurately as possible. A verbal description for each task step is provided below (Table 1).
Visual illustrations are shown further below (Figure 5).

Table 1. Verbal description of each of the four task steps. The colored boxes correspond to task steps
as visualized in the spatiotemporal profiles shown in the Results section.

Task Step Hand–Tool Interaction Required

1 Activate and move tool forwards towards the pick-up target box

2 Move tool downwards towards object, open grippers, close grippers on object,
lift object

3 Move tool in lateral direction towards the destination box for dropping object
4 Open grippers to drop object in the destination box

During the experiments, only one of the two instruments controlling the tool-tips
(left or right, depending on the task session) was moved, while the main endoscope and
the camera image remained still. The experimental task starts with the right or left hand
gripper being pulled back. Then the user has to approach the object with a forward
movement in depth (step 1) of the distal tool extremity by manipulating the handles of the
master system effectively. This forward movement in depth is the most difficult to perform
under the conditions given (2D image guidance) because veridical depth information is
unavailable [43–47].
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Figure 5. Image illustrations of each of the four steps, described verbally in Table 1, of the pick-and-drop
task when performed with the right hand. At the beginning of each session, the object was replaced in
the departure box at the same position and with the same orientation (see image 1, top left).

Once the distal tool was correctly positioned, the object has to be grasped with the
tool-tips (step 2). Once firmly held by the gripper, the object has to be moved laterally
to a position on top of the target box (step 3) with the distal extremity of the tool in the
correct position for dropping the object into the target box without missing (step 4). A user
starts and ends a given task session by pushing a button that is wirelessly connected to the
computer receiving the data. The robot-assisted precision grip task involves positioning
the instrument tip through movements from left to right, from up to down, and from
forward to backwards. Manipulation of one instrument is required to perform this task
here. Given the limited degrees of freedom for hand and finger movements, the user is
bound to perform the task with each hand in rather the same way. The locally deployed
grip forces will vary depending on how skilled a user has become in performing the task.
Here, grip-force data collected from two users with distinct levels of task skill (expert vs.
novice) were analyzed. The hand preference profiles of these two users were different.
The expert user has been practicing on the system since its manufacture and become a
highly proficient user, with years of user experience and more than 100 h of training in this
specific task. This expert is proficient in using the system with his dominant (left) hand,
and has only a moderate preference for using his left hand in everyday manual tasks. The
other user was a complete novice who had never used the system before, nor had he any
prior experience with any similar system, with a strong preference for right hand use in
everyday manual tasks. He was given one hour to familiarize himself with the system
with both hands prior to the experiments. Their hand sizes were about the same, and the
sensor gloves were developed specifically to fit the hands of average-proportioned male
individuals. Expertise in this type of task is consistently reflected by specific performance
parameters such as the average task time taken in a session and the number of incidents,
accounting for the number of times an object is dropped, and the number of unsuccessful
grasp attempts or tool-trajectory readjustments. Each user performed the task with the
dominant and the non-dominant hand in ten successive sessions for each hand without
major breaks between sessions.

2.5. Statistical Analyses

The variability in the novice and the expert data for each hand across the ten sessions
was statistically assessed for all sensors that produced meaningful output. The goal of
this exercise is to bring to the fore skill-specific differences in grip-force variability across
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sensors and sessions. This was achieved by computing and plotting the variance in the
data in terms of standard deviations from the mean, which express the squared differences
between the observations and the group mean divided by the number of data points for
each group of observations. The statistical analyses (2-Way ANOVA) between the raw
grip-force data from a functionally relevant subset (Table 2) of three of the twelve sensors
(S5, S6, S7) for the expert and the novice from their first and last task sessions with the
dominant hand was performed using the MATLAB toolbox. These statistical analyses
were designed to test for functionally specific effects, and their probability limits, of the
‘Expertise’ factor (expert vs. novice) and the ‘Session’ factor (first session vs. last session).

Table 2. Functionally relevant sensors (S5, S6, S7) for the controlled manipulation of the cylindrical
robotic handles. Output measures for these sensors from the expert’s and the novice’s first and last task
sessions with the dominant hand were compared to bring to the fore proficiency-specific differences.

Sensor Finger Grip-Force Control

S5 middle gross grip-force deployment
S6 ring non-specific grip-force support
S7 pinky precision grip control

These same selected data were then submitted to spatiotemporal analysis in terms
of Average peak amplitudes in milliVolts (AmV) for successive temporal windows of a
fixed size of 2000 msec each in the given individual sessions. With one signal recorded
every 20 msec and 100 signals per time window of 2000 msec, we have AmV = mVtotal/100,
which is the total sum of mV recorded in a given time window divided by the total
number of signals in that time window. Since expert and novice had different hand-use
preferences in everyday life, as explained above in Section 2.4, the differences shown for
the dominant hand are likely to best reflect specific characteristics relating to the skill level
in this task here.

2.6. Neural Network Model

A neural network architecture described in detail in previous work [48–51] referring
to functional properties of the Quantization Error (QE) in the output of a Self-Organizing
Map (SOM) was exploited for modeling the variability in the whole data set of grip
forces recorded from ten sensors and ten successive task sessions with the dominant and
non-dominant hands of the expert and the novice. The SOM is described formally as a
nonlinear, ordered, smooth mapping of high-dimensional input data onto the elements of
a regular, low-dimensional array. The input variables are defined here as a real vector x
of n dimensions (the input representation), and each element therein is associated with a
parametric real vector mi of n dimensions (the model representation). Assuming a general
distance measure between x and mi, denoted by d(x, mi), the map of an input vector x
on the SOM array is defined as the array element mc that best matches x (smallest d(x,
mi)). During the learning process, models topographically close in the map up to a certain
geometric distance, denoted hci, will activate each other to learn something from their
shared input x. This then results in a local relaxation, or smoothing effect, on the models in
this neighborhood, which in continued learning leads to global ordering. SOM learning is
represented with the equation

m (t + 1) = mi (t) + α(t) hci(t)[x (t)− mi(t)] (2)

where t = 1,2,3 . . . is an integer, the discrete-time coordinate, hci(t) is the neighborhood
function (a smoothing kernel defined over the map points which converges towards zero
with time), and α(t) is the learning rate. At the end of the winner-take-all learning process,
each input vector x becomes associated with, or mapped to, its best matching model. The
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difference between x and mc, ‖ x−mc ‖, is reflected by the quantization error QE. The QE
of x is given by

QE = 1/N ∑N
i=1 ‖ xi −mci ‖ (3)

where N is the number of input vectors x.

2.7. Rationale for the Neural Network Architecture

The SOM implemented here was designed to map a brain-inspired mechanoreceptor-
to-brain model network in terms of a 7 by 7 map generating a fully connected network
of 49 neurons where each of the sensors for which data were exploited contributes to the
final synaptic weight of each neuron. The QE in the SOM output, the SOM-QE [48,49],
expresses a difference between an input representation and its model representation at a
given moment in time t, and captures variations in this difference with time [50,51]. The QE
in the output of the brain-inspired neural network map reflects the amount of variability in
the grip forces of the expert and the novice at any given moment in time, and the evolution
of this variability with time, i.e., across the ten successive task sessions. Intra- and inter-
individual grip-force variability directly translate skill levels [35–37], and tend to decrease
with practice, converging towards an optimum characteristic of expert performance [2,3,5].

3. Results

The results from the sensor calibration procedure, the neural network modeling of skill-
specific grip-force variability exploiting all the sensor data that produced significant output,
and the individual spatiotemporal grip-force profiles for expert and novice dominant-hand
data for selected sensors with a particular functional significance (Table 2) in the precision
grip task are presented here below.

3.1. Sensor Calibration

The relationship between force (g) and tension (mV) from the sensor calibrations,
explained in Section 2.2. of the Materials and Methods section, was analyzed. The raw
sensor output data in the experiments here vary essentially within the linear range of this
relationship (Figure 6). All the following analyses and comparisons are therefore computed
directly on the voltage levels at the millivolt (mV) scale.
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3.2. Skill-Specific Grip-Force Variability

The numerical range of observations (in mV) was determined for each sensor across
sessions (ten per hand), for expert and novice performing with the dominant and non-
dominant hand. The results of this descriptive analysis are shown above (Figure 7). The
variability in grip forces deployed by the novice and the expert by the dominant and the
non-dominant hands was then analyzed on the basis of the raw data from each individual
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session. Temporal variability in biosensor data expresses the evolution of the amount of
functional “noise” in the living system under study, and was determined here in terms
of standard deviations (STD) from the mean (not standard errors of the mean as shown
in Figure 7). STD express the squared differences between observations (measurements)
and the group mean (for a given individual session here), divided by the number of data
points in the group. These were plotted as a function of the session order for all sensors
that produced meaningful output (Figure 8).
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An increase in the variability in grip forces (STD) with time (sessions) during task
performance with the non-dominant hand is observed in both users (Figure 8, right). It is
therefore not skill-related, but may indicate a tendency to fatigue in the non-preferred hand
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when the number of repeated task sessions increases. This interpretation holds ground given
the difference in forearm muscle size between dominant and non-dominant extremities [52].

3.3. Neural Network Model

The neural network model (SOM) described in 2.6 was then run on the same variabil-
ity data for each user type and session. The QE in the output of these analyses is plotted
here below as a function of the session order (Figure 9). Further statistical analyses of the
grip force and the SOM model data (t-test paired comparisons) yield significant effects of
task expertise on the STD (t(1, 18) = 22.34; p < 0.001 for the dominant hand; t(1, 18) = 7.43;
p < 001 for the non-dominant hand). These are mirrored by significant effects on the
SOM-QE (t(1, 18) = 9.27; p < 0.001 for the dominant hand; t(1, 18) = 4.09; p < 0.001 for the
non-dominant hand). These result show that task skill evolution reflected by grip-force vari-
ability as a function of time, in an expert in comparison to a novice, can be reliably predicted
using unsupervised learning in an artificial neural network map mimicking functional
properties of a biological receptor network in the somatosensory brain. These networks
develop task-specific functional synergies aimed at reducing motor redundancy [11]. In our
previous work [3], correlation analyses revealed skill-specific differences in co-variation
patterns in individual grip-force profiles reflected by an optimum of significant and func-
tionally specific co-variation in a few sensors in the expert dominant hand, and non-specific
co-variation in a large amount of sensors in the dominant hand of novices.
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Figure 9. QE in the output of the brain-inspired neural network model (SOM) run on the grip-force
data from the different sessions; the difference in grip-force variability between the expert and the
novice is reliably predicted by the neural network map output metric.

3.4. Functionally Motivated Spatiotemporal Profiling

To highlight functionally specific task-relevant grip-force differences in the sensor
profiles of expert and novice, the following spatiotemporal analysis zooms in on a selected
number of functionally relevant sensors in the expert’s and the novice’s dominant hands.
In [3] we had shown that robotic task skill is reflected by an optimum of significant
positive correlations between the output of dominant-hand sensors with similar function
(S5 and S6) and significant negative correlations between dominant-hand sensors with
different functions (S6 and S7, for example). Conversely, a novice profile exhibits non-
specific co-variation in a large amount of sensors in both hands, which translates functional
redundancy characteristic of unskilled manipulation [10,11]. Individual temporal grip-
force profiles from sensors S5, S6, and S7 were submitted to spatiotemporal analysis. This
was achieved by computing the Average peak amplitudes in milliVolts (AmV) for fixed
successive temporal windows of 2000 millliseconds (msec) from a given individual session,
as explained in 2.5 above. These profiles, comparing the first and the last individual
sessions of the expert and the novice, are shown below (Figure 10). Statistical comparison
(2-Way ANOVA) between the original raw data of the expert and novice from their first
and last task sessions reveal significant interactions between ‘expertise’ (two factor levels)
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and ‘session’ (two factor levels) for all three sensors considered here (S5, S6, S7). For sensor
S5 on the middle finger (gross grip-force deployment), the mean (m) grip forces and their
standard errors (sem) from the first session yield m = 241 mV and sem = 4.3 for the expert
and m = 790 mV and sem = 2.7 for the novice, showing that the latter deploys about three
times as much unnecessary gross grip force compared to the expert. This expertise-specific
difference in proportional gross grip force deployed by the middle finger is even larger
in the last session, with m = 78 mV and sem = 4.9 for the expert, and m = 640 mV and
sem = 3.6 for the novice. The interaction between the ‘expertise’ and ‘session’ factors for
sensor S5 is significant with F(1, 2880) = 28.65; p < 0.001. For sensor S6 on the ring finger,
which has no particular role in grip-force control, the differences between the grip-force
profiles of novice and expert are minimal, as would be expected, in the first session with
m = 576 mV and sem = 3.8 for the expert and m = 504 mV and sem = 2.4 for the novice,
and in the last session with m = 474 mV and sem = 4.5 for the expert and m = 445 mV and
sem = 3.3 for the novice. The interaction between the ‘expertise’ and ‘session’ factors for
sensor S6 is, however, significant with F(1, 2880) = 35.86; p < 0.001, which is explained by
the fact that grip forces, i.e., amplitudes in mV, diminish in both users from the first to
the last session, but not by the same amounts. For sensor S7 on the small finger (critically
important for fine grip-force control), the expertise-specific difference between the two user
profiles is characterized by the novice deploying largely insufficient grip forces from the
first session with m = 98 mV and sem = 1.2 to the last with m = 78 mV and sem = 1.6, while
the expert produces sufficient grip force for fine movement control from the first session
with m = 594 mV and sem = 1.8 to the last with m = 609 mV and sem = 2.2.
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last of ten sessions of the expert and the novice. Relative durations of each of the four critical task
steps within a given session are highlighted by the colored boxes corresponding to those shown in
Table 2 on the example of sensor 5 (top left and top right).
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The interaction between the ‘expertise’ and ‘session’ factors for sensor S7 is highly
significant with F(1, 2880) = 188.53; p < 0.001. Average task times across sessions and hands
are considerably shorter for the expert (Table 3), with 10.2 sec across hands in the first
session and 7.5 s across hands in the last indicating a minor practice effect. The novice takes
more than twice as long (~25 s) in the first session compared with the expert, with a 30% time
gain in the last session (18.8 s), indicating a temporal training effect. Regarding incidents
(trajectory adjustments, grip failures, drop misses) across all sessions, the task videos
reveal a total of 20 in the novice across sessions and hands, and only three small trajectory
adjustments in the expert’s last three sessions with the non-dominant hand (Table 3).
Incidents during task completion directly impact the completion times. Their effect on grip
force depends on the type of incident. While the minor tool trajectory corrections (cf. expert
data) may be deemed to have little effect on magnitude and variability in grip force, the
major incidents observed in all sessions of the novice most likely affect both [3–5].

Table 3. Average times taken to complete the task with the dominant and non-dominant hand in the
first and last of ten sessions per hand. The total number of incidents across all sessions are shown in
the last column.

Skill Level 1st Session Duration Last Session Incidents

Expert 10.20 7.48 3
Novice 24.56 18.78 20

4. Discussion

The analyses reveal expertise-specific differences in the spatiotemporal grip-force
profiles of an expert and a novice repeatedly performing a 2D image-guided robot-assisted
precision task. These differences are evaluated here with regard to their functional implica-
tions, in light of previous work on the role of finger grip forces and prehensile synergies,
which are centrally controlled in the human brain for human motor performance and
control. Skill-related differences in grip-force deployment here are reflected by a larger
general grip-force variability and higher grip-force magnitude across hands and sessions
in the novice. One of the more particular aspects of task proficiency in this study context
concerns the proportional gross grip force deployed by the middle finger of the dominant
hand. While the novice deploys too much of it, the expert has learnt to optimize and deploy
it parsimoniously, as shown by the detailed analyses here. Excessive grip-force deployment
appears common in novice surgeons in robotic surgery when there is an absence of haptic
feedback [41,42]. This may be corrected at the earliest stages of training through verbal
feedback. Since grip-force modulation is under higher-level cortical control [9–11,33,36,37]
involving the frontal lobe, raising awareness in the novice verbally could promote faster
adaptive learning. Another functionally important aspect concerns the precision grip-force
control of the cylindrical handles by the small finger, critically important in surgical and
other precision tasks. The difference between the two users here is characterized by the
novice deploying insufficient small finger grip forces with the preferred (dominant) hand,
with no major evolution between the first and the last task sessions. When looking at the
grip forces deployed by the ring finger, which plays no meaningful role in grip-force con-
trol when manipulating cylindrical objects, differences between the profiles of novice and
expert are minimal, as would be expected, and do not evolve much across sessions. Sensors
were positioned in the glove to optimally fit the cylindrical handles of the robotic control
device. The functionally relevant subset in the spatiotemporal analyses were selected in
this specific context on the basis of findings from previous studies on finger-specific func-
tional implications for manipulation of objects with variable shape properties [10–12,16].
Previous work [16] has shown that force distributions for cylindrical grips differ between
the dominant and non-dominant hand in healthy subjects, as shown in this study. For con-
trol handles with other shapes (elliptic, circular, etc.), finger- and hand-specific functional
synergies may be different. These can then be benchmarked using the grip-force profiles of
highly proficient experts. The synergy of finger grip function is self-organizing and highly
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plastic. The complex anatomy of the human hand allows for a large number of postures and
finger combinations to attain optimal grip-force synergies in tasks with different constraints
and the manipulation of objects with different shapes [33]. The total grip-force magnitude,
or mV amplitude, tended to diminish across sessions with practice in both users here.
Regarding task times, the novice took more than twice as long performing the precision
task compared to the expert, but at the end scored a 30% time gain indicating a considerable
temporal training effect, especially in the first critical task step, which is the most difficult to
perform under 2D image guidance given the absence of veridical depth cues in the camera
image. Moving the tool along a virtual trajectory towards the object location requires
movement away from the body in the surgeon’s peripersonal space and is difficult to
scale under conditions of 2D image input. It requires compensating for physically missing
depth information by slowing down, which not only results in longer task times but also
in less precise tool movements [43–46]. This explains why the largest training gain in the
total task time of the novice was observed for task step 1. The 2D camera of the robotic
system here represents a limitation. Using 3D camera systems, as recently demonstrated in
laparoscopic approaches [53], may help overcome this problem. The grip-force analyses
shown here can be performed in real time to monitor manual/bimanual precision tasks,
control performance quality, or prevent risks in surgery systems where excessive grip forces
can directly cause tissue damage [42]. Task-skill-related variations in grip forces are reliably
predicted, as illustrated here, by the output metric of the brain-inspired neural network
architecture simulating functional properties of somatosensory feedback circuitry in the
human brain. Combining grip-force sensor technology with predictive modeling using
computationally parsimonious Artificial Intelligence promises functionally meaningful
and economic automated analysis of surgical task skill evolution. The current state of the
art in robotic assistance [54,55] for surgical procedures with unified master–slave control
systems [56,57] has a considerable potential for augmenting the precision and technical
capability of physicians, but some challenges still need to be met in terms of optimized
system architecture, software, mechanical design, imaging systems, and user interface de-
sign and management for maximum safety. To avoid single-observer bias [58–60], objective
quantitative performance criteria need to be worked out for defining gold standards of
true expert performance in this emerging realm of assistive technology, pushing optimal
training programs for novices. Cogently designed and parsimoniously deployed Artificial
Intelligence [20,59] can help move things forward in this direction. Finally, the control of
the human hand by the brain has evolved as a function of environmental constraints in
interaction with the other sensory systems, and grip-force profiles are a direct reflection of
the complex cognitive and behavioral synergies these interactions have produced. Sensory
cues provided by somatosensation, vision, hearing, and smell play an important role in
grip-force scaling [1]. When interacting with objects of uncertain properties providing
insufficiently reliable somatosensory feedback, individuals use somatosensory memory
representations from previous trials to plan grip forces [60], and patients with massive
somatosensory loss can still scale and time grip forces and adjust them across different
object handling tasks on the basis of memory-based, anticipatory, and online control pro-
cesses to compensate for the loss of somatosensory feedback [61]. The range of possibilities
offered by wearable wireless sensor technology in the study of human cognitive processing
extends well beyond the field of human–robot interaction.

5. Conclusions

Wearable wireless sensor technology has permitted exploration of grip forces deployed
for grasping, lifting, and manipulating objects under conditions of variable external con-
straints and sensory input in novel tasks that require the rescaling of perceptual responses
to obtain behavioral success. Profiling the grip forces of individuals with variable skill
levels in image-guided tasks that require interaction with a robotic device reveals some of
the dynamic functional changes that take place in the brain during practice and learning.
Human–robot interaction represents unprecedented challenges for perceptual and motor
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adaptation in environmental contexts of high sensory uncertainty. The insights from this
study may contribute to improving the outcome of new types of surgery, in particular the
single-port approaches such as NOTES (Natural Orifice Transluminal Endoscopic Surgery)
and SILS (Single-Incision Laparoscopic Surgery). Beyond this particular context, grip-force
analysis offers various perspectives for studying cognitive processes in a larger realm,
relating to multisensory interactions with hearing [30] or vision [32]. Successful grip-force
deployment involves central processes of neural control [1], and grip force is currently
explored as a marker of brain health [62] in clinical studies of cognitive disorders such as
major chronic depression [63], Parkinson’s disease [64], or the non-pathological cognitive
decline in ageing [65–68]. As a directly measurable behavioral correlate of self-organizing
control mechanisms in brain learning [69], grip-force patterns and their evolution are suited
for feeding theoretical approaches and hypotheses that exploit neural network architectures
driven by unsupervised biological learning [20].
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