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Supplemental Materials 

1. MRI acquisition parameters 

Field strength = 3.0 tesla 
Coil = 8HR Brain 
 
Weighting = T1 
Flip angle=8.0 degree 
TR = 6.6 ms 
TE = 2.8 ms 
TI = 900.0 ms 
 
Acquisition type = 3D 
Acquisition plane = Sagittal 
Matrix size = 256×256×166 pixels (X×Y×Z) 
Pixel size = 1×1×1.2 mm (X×Y×Z) 
Pixel spacing: along X direction = 1 mm; along Y direction= 1 mm 
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2. Comparing 3D and 2D Segmentation using the Hippocampus Dataset 
We compared the 3D and 2D approaches to auto-segmentation of the anterior and 

posterior hippocampus using a publicly-available dataset 
(https://drive.google.com/drive/folders/1HqEgzS8BV2c7xYNrZdEAnrHk7osJJ--2). This 
comparison was done in addition to our experiments using the ADNI dataset 3 to ensure 
that our results hold using an external dataset. We trained 3D and 2D nnUNets over the 
hippocampus dataset. We performed 5-fold cross-validation for training and testing of 
each 3D and 2D nnUNets. The following two figures demonstrate the evolution of the 
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training (blue) and validation (red) losses over 1000 epochs of training, as well as the over-
all Dice scores (green) for the combined labels of the anterior and posterior hippocampus 
over the validation folds:  

  

3D nnUNet 2D nnUNet 
The following figure demonstrates auto-segmentation of the anterior (orange) and 

posterior (red) hippocampus for a single image in the validation set, done by the 3D (left) 
and 2D (right) nnUNet models. As seen in the figure, the 3D nnUNet achieves better Dice 
scores over the volume of the hippocampus in this case: 

   

Finally, the following table demonstrates the Dice scores by 3D and 2D nnUNet mod-
els for the anterior and posterior hippocampus over the entire validation set (over 5-fold 
cross-validation): 

nnUNet 
Brain structure 3D Dice (95% CI) 2D Dice (95% CI) 

Anterior Hippocampus 91 % (89 to 93) 88 % (87 to 89) 
Posterior Hippocampus 89 % (87 to 92) 86 % (83 to 87) 

The table shows that the 3D nnUNet model achieves higher Dice scores for both the 
anterior and posterior hippocampus. These results corroborate our results (presented in 
the body of the paper) that 3D models perform better in segmenting the hippocampus.  

 

Ant. Hip. Dice: 
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3. Pre-Processing 
We corrected for intensity inhomogeneities including B1-field variations. Our pre-

processing pipeline first registers the brain image to the MNI305 atlas. Then, pixel inten-
sities are used to roughly segment the white matter. The variations in the pixel intensities 
in the white matter are then used to estimate the B1 field map Finally, B1 bias field correc-
tion is done by dividing the pixel intensities by the estimated bias field.1 

The next step is the removal of the skull, face, and neck, only leaving the brain. We 
used a hybrid method of skull stripping that combines a watershed algorithm and a de-
formable surface model.2 This method first roughly segments the white-matter based on 
pixel intensities. Then, watershed algorithms are used to find the gray-white matter junc-
tion and the brain surface. Next, a deformable surface model is used to model the brain 
surface. The curvature of the brain surface at each point is computed, and these curvatures 
are used to register the brain surface onto an atlas. The atlas is formed by computing the 
curvatures of the brain sulci and gyri in several subjects. The reconstructed brain surface, 
registered to the atlas, is then automatically corrected in case the curvatures in a particular 
region of the surface do not make sense. The resulting corrected brain surface model is 
used for skull stripping.2 

 

Figure S3. Pre-processing steps. 

4. Segmentation Models 
The architectures of capsule network (B), UNet (C), and the self-configured nnUNet 

(D) for 3D image segmentation are also shown. The 2D and 2.5D models had similar ar-
chitectures, with the only difference that all layers of 2D models analyze 2D image slices, 
and the input layer of the 2.5D models accepts five consecutive image slices as input chan-
nels.  
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5. Training hyperparameters for CapsNet and UNet models 

Training set size (MRI volumes):   3199 
Validation set size (MRI volumes):   117 
Test set size (MRI volumes):   114 
 
Training batch size (MRI volumes):   4 
Training mini-epoch size: 30 batches: during training, the validation set loss was computed after 

each mini-epoch 
 
Training epochs:     50 
Optimizer:     Adam 
Optimizer hyperparameters:    𝛽ଵ = 0.9, 𝛽ଶ = 0.999, 𝜖 = 10ି଼ 
 
Initial learning rate:    0.002 
Minimal learning rate:    0.0001 
Learning rate scheduling:   Dynamic (via monitoring the validation set loss during training): 

Learning rate was decreased by half if the validation set loss did not improve over 10 mini-epochs 

6. Comparison of Total Convergence Times 
Total convergence time during training was measured by the time from the start of 

training to the time at which the model reached the best performance on the validation 
set. This total convergence time includes all computations that took place during training, 
including saving the model after each epoch, validation after each epoch, and saving the 
predicted segmentations of the validation set after each epoch. The total convergence time 
was compared within each model (CapsNet, UNet, and nnUNet) between 3D, 2.5D, and 
2D approaches. 

The 3D models converged faster compared to 2.5D or 2D models. The 3D, 2.5D, and 
2D CapsNets respectively converged after 46, 97, and 125 hours. The 3D, 2.5D, and 2D 
UNets respectively converged after 70, 95, and 130 hours. The 3D and 2D nnUNets respec-
tively converged after 87 and 134 hours. The figure below shows these results visually: 
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