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Abstract: Recently, artificial intelligence (AI) is an extremely revolutionized domain of medical image
processing. Specifically, image segmentation is a task that generally aids in such an improvement.
This boost performs great developments in the conversion of AI approaches in the research lab
to real medical applications, particularly for computer-aided diagnosis (CAD) and image-guided
operation. Mitotic nuclei estimates in breast cancer instances have a prognostic impact on diagnosis
of cancer aggressiveness and grading methods. The automated analysis of mitotic nuclei is difficult
due to its high similarity with nonmitotic nuclei and heteromorphic form. This study designs an
artificial hummingbird algorithm with transfer-learning-based mitotic nuclei classification (AHBATL-
MNC) on histopathologic breast cancer images. The goal of the AHBATL-MNC technique lies in the
identification of mitotic and nonmitotic nuclei on histopathology images (HIs). For HI segmentation
process, the PSPNet model is utilized to identify the candidate mitotic patches. Next, the residual
network (ResNet) model is employed as feature extractor, and extreme gradient boosting (XGBoost)
model is applied as a classifier. To enhance the classification performance, the parameter tuning of
the XGBoost model takes place by making use of the AHBA approach. The simulation values of the
AHBATL-MNC system are tested on medical imaging datasets and the outcomes are investigated in
distinct measures. The simulation values demonstrate the enhanced outcomes of the AHBATL-MNC
method compared to other current approaches.

Keywords: breast cancer; mitotic nuclei classification; histopathology images; artificial hummingbird
algorithm; medical imaging

1. Introduction

Mitosis can be defined as a process of cell cycle where a replicated chromosome is split
into dual new nuclei that produce genetically identical cells which retain the chromosome
number. This method can be split into four phases: telophase, prophase, metaphase, and
anaphase. It culminates into two daughter nuclei that are genetically identical [1]. Then,
the cell might perform division by cytokinesis to produce dual daughter cells. Producing
more than three daughter cells rather than two normal cells is a mitotic fault that might
tempt mutations or apoptosis, initiating specific kinds of cancer [2]. In the tissue samples,
haematoxylin and eosin (H&E)-stained slides lead to histopathology images where mitosis
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rate is a significant parameter to determine the tumor aggressiveness, especially breast
tumor, and recognition of a typical way of mitosis is utilized as a prognostic and diagnostic
marker. Breast tumor is the main factor that leads to higher mortality amongst women and
is a frequently diagnosed tumor amongst females; if diagnosed at earlier stages, tit can be
the most curable form of tumor [3]. Breast tumor, where survival rate is under 40% in lower-
income nations, is the primary tumor type in females globally that costs a great number
of lives per annum. As stated by the National Tumor Institution, up to 20% of each breast
tumor fails to be found by X-ray mammography (using ionizing radiation) [4]. Mitosis
count assists in tumor diagnosis and provides an assessment of tumor aggressiveness
that assists in tumor grading. The high number of mitotic cells in a region represents
fast-growing or higher-grade tumor.

The visual detection of mitotic nuclei through pathologists is a time-intensive and sub-
jective job with poor reproducibility because of many difficulties. Mitotic nuclei are hyper-
chromatic objects having different morphological sizes and shapes [5]. Furthermore, the
occurrence of mitotic nuclei differs according to tumor stage and tumor grade. In aggressive
tumors, generally, mitotic nuclei are nondifferentiable and appear in smaller sizes with higher
frequency. The accurate detection of mitotic nuclei depends on the experience and knowledge
of the pathologist [6]. Object-level interobserver analysis exposes pathologist disagreement on
individual objects. The limitation of manual workflows generates the necessity to automate
the count of mitotic nuclei to enhance the decision of the pathologist [7]. For the development
of the detection of mitotic nuclei in histopathology images, thus far, various methods have
been introduced based on segmentation, classification, and detection methods [8]. The current
approaches frequently exploit data balancing methods, namely, rotation, translation, and
mirror imaging-oriented techniques for augmenting mitotic examples. Likewise, various
researchers implemented a two-step recognition technique to reduce class imbalance and
enhance precision [9]. With regard to the complicated nature of mitoses, several research
workers used the method of ensemble learning, while few approaches simultaneously trained
two deep learning (DL) models to make the concluding decision.

This study designs an artificial hummingbird algorithm with transfer-learning-based
mitotic nuclei classification (AHBATL-MNC) on histopathologic breast cancer images. The
goal of the AHBATL-MNC technique lies in identification of mitotic and nonmitotic nuclei
on histopathology images (HIs). For HI segmentation process, the PSPNet model is utilized
to identify the candidate mitotic patches. Next, the residual network (ResNet) model is
employed as feature extractor, and the extreme gradient boosting (XGBoost) model is
applied as a classifier. To enhance the classification performance, the parameter tuning of
the XGBoost model takes place, utilizing the AHBA algorithm. The simulation values of
the AHBATL-MNC approach are tested on a medical imaging dataset and the results are
investigated in distinct measures.

2. Related Works

Shwetha and Dharmanna [10] modeled a new technique for automatic identification
and detection by DL model. In this presented technique, the work can be split into five
phases. In the initial phase, histopathological images are preprocessed to boost the contrast
of the nonmitotic and mitotic cells through image adjustment method. In the next phase,
using Otsu segmentation method, the background and foreground are divided. In [11], the
author devised a new structure called SmallMitosis for identifying mitotic cells that are
very small in size undergoing mitosis out of the H&E-stained breast histological images.
SmallMitosis structure has a deep multiscale (MS-RCNN) detector and an atrous fully
convolution-oriented segmentation (A-FCN) method. In the A-FCN technique, the atrous
convolution concept aids in predict bounding box annotations and mitosis masks of very-
small-sized mitotic cells.

Sohail et al. [12] devised an innovative deep convolutional neural network (DCNN)-
related heterogeneous ensemble method, “DHE-Mit-Classifier”, for examining mitotic
nuclei in breast histopathological imageries. Sebai et al. [13] proposed an accurate and
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robust algorithm for detecting mitoses automatically from histology breast cancer slides
by making use of the multitask DL structure for instance segmentation mask region-based
convolutional neural network (RCNN) and object detection. Lei et al. [14] devised an
accurate and fast approach to automatically identify mitosis from histopathology images.
This presented algorithm is capable of detecting the mitotic candidates automatically
from histological units for mitosis screening. In particular, this technique uses DCNN for
extracting high-level features of mitosis to find mitotic applicants. After that, the author
employed spatial attention elements to re-encode mitotic features that enabled the method
to very effectively study features.

Das and Dutta [15] introduced an innovative technique for mitotic cell recognition in
breast histology images, exploiting wavelet decomposed image patches and DCNN. In this
method, Haar wavelet is used to formulate a DCNN technique for automatic recognition of
mitotic cells. The decomposition step reduces convolutional period for mitotic cell recognition
related to the usage of raw image patches in traditional DCNN approaches. Beevi et al. [16]
explored the feasibility of transfer learning (TL) for mitosis recognition. A pretrained convolu-
tional neural network (CNN) was shown by merging RF method with the initial FC layers for
deriving discriminant features from nuclei patches and to accurately prognosticate class labels
of cell nuclei. The altered CNN precisely categorizes the identified cell nuclei with limited
trained datasets. This structure would establish maximum classifier accuracy by prudently
preprocessing the extracted features and fine-tuning the pretrained methods.

3. The Proposed Mitotic Nuclei Classification Model

In this study, we develop a new AHBATL-MNC technique for effective identifica-
tion of mitotic and nonmitotic nuclei on HIs. The presented AHBATL-MNC technique
encompasses a series of processes, namely, PSPNet segmentation, ResNet feature extraction,
XGBoost classification, and AHBA parameter tuning. Figure 1 defines the overall work
flow of the AHBATL-MNC system.
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3.1. Segmentation Process

In the AHBATL-MNC technique, the PSPNet model is utilized for segmentation
process. PSPNet is the renowned network architecture for semantic segmentations [17].
The PSPNet was initially introduced for scene parsing. To aggregate multiscale contextual
datasets, one pyramid pooling network (PPM) was introduced in PSPNet. At first, max
pooling is enforced to generate a feature map using three pyramid scales that can be attained
by Equation (1), wherein FDS and λ, correspondingly, signify input and downsampling
method through max pooling, and stride of max pooling layer can also be attained using
Equation (2):

Fj = DS
(

F, λj.
)

j = 1, 2, 3 (1)

w− λj

λj
+ 1 = 0j ⇒ λj =

w
oj

(2)

whereas w and 0 signify input and output size of feature maps.
After applying convolution method to these multiscale feature maps, bilinear interpola-

tion can be performed to resize feature maps, whereas WT
j and bj, correspondingly, denote the

weight and bias of j-th 1× 1 convolutional layer, and BI(.) denotes the bilinear interpolation.

Oj = BI
(

WT
j ⊗ Fj + bj

)
j = 1, 2, 3 (3)

Likewise, the feature maps having the new input and pyramid scale were concatenated,
and 1× 1 convolution was implemented to reduce channel number of output, whereas WT

j
and bj demonstrate weight and bias of the 1× 1 convolution layer.

C = WT
rd(concat(F, O1, O2, O3)) + brd (4)

Dissimilar to the original PPM, feature maps having four pyramid scales, which
include 1, 2, 3, and 6, are constructed by the new PPM, whereas feature maps having three
pyramid scales, including 1, 2, and 6, are constructed by max pooling.

Furthermore, the 1× 1 convolution layer is interconnected with the concatenation
layer for dimensionality reduction.

Based on the UNet structure, a multilevel PSPNet is introduced as the decoder. The
1, 2, and 3 attention gates are enforced to correspondingly generate initial convolutional
layer and the attention maps of third and fifth identity blocks. In addition, to incorporate
multilevel features, the attention gate and the output of PPM are concatenated densely
with the following equation:

Yj = concat
(
US
(
Cj, 3

)
M−outputj

)
j = 1, 2, 3 (5)

3.2. Feature Extraction Process

In this study, the ResNet model was employed as feature extractor. We adapted the
CNN, ResNet50, to characterize the image, and the deep network has 50 layers [18]. The
depth of network was crucial for neural network (NN), but a deep network can be tough
to train. The ResNet50 infrastructure facilitates the network training and permits it to be
deeper which leads to enhanced efficacy in diverse tasks. ResNet50 is deeper than simple
counterparts, but parameter count of these networks is smaller. A DCNN resulted in a series
of breakthroughs for image classification. Many nontrivial visual detection techniques have
benefitted from deep methods. Once the network depth rises, performance of the network
degrades quickly (saturated) and rapidly increases. Meanwhile, deep networks have large
representation power. It can be possible for ResNet50 to accomplish a deep model that
is not worse than lesser deep networks. It is implemented by adding numerous identity
layers, viz., levels that skip signal without further amendment. ResNet50 deep level has to
predict variations amongst the main function and outcome of the previous layer.
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The method considers the image and generates the caption, encrypted as a series of
1− K codewords.

y = {y1, y2, · · · , yc}, yj ∈ RK (6)

From the expression, K indicates the dictionary size and c represents caption length. The
extractor will produce L-vectors, each having D-dimensional representation of the image.

The hyperparameter tuning of the ResNet model is performed by the Adamax opti-
mizer [19]. It is an amended form of the Adam optimizer where the distributed variance is
projected ∞. In addition, the maximized weight can be determined as follows:

wi
t = wi

t−1 −
η

vt + ε
× m̂t (7)

whereas
m̂t =

mt

1− βt
1

(8)

vt = max(β2 × vt−1, |Gt|) (9)

mt = β1mt−1 + (1− β1)G (10)

G = ∇wC(wt) (11)

From the expression, η denotes the rate of learning, wt refers to the weights at steps
t, C(.) signifies the cost function, and ∇wC(wt) suggests the gradient of weight variable
wt x and equal label y. βi is employed to select the data needed for older upgrades, when
βi ∈ [0, 1]. mt and vt are the first and second moments as explained in Algorithm 1.

Algorithm 1: Pseudocode of Adamax

η: Rate of Learning
β1, β2 ∈ [0 , 1): Exponential decomposed values to moment candidate
C(w): Cost function with w variable
w0: parameter vector
m0 ← 0
u0 ← 0
i← 0 (Implement time step)
while w does not converge do

i← i + 1
mi ← β1 ×mi−1 + (1− β1)× ∂C

∂w (wi)

ui ← max
(

β2 × ui−1,
∣∣∣ ∂C

∂w (wi)
∣∣∣)

wi+1 ← wi −
(

η/
(

1− βi
1

))
×mi/ui

end while
show wi (end parameter)

3.3. Optimal Classification Process

Finally, the XGBoost model is exploited for classification purposes. XGBoost is used to
classify the regression tree model that comes from the gradient lifting decision tree (DT) [20].
The presented algorithm is used for the pedestrian detection classifier. Firstly, it learns
a tree from a sample to attain the initial assessment outcome Y1, and then learns with y
based on the variance between the predictive and the real labels in the prior step. Likewise,
the model error can be reduced successfully. Equations (4)–(8) provide the assessment flow
of XGBoost training. The subsequent formula is to evaluate the target of n− th tree models.
The primary behavior determines a regularization term that could decrease overfitting to
enhance the generalization ability. Taylor’s expansion has first and second derivatives and
constant terms.

Among them, the objective function of every round is evaluated as follows, and ft can
be selected for minimizing the main function, viz., the error between actual outcome and
the predictive outcome is decreased after adding ft. Here, l represents the error function
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and Ω denotes a regularization term, the error function tries to fit the training dataset, and
the regularization term encourages a simple method. The randomness of the outcomes of
the finite data fitting is very small, which is not easy for overfitting, making the prediction
of the concluding model more stable.

Obj(t) = ∑n
i=1 l

(
yi, ŷ(t−1)

i + ft(xi)
)
+ Ω( fi) + constant (12)

Once the error function l is not a square error, the first three terms of the Taylor
equation are utilized for approximating original objective function.

Obj(t) = ∑n
i=1[l(yi, ŷ(t−1)) + gi ft(xt) +

1
2

hl f 2
t (xi)] + Ω( ft) + constant (13)

where gi and hi refer to the initial and second derivatives of the error function.

gi = ∂
ŷ(t−1)

i
l(yi, ŷ(t−1)) (14)

hi = ∂2
ŷ(t−1)

i
l(yi, ŷ(t−1)

i ) (15)

Next, we eliminate the constant terms, such as the variance between real value and
predicted value of the previous round.

Obj(t) = ∑n
i=1[gl ft(xi) +

1
2

hι f 2
t (xi)] + Ω( ft) (16)

According to the realization of XGBoost, the model initially ranks the eigenvalue,
since the tree model should define the better segmentation points and later store them in
numbers of blocks. This architecture is reutilized in later iterations, which significantly
decreases the computation difficulty. Furthermore, the data gain of every feature should
be evaluated in the procedure of node splitting, hence the computation of data gain is
parallelized through the data structure.

For improving the classification performance, the parameter tuning of the XGBoost
model is performed by the AHBA technique. AHBA is a population-related metaheuristic
approach that primarily simulates three foraging behaviors of hummingbirds (HB): mi-
gratory, guided, and territorial foraging [21]. In the foraging process, the three flight skills
include axial, diagonal, and modeled-omnidirectional flights. Simultaneously, an access
table simulating HB remarkable memory capability is created for guiding HB to carry out
global optimization. The three flying skills are described in the following: the flight skill
simulation is expanded to d-D space with axial flight and can be given in Equation (17):

D(i) =

{
1 if i = randi([1, d])i = 1, · · · , d
0 else

(17)

Diagonal flight can be determined by Equation (18):

D(i) =

{
1, i f i = p(j)P = randperm(k), k ∈ [2, dr1(d− 2)e+ 1]
0, else.

(18)

Omnidirectional flight is defined below:

D(i) = 1i = 1, · · · , d (19)

In Equation (19), randi([1, d]) creates a random number from 1 to d, randperm(k)
generates a random permutation of integer from 1 to k, and r1 indicates a random integer
that ranges from zero to one. First, the AHA initializes a visiting table and a set of random
solutions. In all the iterations, territorial or guided foraging can be carried out 50% of the
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time. Hummingbirds move toward the food sources using guided foraging, viz., depending
on a visiting table and nectar filling rate. Territorial foraging enables HBs to find new food
sources as candidates and easily move toward the neighboring region within their territory.
Migration foraging can be performed in each of two iterations. Until the stopping condition
is met, each operation and calculation are interactively performed. At last, the food source
with the maximum rate of nectar refilling is returned as near-global optimal.

(1) A population of n HBs is initialized at random to n food source in the following:

χj = Low + r× (Up− Low)i = 1, · · · · · · n (20)

In Equation (20), Low and Up indicate the lower and upper limitations for d-dimension
problems, correspondingly; r refers to a random integer within the range of zero and one;
xi signifies the location of the i-th food sources.

VTi,j =

{
0 i f i 6= j
null i = j

(21)

where i = j, VTi,j = null shows that an HB takes food from a certain food source; i 6= j,
VTi,j = 0 denotes that the j-th food sources were visited by i-th HB in the present iteration.

(2) Guided foraging: With the abovementioned flight abilities, an HB could access its tar-
geted food sources to attain candidate food source, hence the following mathematical
expression simulates candidate food source and guiding foraging behaviors:

vi(t + 1) = xi,tar(t) + a× D× (xi(t)− xi,tar(t)) (22)

a ∼ N(0, 1) (23)

From the expression, xi(t) and xi,tar(t) are the position of i-th hummingbird food
and target source at t time; a is distributed uniformly, with standard deviation of 1 and
mean = 0.

The location updating of i-th food sources is given below:

xi(t + 1) =

{
χi(t) f (χi(t)) ≤ f

(
vj(t + 1)

)
vi(t + 1) f (xi(t)) > f (vi(t + 1))

(24)

In Equation (24), f (·) denotes function fitness value. Equation (24) represents that if
the nectar refilling rate of candidate food sources is superior to the present one, the HB will
abandon the existing food source and stay at a candidate one for feeding.

(3) Territorial foraging: After attaining targeted food sources where nectar was eaten, an
HB seeks innovative food sources. Thus, an HB could move towards a neighboring
region within its own territory whereby a novel food source is found that is the best
candidate solution. The mathematical expression to stimulate local search of an HB
for territorial foraging strategy and candidate food source is shown below:

vi(t + 1) = xi(t) + b× D× xi(t) (25)

b ∼ N(0, 1) (26)

Now, b is distributed uniformly, with a standard deviation of 1 and mean = 0.

(4) Once food becomes frequently scarce in a territory visited by an HB, the bird frequently
migrates to more distant food sources for foraging.

4. Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given
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as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. The experimental validation of the AHBATL-MNC method on mitosis cell classifica-
tion is tested using a dataset [22] that has 150 images and two classes, as represented in
Table 1. Figure 2 depicts some sample images of mitosis and nonmitosis.

Table 1. Dataset details.

Class No. of Images

Mitosis 75

Nonmitosis 75

Total Number of Images 150

Bioengineering 2023, 9, x FOR PEER REVIEW 9 of 17 
 

 
Figure 2. Sample images of (a) mitosis; (b) nonmitosis. 

The binary classification outcomes of the AHBATL-MNC method on the applied da-
taset are portrayed in the form of confusion matrix in Figure 3. On 60% of the training 
(TR) database, the AHBATL-MNC model detected 39 samples into mitosis class and 42 
samples into nonmitosis class. Meanwhile, on 40% of the testing (TS) database, the 
AHBATL-MNC method detected 29 samples into mitosis class and 29 samples into non-
mitosis class. Eventually, on 70% of the TR database, the AHBATL-MNC system detected 
42 samples into mitosis class and 55 samples into nonmitosis class. Finally, on 30% of the 
TS database, the AHBATL-MNC algorithm detected 22 samples into mitosis class and 19 
samples into nonmitosis class. 

 
Figure 3. Confusion matrices of AHBATL-MNC system. (a,b) TR and TS databases of 60:40; (c,d) TR 
and TS databases of 70:30. 
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The binary classification outcomes of the AHBATL-MNC method on the applied
dataset are portrayed in the form of confusion matrix in Figure 3. On 60% of the training (TR)
database, the AHBATL-MNC model detected 39 samples into mitosis class and 42 samples
into nonmitosis class. Meanwhile, on 40% of the testing (TS) database, the AHBATL-
MNC method detected 29 samples into mitosis class and 29 samples into nonmitosis class.
Eventually, on 70% of the TR database, the AHBATL-MNC system detected 42 samples
into mitosis class and 55 samples into nonmitosis class. Finally, on 30% of the TS database,
the AHBATL-MNC algorithm detected 22 samples into mitosis class and 19 samples into
nonmitosis class.
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In Table 2, overall mitosis classification results of the AHBATL-MNC model under 60%
of TR and 40% of TS databases are given. Figure 4 exhibits the detailed classifier outcome
of the AHBATL-MNC model on 60% of the TR database. The outcomes depict that the
AHBATL-MNC model properly classified mitosis and nonmitosis class images. It is noted
that the AHBATL-MNC model attained average accubal of 89.97%, precn of 90.03%, recal of
89.93%, Fscore of 89.99%, MCC of 80%, and Gmeasure of 89.99%.

Table 2. Mitosis classification outcome of AHBATL-MNC approach under 60:40 of TR/TS databases.

Class Accuracybal Precision Recall F-Score MCC G-Measure

Training Phase (60%)

Mitosis 88.64 90.70 88.64 89.66 80.00 89.66

Nonmitosis 91.30 89.36 91.30 90.32 80.00 90.33

Average 89.97 90.03 89.97 89.99 80.00 89.99

Testing Phase (40%)

Mitosis 93.55 100.00 93.55 96.67 93.55 96.72

Nonmitosis 100.00 93.55 100.00 96.67 93.55 96.72

Average 96.77 96.77 96.77 96.67 93.55 96.72
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Figure 5 reveals a comprehensive classifier outcome of the AHBATL-MNC system on
40% of the TS database. The outcomes show that the AHBATL-MNC approach properly
classified the mitosis and nonmitosis class images. It can be seen that the AHBATL-MNC
method reached average accubal of 96.77%, precn of 96.77%, recal of 96.77%, Fscore of 96.67%,
MCC of 93.55%, and Gmeasure of 96.72%.
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In Table 3, the overall mitosis classification outcome of the AHBATL-MNC algorithm
under 70% of the TR and 30% of the TS databases is given. Figure 6 demonstrates the
detailed classifier outcome of the AHBATL-MNC method on 70% of the TR database. The
outcomes represent that the AHBATL-MNC system properly classified the mitosis and
nonmitosis class images. It is clear that the AHBATL-MNC methodology obtained average
accubal of 92%, precn of 93.65%, recal of 92%, Fscore of 92.26%, MCC of 85.63%, and Gmeasure
of 92.54%.

Table 3. Mitosis classification outcome of AHBATL-MNC approach under 60:40 of TR/TS databases.

Class Accuracybal Precision Recall F-Score MCC G-Measure

Training Phase (70%)

Mitosis 84.00 100.00 84.00 91.30 85.63 91.65

Nonmitosis 100.00 87.30 100.00 93.22 85.63 93.44

Average 92.00 93.65 92.00 92.26 85.63 92.54

Testing Phase (30%)

Mitosis 88.00 95.65 88.00 91.67 82.51 91.75

Nonmitosis 95.00 86.36 95.00 90.48 82.51 90.58

Average 91.50 91.01 91.50 91.07 82.51 91.16
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Figure 7 shows a brief classifier outcome of the AHBATL-MNC approach on 30% of
the TS database. The outcome demonstrates that the AHBATL-MNC algorithm properly
classified the mitosis and nonmitosis class images. It can be stated that the AHBATL-MNC
algorithm accomplished average accubal of 91.50%, precn of 91.01%, recal of 91.50%, Fscore
of 91.07%, MCC of 82.51%, and Gmeasure of 91.16%.
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The training accuracy (TACC) and validation accuracy (VACC) of the AHBATL-MNC
system are inspected on breast cancer performance in Figure 8. The figure reveals that the
AHBATL-MNC approach shows improved performance with improved values of TACC
and VACC. It is noticeable that the AHBATL-MNC system gained higher TACC outcomes.
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The training loss (TLS) and validation loss (VLS) of the AHBATL-MNC methodology
are tested on breast cancer performance in Figure 9. The figure points out that the AHBATL-
MNC algorithm revealed better performance with lower values of TLS and VLS. It is
observable that the AHBATL-MNC methodology resulted in minimal VLS outcomes.
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Table 4 reports an overall comparative inspection of the AHBATL-MNC method with
recent approaches [13]. Figure 10 offers a comparative inspection of the AHBATL-MNC
method in terms of accuy and Fscore. The outcomes indicate that the AHBATL-MNC method
achieved improved performance. For instance, based on accuy, the AHBATL-MNC model
obtained higher accuy of 96.77%. In contrast, the DHE-Mit, DenseNet-201, and ResNet-18
models attained lower accuy of 85.23%, 83.96%, and 82.01%, respectively. Eventually, with
respect to Fscore, the AHBATL-MNC approach gained maximal Fscore of 96.67%. In contrast,
the DHE-Mit, DenseNet-201, and ResNet-18 systems obtained decreased Fscore of 77.33%,
76.38%, and 74.05%, correspondingly.

Table 4. Comparative analysis of AHBATL-MNC system with other approaches.

Methods accuy precn recal Fscore

AHBATL-MNC 96.77 96.77 96.77 96.67

DHE-Mit model 85.23 84.45 75.26 77.33

DenseNet-201 model 83.96 83.20 73.85 76.38

ResNet-18 model 82.01 81.26 71.73 74.05

Inception-V3 model 78.54 77.51 68.18 70.64

ResNext-50 model 77.48 76.20 66.73 69.49

ResNet-101 model 76.03 74.83 65.89 68.65

VGG-16 model 74.72 73.93 65.00 67.66
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Figure 11 provides a comparative examination of the AHBATL-MNC approach with
respect to precn and recal . The outcomes state that the AHBATL-MNC approach gained
enhanced performance. For example, in terms of precn, the AHBATL-MNC model obtained
higher precn of 96.77%. In contrast, the DHE-Mit, DenseNet-201, and ResNet-18 models
attained lower precn of 84.45%, 83.20%, and 81.26%, correspondingly. Finally, with respect
to recal , the AHBATL-MNC model gained enhanced recal of 96.77%. In contrast, the DHE-
Mit, DenseNet-201, and ResNet-18 methods accomplished lower recal of 75.26%, 73.85%,
and 71.73%, respectively.
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Table 5 offers a detailed computation time (CT) examination of the proposed model
with existing models. The experimental results indicate that the proposed model shows
better performance with minimum CT of 12.34 s. On the contrary, the existing models
attained increased CT values compared to the AHBATL-MNC model. These results confirm
the improvement of the AHBATL-MNC model over other models. The proposed model
accomplished superior performance to other existing techniques due to the hyperparameter
selection of ResNet using Adamax optimizer and AHBA for XGBoost classifier.

Table 5. Comparative CT analysis of AHBATL-MNC system with other approaches.

Methods Computational Time (s)

AHBATL-MNC 12.34

DHE-Mit model 25.17

DenseNet-201 model 42.58

ResNet-18 model 41.03

Inception-V3 model 59.67

ResNext-50 model 39.36

ResNet-101 model 44.60

VGG-16 model 56.14

5. Conclusions

In this study, we developed a new AHBATL-MNC technique for effective identification
of mitotic and nonmitotic nuclei on His. Primarily, in the AHBATL-MNC technique, the
PSPNet model is utilized for segmentation process, which identifies the candidate mitotic
patches. Followed by this, the ResNet model is employed as feature extractor, and the
XGBoost model is applied as a classifier. For improving the classification performance,
the parameter tuning of the XGBoost model was performed by the AHBA technique. The
performance evaluation of the AHBATL-MNC technique was tested on medical imaging
datasets and the outcomes were examined in distinct measures. The simulation values
validated the improved outcomes of the AHBATL-MNC algorithm over other recent
approaches. In future, the performance of the AHBATL-MNC method can be improved by
the use of ensemble learning methodologies. In addition, the proposed model needs to be
tested on large-scale databases and can be extended to detect other kinds of cancer.
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