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Abstract: The emergence of modern prosthetics controlled by bio-signals has been facilitated by AI
and microchip technology innovations. AI algorithms are trained using sEMG produced by muscles
during contractions. The data acquisition procedure may result in discomfort and fatigue, particularly
for amputees. Furthermore, prosthetic companies restrict sEMG signal exchange, limiting data-driven
research and reproducibility. GANs present a viable solution to the aforementioned concerns. GANs
can generate high-quality sEMG, which can be utilised for data augmentation, decrease the training
time required by prosthetic users, enhance classification accuracy and ensure research reproducibility.
This research proposes the utilisation of a one-dimensional deep convolutional GAN (1DDCGAN)
to generate the sEMG of hand gestures. This approach involves the incorporation of dynamic
time wrapping, fast Fourier transform and wavelets as discriminator inputs. Two datasets were
utilised to validate the methodology, where five windows and increments were utilised to extract
features to evaluate the synthesised sEMG quality. In addition to the traditional classification and
augmentation metrics, two novel metrics—the Mantel test and the classifier two-sample test—were
used for evaluation. The 1DDCGAN preserved the inter-feature correlations and generated high-
quality signals, which resembled the original data. Additionally, the classification accuracy improved
by an average of 1.21–5%.

Keywords: DCGAN; EMG; sEMG; AI; bio-signals; data augmentation; classification

1. Introduction

Muscle contractions create electromyography (EMG) signals, which can be used to
measure muscle activity and to diagnose muscle disorders. These EMG signals can be
captured using surface, needle and intramuscular electrodes [1–3]. However, the prevalent
approach in research and prosthetic applications involves the utilisation of surface elec-
tromyography (sEMG) due to its ability to capture global muscle information, in contrast to
needles, which only gather data from a single muscle. Moreover, the utilisation of needles
and intramuscular electrodes presents potential drawbacks, such as pain and inherent risks.

Various privacy laws may impose restrictions on researchers who require access to
sEMG signals from specialised companies. Researchers may find it challenging to carry
out repeatable research and product development as a result, which limits replicable
research and product development. Researchers created multiple datasets, including
those mentioned in Refs [4,5] and others, to provide independent data sources. Nev-
ertheless, these datasets might have missing or damaged data [6] or lack the gesture
repetitions needed to build a robust classification model, resulting in overfitting, according
to Kaczmarek et al. [7]. Some researchers represented the sEMG signal in two dimensions
and employed translation and rotation to augment the data, but these methods are not
appropriate for one-dimensional time series data [8].

In order to overcome these issues, generative adversarial networks (GAN) can be
utilised to generate new data instances. There are various methods to generate data.
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For example, general-purpose parametric models can also be used to create data in the
easiest way [9]; however, they are the least accurate, and these signals can be immediately
identified as fabricated data. Expert-driven parametric models are more accurate but
require more experience. Anonymised bio-signals can be used to deliver data in a private
manner. For both the control and diseased groups, it is imperative to adhere to experimental
best practices when recording, processing and storing signals. Data re-identification is a
possibility if appropriate collecting procedures are not followed. Deep-learning models
such as GAN have been used to synthesise bio-signals by learning the statistical patterns of
the original data and producing synthetic data. GANs demand deep-learning expertise but
little domain knowledge.

GANs can let organisations share synthesised signals with researchers without break-
ing patients’ data privacy laws, boosting research repeatability. All approaches must protect
patient privacy and follow privacy standards. The synthesised data have the potential to be
utilised for the purpose of training AI-controlled prostheses, thereby enabling the achieve-
ment of precise control. Typically, in the context of an amputee using an AI-controlled
prosthetic device, sEMG electrodes are attached to the individual’s muscles. Subsequently,
the amputee proceeds to execute various hand gestures, with this iterative process being
repeated multiple times until the AI model achieves convergence. The act of iteratively
performing the gesture on multiple occasions is exhausting and introduces complexity to
the overall procedure. GANs have the potential to expedite the convergence of the classifi-
cation model by generating synthetic data. Furthermore, GANs may potentially avoid the
necessity for amputees to visit a laboratory, allowing them to perform the process in the
comfort of their own homes. Data synthesis protects patient privacy and enhances research.

Related Work

GANs were initially proposed by Ian Goodfellow; it is a type of machine-learning
(ML) model, which can be used to generate realistic data. GANs work by pitting two neural
networks against each other: a generator, which creates new data, and a discriminator,
which tries to distinguish between real and fake data [10].

Research on GANs has grown significantly, with early work focusing on generating
images [10,11]. Later, researchers began to focus on generating text [12] and speech [13].
More recently, researchers have begun to consider using GANs to generate data, which are
not easily accessible, such as medical images or financial data. The generation of medical
data has become increasingly important with the advancement in pattern recognition
techniques and the rise in privacy concerns. Generating medical data focuses on finding
new deep-learning models, which can generate quality data and ways to evaluate them.
Esteban et al. proposed RGAN and RCGAN time series data models [14]. Visual and
quantitative methods, such as sample likelihood and maximum mean discrepancy (MMD),
were used to examine the data. Train on synthetic, test on real (TSTR) and train on real, test
on synthetic (TRTS) are novel evaluation methods, which use the generated data to train
a classifier and the actual data to evaluate it and vice versa. The authors designed three
tests—one qualitative and two statistical—to mitigate overfitting due to privacy concerns
regarding sensitive material.

Hazra et al. [15] developed a one-dimensional GAN called SynSigGan, which works
well on biological signals. Their model refines signals using discrete wavelet transform,
thresholding and inverse discrete wavelet transform and then evaluates the generated
data using the Pearson correlation coefficient, root mean square (RMS) error, per cent
RMS difference, mean absolute error and Fréchet distance (FD) for statistical analysis.
Researchers suggested a unique method employing bidirectional RNN and statistical stages
to generate synthetic biological signals for patients or events. The method generates five
biological signals and outperforms other generative models in evaluation metrics.

Beaulieu-Jones et al. [16] noted that sharing individual-level clinical study data is hin-
dered by challenging requirements. The sharing of data among academics is often hindered
by the need for formal collaborations and elaborate data usage agreements. Deep neural
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networks were combined to create a systolic blood pressure trial (SPRINT). Differential
privacy, which reduces the likelihood of identifying clinical research participants, was used
to train neural networks. Hypothesis-generating analyses simulated the original trial data
using machine-learning predictors from the synthetic population. The discovery suggests
that synthetic data enable secondary studies and replicable exploration of clinical datasets
while protecting participant confidentiality.

Anicet Zanini et al. [17], in an effort to solve the lack of available Parkinson’s data, pro-
posed approaches based on DCGAN and a combination of DCGAN and style, introducing
two new data augmentation methods using DCGANs and style transfer for Parkinson’s dis-
ease sEMG signals. The proposed models can simulate individual patients’ tremor patterns
and extend them to different movement protocols. This allows for the extension of patient
datasets and the generation of tremor simulations for validating treatment approaches in
different movement scenarios. The experimental results demonstrate the models’ ability to
adapt to various frequencies and amplitudes of tremors, making them a promising tool for
Parkinson’s disease research. Moreover, fast Fourier transform (FFT), mean square error,
dynamic time wrapping (DTW) and sEMG envelope cross-correlation are the metrics used
in their research to evaluate the generated signals. The mean square error (MSE) of FFT
magnitudes is used to measure the similarity between time series signals. DTW is used in
time series analysis to measure the similarity between sequences by comparing local cost
functions. Cross-correlation measures the similarity between two series by considering
their displacement.

Campbell et al. [18] developed a framework for brief training programmes using
subject-specific synthetic sEMG data using SinGAN to generate synthetic data. When
combined with restricted training, artificial data can improve classification accuracy. The
study created 1000 fake sEMG segments comprising six actions. Qualitative, quantitative
and classification methods examined the results. Artificially created data improved classifi-
cation accuracy by 5.4% in cross-validation testing. This method could improve myoelectric
control training in data-poor situations.

Zhang et al. [8] used one-dimensional energy-based generative adversarial networks
(EBGAN) to generate sEMG features to improve classification precision. The discriminant
network uses the energy paradigm instead of binary assessment, and the fully linked layers
capture the distribution of genuine sEMG data to create comparable data. This GAN design
achieves a lower MMD than others. This data augmentation method increased traditional
classification model precision by 1.21–5%.

In brief, numerous studies have been conducted in the field of GANs, with a partic-
ular emphasis on their application in image generation. Subsequently, GANs have been
employed for the analysis of various types of data, including bio-signals. Many studies
approach time series bio-signals as two-dimensional images, which may not be suitable for
this particular type of data. Furthermore, it is crucial to contemplate the establishment of
appropriate metrics for the said signals.

To this end, this research employs a 1DDCGAN with DTW, FFT and wavelets as inputs
to the discriminator to generate the synthetic sEMG of hand gestures. This method gener-
ates synthetic data to expand the datasets. Two different sEMG datasets were used in this
research to validate this approach. In order to evaluate the quality of data generated by the
model, several evaluation techniques were employed, including the classifier two-sample
(C2ST) test, the Mantel test and conventional classification metrics, such as classification ac-
curacy and augmentation test. The proposed model improved the classification accuracy by
1.21–5% in the augmentation test. The two novel metrics showed that the model produced
high-quality data, which resembled the original data and kept feature interrelationships.
To the author’s knowledge, the usage of 1DDCGAN, the C2ST and the Mantel test is new
in the context of EMG hand gestures.

This research paper is divided as follows:
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• Section 1: Introduction, which provides the background on sEMG signals and the
challenges with acquiring data, as well as an overview of using GANs to generate
synthetic medical data.

• Section 2: Materials and Methods, which details the data acquisition, signal processing,
proposed 1DDCGAN architecture and evaluation methods, including the Mantel test,
classification, augmentation test and classifier two-sample test.

• Section 3: Results, which presents the results of the Mantel test, classification, augmen-
tation test and classifier two-sample test in assessing the quality of the synthesised
sEMG signals.

• Section 4: Discussion, which analyses and interprets the results, comparing them with
previous literature.

• Section 5: Conclusion, which summarises the efficacy of using 1DDCGAN to generate
synthetic sEMG signals based on the evaluation metrics.

2. Materials and Methods

The objective of this study is to create a GAN, which can produce high-quality signals
capable of reproducing the characteristics of the original hand gesture signal, as well
as augmenting the datasets, which lack repetitions or missing data points to improve
the classification. Figure 1 illustrates the proposed model’s flow chart. This section will
provide a comprehensive overview of the techniques employed in conjunction with our
proposed strategy.
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training stage in the top section. The evaluation stage (lower right) evaluates the data quality using
different techniques.

Figure 1 depicts the flow chart representing the methodology employed in this study.
The sEMG signals obtained from the respective hand gestures and the synthetic signals
generated by the generator are initially subjected to noise filtration. Subsequently, the DTW,
wavelets and FFT are extracted from both signals. These extracted features, along with the
original signals, are subsequently input into the discriminator. Finally, after the training
of the 1DDCGAN, the generated signals and the filtered original signals are evaluated
using the augmentation classification method to measure the improvement the generated
signals provide, classification to examine the accuracy of the generated and original dataset
independently, C2ST to examine the ability of pattern recognition to distinguish between
the two datasets and the Mantel test to examine whether the relationship between features
is preserved. The data acquisition setup and the devices used are detailed in Section 2.1.
Signal filtering and the extracted features are explained in Section 2.2. The proposed
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architecture and the GAN network theory are detailed in Section 2.3. Finally, the evaluation
methods employed are explained in Section 2.4.

2.1. Data Acquisition

In this study, two distinct datasets were used to assess our approach’s efficacy in
synthesising various sEMG classes. The first dataset was private, and the second was
public [19]. Both datasets were collected with two electrodes, whereas the current trend
uses an array [4,5,7,20,21]. The usage of fewer electrodes is better in some applications
because it can help reduce hardware and computation costs, which can be an essential
consideration in practical settings.

For the private dataset, five non-disabled participants were instructed to perform six
different gestures. They were two male and three female volunteers between the ages of
26 and 29 and were right-handed. The participants sat with their arms extended on a disc
during the recording. Participants were briefed before the experiment. A video showed
participants when to hold and release movements during the session. In order to prevent
overfitting and reduce variation, the participants were asked to perform different gestures
in a sequence rather than repeating the same gesture multiple times consecutively [7]. Each
session included six motions, held for three seconds, followed by three seconds of rest; this
procedure was repeated 15 times over three days to avoid muscle fatigue. Figure 2 shows
the six gestures, the electrode placement and the timeline of the experiment. The apparatus
used to collect the private dataset was Myon Atkos-mini. It contained two wireless sEMG
sensors with a 2000 Hz sampling frequency. The electrodes were placed on the flexor and
extensor digitorum muscles. The experiment was conducted in the Mechatronics laboratory
at Northeastern University in Liaoning, China. The procedures of the experiment were in
accordance with the university’s ethical and other relevant committees, and the participants
also provided written consent.
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The publicly available dataset used in this research was the dataset from Ref [19]. Six
men and two women between 20 and 35 years old participated. The subjects were asked
to perform ten different gestures, each held for five seconds, then repeated six times. The
sEMG data were collected using two channels of the Delsys DE 2 series with a frequency of
4000 Hz. The sensors were placed on the biceps brachii and triceps brachii muscles.

2.2. Signal Processing

Signal processing techniques are applied to EMG data for multiple purposes, including
noise reduction, artefact removal and feature extraction.

2.2.1. Filtering

Before the signal was used in the GAN network, it was filtered, so that the generated
signal did not have artefacts and could be easily processed by researchers. A bandpass
Butterworth filter of the fourth order with pass range set to 10–500 Hz, as it is known to
encompass the frequencies associated with muscle activity [21]. Additionally, a notch filter
was tuned to 50 Hz, which is the frequency at which power line interference occurs.

2.2.2. Feature Extraction

After the GAN signal generation and before the evaluation stage, features were ex-
tracted using the windowing technique, which divides the signal into smaller, overlapping
segments called windows. Windowing is particularly useful when the signal being anal-
ysed is non-stationary. Sliding windows of various lengths, notably 200, 400, 600, 800
and 1000 data points, were used in the analysis. The amount of overlap was set at 25%,
50%, 75% and 100% of the window length. Afterwards, features were extracted from these
different windows with different overlaps.

The extracted features consist of a collection of features in both the time domain and
time-frequency domain [22–26] (Equations (1)–(7)). The time domain features used consist
of the mean absolute value (MAVw), slope sign change (SSC), wavelength (WL), mean
absolute value slope (MAVS), histogram (HIST), zero crossing (ZC) and RMS. The marginal
discrete wavelet transform (mDWT) was selected as the time-frequency domain feature.
SSC is a time domain feature, which represents the number of times the sEMG signal slope
changes signs in a specific time window. ZC is a time domain feature, which refers to the
number of times the sEMG signal crosses the zero-axis in a time interval, which reflects
the frequency of signal values changing signs inside a window. MAVw is a time domain
feature, which is a statistical measure of the absolute magnitude of the sEMG signal.

MAVw(x) =
1
T ∑|xt| (1)

WL is a time domain feature, which is a measure of the total length of the sEMG signal over
a given window of time and is indicative of the complexity of the signal.

WLw(x) = ∑T
t=2 |xt − xt−1| (2)

MAVS is a time domain feature, which refers to the rate of change in the MAV between two
adjacent windows.

MAVSw(x) = MAVw+1(x)−MAVw(x) (3)

The integrated absolute value (IAV) is a time domain feature, which measures the area
under the absolute value of the sEMG signal curve within a given window of time.

IAVw(x) = ∑T
t=1 |xt| (4)
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HIST is a time domain feature, which measures the sEMG signal amplitude distribution
throughout time. The number of sEMG signal values in each bin is counted to deter-
mine HIST.

HIST(x) = hist(x1:T , B) (5)

RMS is a measure of the amplitude of the sEMG signal over a certain time.

RMSw(x) =

√
1
T ∑T

t=1 x2
t (6)

mDWT is a time-frequency domain feature, which measures the signal’s frequency con-
tent at different scales and is obtained through a wavelet transform. The wavelet trans-
form was created with three levels, and Daubechies 7 wavelet, l, is the deepest level of
the decomposition.

mDWTl(x) = ∑T/2l−1
τ=0

∣∣∣∑T
t=1 xtψl,τ(t)

∣∣∣
ψl,τ(t) = 2−

m
2 ψ
(

2−lt− τ
) (7)

2.3. Generative Adversarial Network

GANs are effective machine-learning generative models, which are able to generate
realistic objects, which are hard to distinguish from realistic ones. A GAN is composed of
two distinct neural networks: the generator and the discriminator. The network’s task is to
learn the underlying distribution of a dataset and use that knowledge to generate new data
similar to the original data.

For a layered perceptron, the generator is modelled as a differential function G, which
maps the latent space ζ as G(ζ; θg), while θg are the perceptron parameters. In terms of the
discriminator, it is modelled as D(x; θd) with a scalar output, and x is the real input data [10].
The discriminator (D) and the generator (G) are trained concurrently. The discriminator’s
task is to maximise the probability of correctly assigning labels to both the synthetic signal
G(ζ) and the realistic signal x, while the generator’s task is to minimise the log (1−D(G(ζ))).
This is the minimisation–maximisation of the value function V (G, D) [10]:

min
G

max
D

V(D, G) = Ex∼pdata (x)[log D(x)] +Ez∼pζ(ζ)[log (1− D(G(ζ)))] (8)

Figure 3 demonstrates the alternate training of the generator and the discriminator.
The discriminator receives synthetic examples X̂ produced by the generator from input
noise and real examples (X). Afterwards, the discriminator makes predictions Ŷ, which is
the probability score of how synthetic and how real each of the signals is. The predictions
are compared using BCE loss with the desired labels for synthetic and real signals. This
process leads to the update of θd, where d denotes the parameters for the discriminator.
The generator is only updated by θg (g denotes the generator), which are the parameters
resulting from the synthetic signals only. That is, the generator training is not affected by
the real signals.

After cost computation, the gradient is propagated backwards, and the parameters
of the generator θg are updated. As the alternate training occurs, models are trained in
succession. Therefore, in the alternate training of GANs, it is important for both models to
improve concurrently, and they should be kept at similar skill levels from the beginning of
training. In terms of the GAN loss, this research used the BCE loss function (Equation (9)).
The BCE loss measures the divergence between two probabilities; in the context of a GAN,
the predicted probability distribution is the output of the discriminator, which indicates
whether the input is real (1) or synthetic (0).

J(θ) = − 1
m∑m

i=0

[
y(i)log h

(
x(i), θ

)
︸ ︷︷ ︸

L1

+ (1− y(i))log(1− h
(

x(i), θ
)
)
]

︸ ︷︷ ︸
L2

(9)
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h: prediction,
X: features,
θ: parameters,
y: label,
J: average patch loss.
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In Figure 4, the L1 part of the equation approaches zero when the real value is correctly
detected, while the L2 component of the equation yields zero when a synthetic signal is
successfully identified. If the model incorrectly classifies either part’s relevant label, a
significant loss will result for both.
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Proposed Architecture

The 1DDCGAN network was implemented in Python, while MATLAB was used
to extract features from the sEMG signals to be classified during the evaluation phase.
Latent noise is fed into the generator, which produces a synthetic sEMG signal. FFT,
DTW and wavelets are extracted from the synthetic and real signals and then fed into the
discriminator, which distinguishes between real and synthetic signals and updates the
generator accordingly. The discriminator in this study used the DTW, FFT and wavelet
techniques, which were adopted from previous work [19] but in a different context, which
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employed GANs and style transfer to produce sEMG signals mimicking the tremor pattern
of individuals with Parkinson’s disease. The present study did not incorporate the style
transfer component.

The layers of the generator and the discriminator both used batch normalisation,
dropout, 1D convolution and leaky ReLU. Batch normalisation ensures that the values
input to each layer have constant scales and distributions across the batch, reduces internal
covariate shifts and enhances training stability and convergence, using mini-batch statistics
to normalise the data input to each layer [27]. Dropout is a regularisation approach, which is
intended to enhance generalisation and lessen overfitting. The generator and discriminator
networks use 1D GANs and convolutional layers to learn and extract meaningful features
from the input data. Negative values can have a non-zero slope using the leaky ReLU
activation function, preventing mode collapse.

• Generator

The generator network consists of six layers: convolution, batch normalisation, dropout
and ReLU activation. Three of them have an up-sampling layer to increase the input di-
mensions. The six layers are connected to a dense layer and a Tanh activation at the end
(Figure 5).
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In the layers of the generator, up-sampling and convolution are used instead of
deconvolution because deconvolution can be computationally expensive and introduce
artefacts into the signal. Up-sampling is used to increase the size of the input by creating
new data points between existing data points; in this paper, nearest neighbour interpolation
was used.

The output of the generator contains a hyperbolic tangent (tanh) activation function—
which prevents the generator from producing unrealistic or out-of-range samples—and
increases GAN training stability and convergence, resulting in higher quality output.

• Discriminator

The input to the discriminator is the generator’s output and the participants’ original
signals. The input is passed through the convolution layer, and the output is concatenated
with the output of the same convolution layer but with input from the mini-batch discrimi-
nator, FFT, DTW and wavelet filters. In Figure 6, the discriminator consists of seven layers
containing convolution, batch normalisation, leaky ReLU and dropout.
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Salimans et al. (2016) [27] proposed several recommendations to improve GAN per-
formance, including one-sided label smoothing to improve training stability and prevent
mode collapse. This works by substituting hard labels (0/1) with soft labels (0.1/0.9) to
train the discriminator.

By replacing the target labels with real examples with a slightly lower value (denoted
as α) and synthetic signal targets (β), the discriminator model can be described as

D(x) =
αpdata (x) + βpmodel (x)

pdata (x) + pmodel (x)
(10)

When the pmodel is large and the pdata are very small in value, the samples have no
incentive to move closer to the data. Therefore, the positive labels (α) are only smoothed.

2.4. Evaluation

It is difficult to judge the quality of the images generated by GANs, let alone of those
generated by sEMG signals. When it comes to images, humans can be employed to assess
their quality. However, it is not feasible to have humans judge the quality of synthetic
sEMG signals. This presents an obstacle to assessing the quality of generated sEMG signals
and requires alternative methods, such as objective metrics or expert evaluation, to evaluate
the effectiveness of the GAN. The features from Section 2.2.2 will be used for evaluation,
since they offer more insightful data regarding the current window than the raw signal.

Salimans et al. [27] introduced the inception score (IS) and the Fréchet inception
distance (FID). The IS is an objective metric for evaluating the generated images, while the
FID is used to measure the distance between the features of the synthetic dataset and the
realistic one.

Delaney et al. [28] introduced DTW as a metric for time series data, and it has been
used successfully in Ref [17] to evaluate the model’s performance. Esteban et al. [14]
quantitively used sample likelihood and MMD to compare the synthetic ICU data with
the original dataset. Hazra et al. [15] and Hernandez-Matamoros [29] used the RMS error,
percentage RMS and other metrics to evaluate the generated dataset.

This study utilises the Mantel test and C2ST and classification techniques to evaluate
the quality of the generated signals following the training process. Furthermore, the ML
models were utilised to classify both the original signal and the signals generated through
synthetic signal augmentation to investigate the impact of this augmentation technique. To
the author’s knowledge, the application of the Mantel test and C2ST in this context has not
been previously documented.
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2.4.1. Mantel Test

The Mantel test is a statistical technique employed to assess the correlation between
distance matrices via the Mantel test [30]. It compares two distance matrices by calculating
the correlation among the lower or upper triangles of the symmetric distance matrices. The
terminology “distance matrix” is utilised in this research to refer to the correlation matrix
between the features of a provided signal. The Mantel test makes it easier to investigate
whether the produced signal can maintain the inherent relationship among features in
the original signal. The present study employed Pearson’s product–moment correlation
coefficient with 1000 permutations.

According to Mantel’s definition [31], the Mantel test calculates a test statistic rM based
on two symmetric distance matrices, namely DX and DY. rM is defined as

rM = 1
d−1 ∑n−1

i=1 ∑n
j=i+1 stand (DX)ijstand (DY)ij

d = n(n−1)
2

(11)

where “n” denotes the total number of rows and columns in all the distance matrices.
The matrices stand (DX) and stand (DY) consist of standardised distances within their
respective upper triangles and are both classified as distance matrices.

2.4.2. Classification

One of the aspects determining the quality of the generated signal is its ability to
help the classification model achieve a better classification result, which is one of the
main reasons GANs and other signal synthesis models are used. This research used the
LazyPredict library in Python, which contains 36 models divided into three categories:
linear models, tree-based models and ensemble models. Five distinct sliding windows with
varying increments were employed to extract features, and then, these features were used as
inputs to the classifiers. The StandardScaler was employed for feature scaling and centring;
it standardises the dataset by transforming it to have a mean of zero and a variance of one,
resulting in enhanced model performance and facilitated convergence of the model [32].
The best results were obtained from ensemble models, in particular, the ADAboost and
bagging classifier. AdaBoost, short for adaptive boosting, is a machine-learning algorithm,
which combines weak classifiers to create a strong classifier by giving more importance to
misclassified instances Bagging [33], short for bootstrap aggregating, is a machine-learning
technique. Bagging classifiers use multiple independent classifiers trained on different
subsets of data to improve prediction accuracy and reduce the impact of outliers or noisy
data [34].

2.4.3. Augmentation Classification Improvement

Synthetic signals generated from GAN are added incrementally to assess its effect
on the classification results of the model used and to examine whether the augmentation
can improve the classification result. The increments are 25% of the original signal. Each
increment is balanced in terms of the amount of data for each gesture compared to the
original data. Support vector machine (SVM) was used for classification in this section.
SVM is an established technique for pattern detection in myoelectric signals. Its main
purpose is to find an n-dimensional hyperplane, which divides a set of input feature points
into distinct classes. With this method, complex patterns may be detected [35].

2.4.4. Classifier Two-Sample Test

Two-sample tests are employed to ascertain the equality of two probability distribu-
tions and their similarity. C2ST can be utilised to accomplish the same objective, and a
binary classifier can be employed to evaluate the quality of the produced distribution [36,37].
Osokin et al. [38] used classifier two samples to evaluate their GAN model, which was
designed to produce synthetic medical images. Liu et al. [39] and Pacchiardi et al. [40] used
C2ST for anomaly detection in videos.



Bioengineering 2023, 10, 1353 12 of 25

Two samples are selected from distributions G and R, which represent the generated
and reference distributions, respectively. The positive and negative labels are assigned
to R and G. For the null hypothesis P = R to hold true, the results should remain close
to the chance level, indicating that the two distributions are equivalent. The mean of the
individual features determines the accuracy of the test and converges towards a Gaussian
null distribution. Lopez-Paz et al. [36] designed a dataset comprising xi, yj ∈ X , where
i = 1, . . . , n, and j = 1, . . . , m. To determine the equality of G and R, the construction of the
dataset is as follows:

D = {(xi, 0)}n
i=1 ∪ {(yi, 1)}m

i=1 := {(zi, li)}n+m
i=1 (12)

Dataset D is randomly shuffled and then divided into two distinct subsets, namely the
training (Dtr) and testing datasets (Dte), which correspond to 80% and 20% of the dataset
to avoid overfitting and obtain an accurate estimation of the classifier’s performance.

The training process of the binary classifier is f : X → [0, 1] for Dtr, while f (zi) is the
probability distribution, p(l = 1 | zi).

t̂ =
1

nte
∑(zi ,li)∈Dte

I
[(

f (zi) >
1
2

)
= li

]
(13)

Throughout the GAN training process, the generator attempts to generate a proba-
bility distribution, which closely approximates that of the discriminator. Nevertheless, in
actuality, the GAN will not generate an identical distribution or serve as a mere replica of
the input. Lopez-Paz et al. [36] suggested using a margin classifier with a finite norm. Con-
sequently, in the present investigation, the margin classifier with a finite norm implemented
was logistic regression due to its ease of training and utilisation.

3. Results

Visually, the GAN attempts to produce signals in Figure 7 mimicking the original
signals. However, a complete duplicate of the original signal must be avoided, as this
would signify mode collapse. Mode collapse is a bad behaviour, which shows a lack of
diversity in the samples, information loss and an inability to cover the complete target
distribution. As a result, the quality of the generated signals will not be assessed based on
the original sEMG signals. Instead, features from the time and time-frequency domains
will be retrieved and analysed. The relationships between features in the reference and
generated signals are examined in Section 3.1. We evaluate the categorisation precision
of both sets of signals in Section 3.2. The improvement in classification accuracy attained
through the augmentation of the generated signal is covered in Section 3.3. Last but not
least, Section 3.4 compares the distributional similarity between the reference and generated
signals using a classifier two-sample test. By using this structured technique, the generated
signals can be thoroughly evaluated, along with their impact on classification accuracy and
their statistical resemblance to the reference signals.
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3.1. Mantel Test Analysis

This visual method of examining the correlation matrix is laborious and impossible for
a large amount of data. Therefore, the Mantel test is utilised, which describes the similarity
between the two matrices using a correlation coefficient and a p-value. The p-value of
the Mantel test is the probability of obtaining a correlation coefficient as extreme as the
one observed, assuming that the null hypothesis of no correlation is true. A low p-value
(typically < 0.05) indicates that the correlation is statistically significant.

Figure 8 represents the correlation coefficient between correlation matrices of the
original and synthetic signals for both datasets and the corresponding p-value for both
the public and private datasets. For both datasets, the vast majority of the correlation
coefficient indicates a positive correlation with a p-value < 0.05 for the public dataset,
indicating that the results are statistically significant. In terms of the private dataset, a
minimal number of samples have a p-value > 0.05, indicating that very few of the results
are statistically insignificant.

For the private dataset, 9% of the samples showed a very weak correlation; 31% of
its samples showed a weak positive correlation; 36% showed a medium correlation; 23%
showed a strong correlation; and 1% showed a very strong correlation. In terms of the
public dataset, 20% of the samples showed a very strong correlation; 53% showed a strong
correlation; 23% showed a medium correlation; and the rest were in a weak correlation
range with only 4%.

Both the private and public datasets show a positive correlation. All p-values for the
public dataset are less than 0.05; for the private dataset, 96.3% have values less than 0.05.
This indicates that the null hypothesis is rejected for most of the samples in both datasets,
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and the results are statistically significant. Hence, it can be deduced that the GAN model
used has the capability of producing samples, which exhibit a resemblance of the complex
interrelationships among the diverse features of the original signal.
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3.2. Classification

In order to further analyse the synthetic and real data, both synthetic and reference
data were classified on their own using the LazyPredict library. The models were trained
on 80% of the dataset to avoid overfitting and obtain an accurate assessment of their
performance. The remaining 20% of the dataset was used to evaluate the accuracy of the
models, as illustrated in Figure 9. The best results were achieved in ensemble models
AdaBoost and bagging classifier.
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The classification models were trained to predict the correct gestures per subject, using
the features extracted from each window for that subject. The windows were applied in all
trials and only in the gesture part of the trial and not the rest part. The gestures were 3 s
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long and repeated 15 times. The classification results of each subject for all windows were
then averaged across both datasets and presented in Figure 9.

The generated sample of the private dataset achieved its highest classification accuracy
of 98.4% using a window size of 1000 and an increment of 250 data points versus 95.6% for
the original signal for the same window and increment with a difference of 2.8%. Overall,
the average difference between the generated and reference samples was 6.9%.

In terms of the public dataset, the highest classification accuracy achieved was 89.6%
for the sample generated with a window size of 1000 and an increment of 250 data points
as well versus 88.4% accuracy for the original signal of the same window and increment
with a difference of 1.2%. The average difference among all classified samples was 8.9%.

For both datasets (Figure 9a,b), the higher classification results for the synthetic sig-
nals can be attributed to the fact that the synthetic data generated from GAN are more
informative and easier to classify than the original data because the intraclass distance is
small and the interclass distance is large compared to that of the original signal. A small
intraclass distance makes it easier for the classifier to find patterns within each class, and
a substantial interclass distance makes it easier for the classifier to distinguish between
different classes. This indicates that the GANs are able to learn the underlying distribution
of the data and generate samples, which are more representative of the real world, and that
the machine-learning model is able to generalise to the target distribution.

3.3. Augmentation Classification Performance Analysis

Signals were divided into five different window sizes with lengths of 200, 400, 600,
800 and 1000 data points, which corresponded to 50, 100, 150, 200 and 250 milliseconds,
respectively, for the public dataset and 100, 200, 300, 400, 500 for the private dataset,
as seen in Table 1. The window increments used were 25%, 50%, 75% and 100% of the
specific window size. The features from these windows were extracted and used in this
classification. The datasets were divided into 80% for training and 20% for testing to obtain
an accurate assessment of the model performance; the accuracy results recorded were
those of the testing dataset. The testing dataset comprised a balanced distribution of both
generated and original signals. Specifically, the percentage of generated signals in the
testing dataset was consistent with the percentage of generated signals present in the entire
mixed dataset. Windows were applied in all trials exclusively for the gesture segment,
excluding the rest portion. The length of a gesture was 3 s, as mentioned in Figure 2, and it
was repeated 15 times.

Table 1. The number of data points for both public and private datasets and the corresponding
lengths of these data points. The datasets have different frequencies: 4000 Hz for the public and
2000 Hz for the private dataset.

Number of Data Points Public Dataset (ms) Private Dataset (ms)

200 50 100
400 100 200
600 150 300
800 200 400

1000 250 500

In order to study the effect of the generated synthetic signals on the performance of a
classifier, 25%, 50%, 75% and 100% of the synthetic signals are added to the classification
dataset, and the classification results are plotted in Figure 10 below.
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In Figure 10, it can be observed that the window increment of 25% of all windows
achieved the highest results in both datasets. The window with the highest classification
result was the one with a length of 1000 data points and an increment of 250 data points
for both public and private datasets, with a classification accuracy of 98.5% and 98.1%
using the SVM classifier, respectively. The best classification result corresponded—for both
datasets—to 100% addition of synthetic data. The addition of generated samples to the
original dataset improved the classification results by an average of 1.21% and 5% for the
private and public datasets, respectively.

3.4. Classifier Two-Sample Test

Logistic regression is used for classification to investigate the similarity of two proba-
bility distributions, and it is widely used and easy to train. The results for both datasets
are presented in Figure 11a,b. The private dataset’s average accuracy for each window is
presented in Figure 11a; the average accuracy of all windows is 59%. In terms of the public
dataset, the average accuracy can be found in Figure 11b, and the average of all window
accuracies is 66%.
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While the average in both datasets is higher than the threshold of 50%, it is still close
to it, especially for the private dataset. This indicates that while the generated data are not
perfectly similar to those of the reference signal, they are similar to some extent.

4. Discussion

To the best of the author’s knowledge, the use of 1DDCGAN for the generation of
sEMG signals corresponding to hand gestures has not been previously explored. Ad-
ditionally, two novel metrics were introduced—namely the Mantel test and C2ST—for
evaluating the quality of the generated signals. These metrics have not been utilised in this
context before.

The majority of the Mantel test results indicated a medium-to-strong correlation
with a p-value less than 0.05, indicating that the correlation between two matrices is
statistically significant at a 95% confidence level, meaning that there is strong evidence to
reject the null hypothesis of no correlation between the matrices. The Mantel test results
suggest that the proposed GAN successfully captured the inherent relationship between
the extracted features in the real signal and replicated it in the generated signal. This
finding demonstrates the effectiveness of the GAN model used in accurately reflecting the
underlying patterns of the real data and in generating high-quality signals.

In Section 2.3, the synthetic and original datasets were independently subjected to
classification using multiple classifiers. The classification results were found to be the best
when using a data window size of 1000 and an increment of 250. In this configuration,
the generated data achieved a classification accuracy of 98.4%, while the original data
achieved a lower accuracy of 95.6%. Consequently, the generated data outperformed
the original data by about 2.8% in classification. The results indicate that the generated
data consistently exhibited higher accuracy compared to the original data across all signal
classifications. This suggests that the proposed 1DDCGAN model effectively produced
signals characterised by small intraclass distance and large interclass distance, thereby
facilitating easier classification. The observed outcome is consistent with the expected
output of a GAN, suggesting its ability to generate signals, which show similarity within a
given class while also demonstrating sufficient dissimilarity from other classes, resulting in
notable classification performance.

Regarding the augmentation test in Section 3.3, the synthesised data were augmented
by adding increments of 25% of the original signal’s length until reaching a ratio of 1:1
with the original signal. Subsequently, the augmented data were classified using an SVM
classifier. The results indicate that the augmentation technique led to enhanced classification
outcomes for all of the windows. It is noteworthy to mention that the best outcomes were
also attained when using a window size of 1000, with increments of 250 data points, which
aligns with the findings of the classification analysis discussed in Section 3.2. The overall
improvement varied between 1.21% and 5% for both the public and private datasets, with
a maximum improvement of 12.2%.

In terms of the C2ST results, the perfect result would be as near to the chance level
as possible, as this would indicate that the two samples are indistinguishable. The results
obtained for the private dataset and the public dataset were 58% and 66%, respectively.
These results suggest that there is a sufficient degree of similarity between the generated
signals and the original signals, indicating that the proposed model is capable of producing
signals, which closely resemble the original data. The classification results show that the
augmentation of the generated dataset can enhance the classification result.

In summary, the evaluation metrics results demonstrated that the proposed model
outperformed the real data in classification while effectively reflecting the underlying
patterns of the real data. The results of the classification were improved once the generated
dataset was augmented, showing that GAN-generated samples can offer more varied and
representative examples for the classification model to learn from.



Bioengineering 2023, 10, 1353 23 of 25

5. Conclusions

The approach put forth in this study involved using 1DDCGAN to generate signals. In
addition, multiple evaluation metrics were used to assess the generated data. The metrics
used were the Mantel test, classification, augmentation test and C2ST. The Mantel test and
C2ST are novel in this context. The results indicated that the produced signals were able to
capture the complex relationship among features and showed a smaller interclass distance
and a large intraclass distance. The ability of 1DDCGAN to produce signals varied, and
representative examples were shown in the augmentation test, where the augmentation of
the synthetic signals achieved an enhancement in the classification results of about 1.21–5%.
Furthermore, the C2ST results showed the ability of 1DDCGAN to produce signals similar
to the original ones.

The findings indicate that the utilisation of 1DDCGAN demonstrated efficacy in
generating signals suitable for augmenting signals in AI-controlled prostheses. This aug-
mentation process has the potential to reduce the duration of laboratory training required
for amputees to train the classification model of the prosthesis. Consequently, this ap-
proach offers benefits, such as increased comfort and time savings for amputees, as well
as improved classification outcomes. Furthermore, the 1DDCGAN technique can also be
employed to supplement datasets, which contain missing or corrupted data. Addition-
ally, the Mantel test outcomes revealed that the generated signals exhibited a comparable
interrelationship among their features compared to the original signals. This finding is
significant, as it indicates that the 1DDCGAN model has the ability to generate signals
with similar characteristics, making it a dependable tool for analysis and research purposes.
Moreover, the model ensures the privacy of signal owners, thereby enabling researchers to
access valuable data, which can contribute to advancements in the field of sEMG signal
classification for gesture recognition.

Author Contributions: M.A.G.: Conceptualisation, Data curation, Formal analysis, Investigation,
Writing—original draft; W.H.: Conceptualisation; D.J.: Data curation, Writing—review and editing;
N.F.: Data curation; B.Z.: Data curation; Z.L.: Data curation. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the University Innovation Team of Liaoning Province (LT2014006).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study will be made available upon request
to the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A. A Study of Computing Zero Crossing Methods and an Improved

Proposal for EMG Signals. IEEE Access 2020, 8, 8783–8790. [CrossRef]
2. Aviles, M.; Sánchez-Reyes, L.-M.; Fuentes-Aguilar, R.Q.; Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J. A Novel Methodology for

Classifying EMG Movements Based on SVM and Genetic Algorithms. Micromachines 2022, 13, 2108. [CrossRef] [PubMed]
3. Aviles, M.; Rodríguez-Reséndiz, J.; Ibrahimi, D. Optimizing EMG Classification through Metaheuristic Algorithms. Technologies

2023, 11, 87. [CrossRef]
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