Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges
Abstract
:1. Introduction
2. Methods
- Finite element modeling;
- Models of the cervical spine;
- Models without muscle incorporation;
- Models of the scoliotic spine;
- Models of the nonhuman spine;
- Studies with a medical scope other than biomechanics.
- Musculoskeletal models;
- Multibody models;
- Models of the thoracolumbar spine;
- Models of the healthy spine.
3. Multibody Modeling of the Healthy Spine
3.1. General Model Setup and Kinematics
3.2. Passive (Visco)elastic Components
3.3. Scaling and Individualization
3.4. Muscle Force Estimation
4. Applications of MBS Models
4.1. Studies with Methodological Focus
4.2. Studies with Biomechanical or Clinical Focus
5. Limitations and Challenges
5.1. Database
5.2. Joint Definition
5.3. Intra-Abdominal Pressure
5.4. Muscle Modeling and Muscle Force Estimation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MBS | Multibody system |
FEM | Finite element method |
DOF | Degree of freedom |
FSU | Functional spine unit |
IAP | Intra-abdominal pressure |
EMG | Electromyography |
COR | Center of rotation |
IVD | Intervertebral disc |
IV | Intervertebral |
CS | Costosternal |
CV | Costovertebral |
CT | Costotransversal |
FD | Forward dynamic |
ID | Inverse dynamic |
IK | Inverse kinematic |
SO | Static optimization |
DO | Dynamic optimization |
ANN | Artificial neural network |
ALE | Arbitrary Langrangian–Eulerian |
References
- Murtezani, A.; Ibraimi, Z.; Sllamniku, S.; Osmani, T.; Sherifi, S. Prevalence and risk factors for low back pain in industrial workers. Folia Med. 2011, 53, 68–74. [Google Scholar] [CrossRef]
- Fu, L.; Ma, J.; Lu, B.; Jia, H.; Zhao, J.; Kuang, M.; Feng, R.; Xu, L.; Bai, H.; Sun, L.; et al. Biomechanical effect of interspinous process distraction height after lumbar fixation surgery: An in vitro model. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 663–672. [Google Scholar] [CrossRef]
- Sato, K.; Kikuchi, S.; Yonezawa, T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999, 24, 2468. [Google Scholar] [CrossRef]
- Wilke, H.J.; Neef, P.; Hinz, B.; Seidel, H.; Claes, L. Intradiscal pressure together with anthropometric data—A data set for the validation of models. Clin. Biomech. 2001, 16, S111–S126. [Google Scholar] [CrossRef] [PubMed]
- Dreischarf, M.; Rohlmann, A.; Graichen, F.; Bergmann, G.; Schmidt, H. In vivo loads on a vertebral body replacement during different lifting techniques. J. Biomech. 2016, 49, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Rohlmann, A.; Graichen, F.; Kayser, R.; Bender, A.; Bergmann, G. Loads on a Telemeterized Vertebral Body Replacement Measured in Two Patients. Spine 2008, 33, 1170–1179. [Google Scholar] [CrossRef]
- Gould, S.L.; Cristofolini, L.; Davico, G.; Viceconti, M. Computational Modelling of the Scoliotic Spine: A Literature Review. Int. J. Numer. Methods Biomed. Eng. 2021, 37, e3503. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Knapik, G.G.; Mageswaran, P.; Mendel, E.; Bourekas, E.; Marras, W.S. Biomechanical musculoskeletal models of the cervical spine: A systematic literature review. Clin. Biomech. 2020, 71, 115–124. [Google Scholar] [CrossRef]
- Dreischarf, M.; Shirazi-Adl, A.; Arjmand, N.; Rohlmann, A.; Schmidt, H. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J. Biomech. 2016, 49, 833–845. [Google Scholar] [CrossRef]
- Heidari, E.; Arjmand, N.; Kahrizi, S. Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities. J. Biomech. 2022, 144, 111344. [Google Scholar] [CrossRef] [PubMed]
- Khoddam-Khorasani, P.; Arjmand, N.; Shirazi-Adl, A. Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: A combined in vivo, musculoskeletal, and finite element model study. J. Biomech. 2020, 104, 109728. [Google Scholar] [CrossRef] [PubMed]
- Breloff, S.P.; Chou, L.S. Three-dimensional multi-segmented spine joint reaction forces during common workplace physical demands/activities of daily living. Biomed. Eng.-Appl. Basis Commun. 2017, 29, 1750025. [Google Scholar] [CrossRef]
- Zaman, R.; Xiang, Y.; Cruz, J.; Yang, J. Three-dimensional asymmetric maximum weight lifting prediction considering dynamic joint strength. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Valdano, M.; Asensio-Gil, J.M.; Jiménez-Octavio, J.R.; Cabello-Reyes, M.; Vasserot-Tolmos, R.; López-Valdés, F.J. Parametric Analysis of The Effect of CRS Seatback Angle in Dummy Measurements in Frontal Impacts. In Proceedings of the IRCOBI Conference 2022, Porto, Portugal, 14–16 September 2022; Volume 2022, pp. 519–531. [Google Scholar]
- Panero, E.; Digo, E.; Ferrarese, V.; Dimanico, U.; Gastaldi, L. Multi-segments kinematic model of the human spine during gait. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021. [Google Scholar] [CrossRef]
- Wei, W.; Evin, M.; Bailly, N.; Arnoux, P.J. Biomechanical evaluation of Back injuries during typical snowboarding backward falls. Scand. J. Med. Sci. Sport. 2022, 1–11. [Google Scholar] [CrossRef]
- Valentini, P.P.; Pennestrì, E. An improved three-dimensional multibody model of the human spine for vibrational investigations. Multibody Syst. Dyn. 2016, 36, 363–375. [Google Scholar] [CrossRef]
- Low, L.; Newell, N.; Masouros, S. A Multibody Model of the Spine for Injury Prediction in High-Rate Vertical Loading. In Proceedings of the IRCOBI Conference 2022, Porto, Portugal, 14–16 September 2022. [Google Scholar]
- Dao, T.T.; Pouletaut, P.; Charleux, F.; Lazáry, Á.; Eltes, P.; Varga, P.P.; Tho, M.C.H.B. Estimation of patient specific lumbar spine muscle forces using multi-physical musculoskeletal model and dynamic MRI. In Knowledge and Systems Engineering; Springer International: Basel, Switzerland, 2014; pp. 411–422. [Google Scholar]
- Dao, T.T.; Pouletaut, P.; Charleux, F.; Lazáry, Á.; Eltes, P.; Varga, P.P.; Tho, M.C.H.B. Multimodal medical imaging (CT and dynamic MRI) data and computer-graphics multi-physical model for the estimation of patient specific lumbar spine muscle forces. Data Knowl. Eng. 2015, 96, 3–18. [Google Scholar] [CrossRef]
- Dao, T.T.; Pouletaut, P.; Lazáry, Á.; Tho, M.C.H.B. Multimodal Medical Imaging Fusion for Patient Specific Musculoskeletal Modeling of the Lumbar Spine System in Functional Posture. J. Med. Biol. Eng. 2017, 37, 739–749. [Google Scholar] [CrossRef]
- Abouhossein, A.; Weisse, B.; Ferguson, S.J. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 527–537. [Google Scholar] [CrossRef]
- Abouhossein, A.; Weisse, B.; Ferguson, S.J. Quantifying the centre of rotation pattern in a multi-body model of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 1362–1373. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, S.; Putame, G.; Pascoletti, G.; Terzini, M.; Zanetti, E.M. In Silico Meta-Analysis of Boundary Conditions for Experimental Tests on the Lumbar Spine. Ann. Biomed. Eng. 2022, 50, 1243–1254. [Google Scholar] [CrossRef]
- Ghiasi, M.S.; Arjmand, N.; Boroushaki, M.; Farahmand, F. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms. Med Biol. Eng. Comput. 2016, 54, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Hausen, U.; Gruber, K. Effects of individual spine curvatures—A comparative study with the help of computer modelling. Biomed. Tech. Biomed. Eng. 2012, 57 (Suppl. 1), 132–135. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Wasserhess, C.; Paulus, D. Quantification of loads on the lumbar spine of children with different body weight—A comparative study with the help of computer modelling. Biomed. Tech. 2014, 59, S913–S916. [Google Scholar]
- Müller, A.; Rockenfeller, R.; Damm, N.; Kosterhon, M.; Kantelhardt, S.R.; Aiyangar, A.K.; Gruber, K. Load Distribution in the Lumbar Spine During Modeled Compression Depends on Lordosis. Front. Bioeng. Biotechnol. 2021, 9, 661258. [Google Scholar] [CrossRef] [PubMed]
- Kantelhardt, S.; Hausen, U.; Kosterhon, M.; Amr, A.; Gruber, K.; Giese, A. Computer simulation and image guidance for individualised dynamic spinal stabilization. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1325–1332. [Google Scholar] [CrossRef]
- de Zee, M.; Hansen, L.; Wong, C.; Rasmussen, J.; Simonsen, E.B. A generic detailed rigid-body lumbar spine model. J. Biomech. 2007, 40, 1219–1227. [Google Scholar] [CrossRef]
- Christophy, M.; Faruk Senan, N.A.; Lotz, J.C.; O’Reilly, O.M. A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 2012, 11, 19–34. [Google Scholar] [CrossRef]
- Bruno, A.G.; Bouxsein, M.L.; Anderson, D.E. Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage. J. Biomech. Eng. 2015, 137, 081003. [Google Scholar] [CrossRef]
- Ignasiak, D.; Dendorfer, S.; Ferguson, S.J. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J. Biomech. 2016, 49, 959–966. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Bio-Med. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Han, K.S.; Zander, T.; Taylor, W.R.; Rohlmann, A. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. Phys. 2012, 34, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Kim, K.; Park, W.M.; Lim, D.S.; Kim, Y.H. Effect of centers of rotation on spinal loads and muscle forces in total disk replacement of lumbar spine. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 543–550. [Google Scholar] [CrossRef]
- Meng, X.; Bruno, A.G.; Cheng, B.; Wang, W.; Bouxsein, M.L.; Anderson, D.E. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model-Method and Performance in Flexed Postures. J. Biomech. Eng. 2015, 137, 101008. [Google Scholar] [CrossRef] [PubMed]
- Arshad, R.; Zander, T.; Dreischarf, M.; Schmidt, H. Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination. Med. Eng. Phys. 2016, 38, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Ignasiak, D.; Ferguson, S.J.; Arjmand, N. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels. J. Biomech. 2016, 49, 3074–3078. [Google Scholar] [CrossRef]
- Raabe, M.E.; Chaudhari, A.M. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation. J. Biomech. 2016, 49, 1238–1243. [Google Scholar] [CrossRef]
- Senteler, M.; Weisse, B.; Rothenfluh, D.A.; Snedeker, J.G. Intervertebral reaction force prediction using an enhanced assembly of OpenSim models. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 538–548. [Google Scholar] [CrossRef]
- Bruno, A.G.; Mokhtarzadeh, H.; Allaire, B.T.; Velie, K.R.; De Paolis Kaluza, M.C.; Anderson, D.E.; Bouxsein, M.L. Incorporation of CT-based measurements of trunk anatomy into subject-specific musculoskeletal models of the spine influences vertebral loading predictions. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2017, 35, 2164–2173. [Google Scholar] [CrossRef]
- Bruno, A.G.; Burkhart, K.; Allaire, B.; Anderson, D.E.; Bouxsein, M.L. Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. J. Bone Miner. Res. 2017, 32, 1282–1290. [Google Scholar] [CrossRef]
- Kuai, S.; Zhou, W.; Liao, Z.; Ji, R.; Guo, D.; Zhang, R.; Liu, W. Influences of lumbar disc herniation on the kinematics in multi-segmental spine, pelvis, and lower extremities during five activities of daily living. BMC Musculoskelet. Disord. 2017, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bassani, T.; Stucovitz, E.; Qian, Z.; Briguglio, M.; Galbusera, F. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 2017, 58, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Kim, H.K.; Zhang, Y. Development of an enhanced musculoskeletal model for simulating lumbar spine loading during manual lifting tasks. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2017, 10286, 229–237. [Google Scholar] [CrossRef]
- Bassani, T.; Casaroli, G.; Galbusera, F. Dependence of lumbar loads on spinopelvic sagittal alignment: An evaluation based on musculoskeletal modeling. PLoS ONE 2019, 14, e0207997. [Google Scholar] [CrossRef] [PubMed]
- Actis, J.A.; Honegger, J.D.; Gates, D.H.; Petrella, A.J.; Nolasco, L.A.; Silverman, A.K. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine. J. Biomech. 2018, 68, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Beaucage-Gauvreau, E.; Robertson, W.S.P.; Brandon, S.C.E.; Fraser, R.; Freeman, B.J.C.; Graham, R.B.; Thewlis, D.; Jones, C.F. Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 451–464. [Google Scholar] [CrossRef]
- Beaucage-Gauvreau, E.; Brandon, S.C.; Robertson, W.S.; Fraser, R.; Freeman, B.J.; Graham, R.B.; Thewlis, D.; Jones, C.F. A braced arm-to-thigh (BATT) lifting technique reduces lumbar spine loads in healthy and low back pain participants. J. Biomech. 2020, 100, 109584. [Google Scholar] [CrossRef]
- Beaucage-Gauvreau, E.; Brandon, S.C.; Robertson, W.S.; Fraser, R.; Freeman, B.J.; Graham, R.B.; Thewlis, D.; Jones, C.F. Lumbar spine loads are reduced for activities of daily living when using a braced arm-to-thigh technique. Eur. Spine J. 2021, 30, 1035–1042. [Google Scholar] [CrossRef]
- Molinaro, D.D.; King, A.S.; Young, A.J. Biomechanical analysis of common solid waste collection throwing techniques using OpenSim and an EMG-assisted solver. J. Biomech. 2020, 104, 109704. [Google Scholar] [CrossRef]
- Honegger, J.D.; Actis, J.A.; Gates, D.H.; Silverman, A.K.; Munson, A.H.; Petrella, A.J. Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech. Model. Mechanobiol. 2021, 20, 339–358. [Google Scholar] [CrossRef]
- Burkhart, K.; Grindle, D.; Bouxsein, M.L.; Anderson, D.E. Between-session reliability of subject-specific musculoskeletal models of the spine derived from optoelectronic motion capture data. J. Biomech. 2020, 112, 110044. [Google Scholar] [CrossRef]
- Overbergh, T.; Severijns, P.; Beaucage-Gauvreau, E.; Jonkers, I.; Moke, L.; Scheys, L. Development and validation of a modeling workflow for the generation of image-based, subject-specific thoracolumbar models of spinal deformity. J. Biomech. 2020, 110, 109946. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Burkhart, K.A.; Allaire, B.T.; Grindle, D.; Anderson, D.E. Musculoskeletal full-body models including a detailed thoracolumbar spine for children and adolescents aged 6–18 years. J. Biomech. 2020, 102, 109305. [Google Scholar] [CrossRef]
- Schmid, S.; Connolly, L.; Moschini, G.; Meier, M.L.; Senteler, M. Skin marker-based subject-specific spinal alignment modeling: A feasibility study. J. Biomech. 2022, 137, 111102. [Google Scholar] [CrossRef]
- Banks, J.J.; Alemi, M.M.; Allaire, B.T.; Lynch, A.C.; Bouxsein, M.L.; Anderson, D.E. Using static postures to estimate spinal loading during dynamic lifts with participant-specific thoracolumbar musculoskeletal models. Appl. Ergon. 2023, 106, 103869. [Google Scholar] [CrossRef] [PubMed]
- Lerchl, T.; El Husseini, M.; Bayat, A.; Sekuboyina, A.; Hermann, L.; Nispel, K.; Baum, T.; Löffler, M.T.; Senner, V.; Kirschke, J.S. Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT. Front. Bioeng. Biotechnol. 2022, 10, 862804. [Google Scholar] [CrossRef]
- Malakoutian, M.; Street, J.; Wilke, H.J.; Stavness, I.; Fels, S.; Oxland, T. A musculoskeletal model of the lumbar spine using ArtiSynth–development and validation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 483–490. [Google Scholar] [CrossRef]
- Rupp, T.K.; Ehlers, W.; Karajan, N.; Günther, M.; Schmitt, S. A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech. Model. Mechanobiol. 2015, 14, 1081–1105. [Google Scholar] [CrossRef]
- Fasser, M.R.; Jokeit, M.; Kalthoff, M.; Gomez Romero, D.A.; Trache, T.; Snedeker, J.G.; Farshad, M.; Widmer, J. Subject-Specific Alignment and Mass Distribution in Musculoskeletal Models of the Lumbar Spine. Front. Bioeng. Biotechnol. 2021, 9, 745. [Google Scholar] [CrossRef]
- Huynh, K.; Gibson, I.; Jagdish, B.; Lu, W. Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 175–184. [Google Scholar] [CrossRef]
- Khurelbaatar, T.; Kim, K.; Kim, Y.H. A cervico-thoraco-lumbar multibody dynamic model for the estimation of joint loads and muscle forces. J. Biomech. Eng. 2015, 137, 111001. [Google Scholar] [CrossRef]
- Putzer, M.; Auer, S.; Malpica, W.; Suess, F.; Dendorfer, S. A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet. Disord. 2016, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.S.; Damsgaard, M.; Rasmussen, J. Force-dependent kinematics: A new analysis method for non-conforming joints. In Proceedings of the XIII International Symposium on Computer Simulation in Biomechanics, Leuven, Belgium, 30 June–2 July 2011. [Google Scholar]
- Ignasiak, D.; Valenzuela, W.; Reyes, M.; Ferguson, S.J. The effect of muscle ageing and sarcopenia on spinal segmental loads. Eur. Spine J. 2018, 27, 2650–2659. [Google Scholar] [CrossRef]
- Ignasiak, D. A novel method for prediction of postoperative global sagittal alignment based on full-body musculoskeletal modeling and posture optimization. J. Biomech. 2020, 102, 109324. [Google Scholar] [CrossRef]
- Favier, C.D.; Finnegan, M.E.; Quest, R.A.; Honeyfield, L.; McGregor, A.H.; Phillips, A.T.M. An open-source musculoskeletal model of the lumbar spine and lower limbs: A validation for movements of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1310–1325. [Google Scholar] [CrossRef] [PubMed]
- Malakoutian, M.; Sanchez, C.A.; Brown, S.H.; Street, J.; Fels, S.; Oxland, T.R. Biomechanical properties of paraspinal muscles influence spinal loading—A musculoskeletal simulation study. Front. Bioeng. Biotechnol. 2022, 10, 852201. [Google Scholar] [CrossRef] [PubMed]
- Fasser, M.R.; Gerber, G.; Passaplan, C.; Cornaz, F.; Snedeker, J.G.; Farshad, M.; Widmer, J. Computational model predicts risk of spinal screw loosening in patients. Eur. Spine J. 2022, 31, 2639–2649. [Google Scholar] [CrossRef]
- Bayoglu, R.; Galibarov, P.E.; Verdonschot, N.; Koopman, B.; Homminga, J. Twente Spine Model: A thorough investigation of the spinal loads in a complete and coherent musculoskeletal model of the human spine. Med. Eng. Phys. 2019, 68, 35–45. [Google Scholar] [CrossRef]
- Bayoglu, R.; Geeraedts, L.; Groenen, K.H.J.; Verdonschot, N.; Koopman, B.; Homminga, J. Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the lumbar region of the human spine. J. Biomech. 2017, 53, 111–119. [Google Scholar] [CrossRef]
- Bayoglu, R.; Geeraedts, L.; Groenen, K.H.J.; Verdonschot, N.; Koopman, B.; Homminga, J. Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the thoracic and cervical regions of the human spine. J. Biomech. 2017, 58, 52–63. [Google Scholar] [CrossRef]
- Bayoglu, R.; Guldeniz, O.; Verdonschot, N.; Koopman, B.; Homminga, J. Sensitivity of muscle and intervertebral disc force computations to variations in muscle attachment sites. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Hajizadeh, K.; Gibson, I.; Lee, T. Analysis of compressive load on intervertebral joint in standing and sitting postures. Technol. Health Care 2016, 24, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Guo, W.; Ren, G. Embodiment of intra-abdominal pressure in a flexible multibody model of the trunk and the spinal unloading effects during static lifting tasks. Biomech. Model. Mechanobiol. 2021, 20, 1599–1626. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; de Zee, M.; Rasmussen, J.; Andersen, T.B.; Wong, C.; Simonsen, E.B. Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine 2006, 31, 1888–1899. [Google Scholar] [CrossRef] [PubMed]
- Bogduk, N. Clinical Anatomy of the Lumbar Spine and Sacrum; Elsevier Health Sciences: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Pearcy, M.J.; Bogduk, N. Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 1988, 13, 1033–1041. [Google Scholar] [CrossRef]
- Byrne, R.M.; Aiyangar, A.K.; Zhang, X. Sensitivity of musculoskeletal model-based lumbar spinal loading estimates to type of kinematic input and passive stiffness properties. J. Biomech. 2020, 102, 109659. [Google Scholar] [CrossRef]
- Kim, H.K.; Zhang, Y. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: Application of whole-body musculoskeletal modelling in OpenSim. Ergonomics 2017, 60, 563–576. [Google Scholar] [CrossRef]
- von Arx, M.; Liechti, M.; Connolly, L.; Bangerter, C.; Meier, M.L.; Schmid, S. From Stoop to Squat: A comprehensive analysis of lumbar loading among different lifting styles. Front. Bioeng. Biotechnol. 2021, 9, 769117. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; De Groote, F.; Scheys, L.; Jonkers, I. Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. J. Biomech. 2020, 98, 109437. [Google Scholar] [CrossRef]
- Pearsall, D.J.; Reid, J.G.; Livingston, L.A. Segmental inertial parameters of the human trunk as determined from computed tomography. Ann. Biomed. Eng. 1996, 24, 198–210. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; Wiley: Weilheim, Germany, 2009. [Google Scholar]
- Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues; Springer Science & Business Media: Luxemburg, 2013. [Google Scholar]
- Pintar, F.A.; Yoganandan, N.; Myers, T.; Elhagediab, A.; Sances, A., Jr. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 1992, 25, 1351–1356. [Google Scholar] [CrossRef]
- Heuer, F.; Schmidt, H.; Klezl, Z.; Claes, L.; Wilke, H.J. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 2007, 40, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Ashton-Miller, J.A.; Schultz, A.B. Biomechanics of the human spine. Basic Orthop. Biomech. 1997, 2, 353–385. [Google Scholar]
- Panjabi, M.M.; Brand, R., Jr.; White, A., 3rd. Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. JBJS 1976, 58, 642–652. [Google Scholar] [CrossRef]
- White, A.A. Clinical Biomechanics of the Spine; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022. [Google Scholar]
- Myklebust, J.B.; Pintar, F.; Yoganandan, N.; Cusick, J.F.; Maiman, D.; Myers, T.J.; Sances, A., Jr. Tensile strength of spinal ligaments. Spine 1988, 13, 526–531. [Google Scholar] [CrossRef]
- Liebsch, C.; Graf, N.; Appelt, K.; Wilke, H.J. The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures. PLoS ONE 2017, 12, e0178733. [Google Scholar] [CrossRef]
- Wilke, H.J.; Grundler, S.; Ottardi, C.; Mathew, C.E.; Schlager, B.; Liebsch, C. In vitro analysis of thoracic spinal motion segment flexibility during stepwise reduction of all functional structures. Eur. Spine J. 2020, 29, 179–185. [Google Scholar] [CrossRef]
- Cook, D.; Julias, M.; Nauman, E. Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices. J. Biomech. 2014, 47, 1241–1250. [Google Scholar] [CrossRef]
- Akhavanfar, M.H.; Kazemi, H.; Eskandari, A.H.; Arjmand, N. Obesity and spinal loads; a combined MR imaging and subject-specific modeling investigation. J. Biomech. 2018, 70, 102–112. [Google Scholar] [CrossRef]
- El Ouaaid, Z.; Shirazi-Adl, A.; Plamondon, A. Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability. J. Biomech. 2016, 49, 946–952. [Google Scholar] [CrossRef]
- Eskandari, A.H.; Arjmand, N.; Shirazi-Adl, A.; Farahmand, F. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques. J. Biomech. 2019, 84, 161–171. [Google Scholar] [CrossRef]
- Ghezelbash, F.; Shirazi-Adl, A.; Arjmand, N.; El-Ouaaid, Z.; Plamondon, A. Subject-specific biomechanics of trunk: Musculoskeletal scaling, internal loads and intradiscal pressure estimation. Biomech. Model. Mechanobiol. 2016, 15, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Adam, C.J. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Naserkhaki, S.; Jaremko, J.L.; El-Rich, M. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study. J. Biomech. 2016, 49, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
- Périé, D.; Sales De Gauzy, J.; Hobatho, M.C. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Med. Biol. Eng. Comput. 2002, 40, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Vergari, C.; Courtois, I.; Ebermeyer, E.; Bouloussa, H.; Vialle, R.; Skalli, W. Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur. Spine J. 2016, 25, 3049–3055. [Google Scholar] [CrossRef]
- Wong, K.W.N.; Luk, K.D.K.; Leong, J.C.Y.; Wong, S.F.; Wong, K.K.Y. Continuous Dynamic Spinal Motion Analysis. Spine 2006, 31, 414–419. [Google Scholar] [CrossRef]
- Sekuboyina, A.; Husseini, M.E.; Bayat, A.; Löffler, M.; Liebl, H.; Li, H.; Tetteh, G.; Kukačka, J.; Payer, C.; Štern, D. VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images. arXiv 2020, arXiv:2001.09193. [Google Scholar] [CrossRef]
- Hill, A.V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1938, 126, 136–195. [Google Scholar]
- Thelen, D.G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 2003, 125, 70–77. [Google Scholar] [CrossRef]
- Millard, M.; Uchida, T.; Seth, A.; Delp, S.L. Flexing computational muscle: Modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 2013, 135, 021005. [Google Scholar] [CrossRef]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef]
- Hamner, S.R.; Seth, A.; Delp, S.L. Muscle contributions to propulsion and support during running. J. Biomech. 2010, 43, 2709–2716. [Google Scholar] [CrossRef] [Green Version]
- Anderson, F.C.; Pandy, M.G. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 1999, 2, 201–231. [Google Scholar] [CrossRef] [PubMed]
- Senteler, M.; Aiyangar, A.; Weisse, B.; Farshad, M.; Snedeker, J.G. Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path. J. Biomech. 2018, 70, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Kikuchi, S.i.; Sato, K.; Sato, N. Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine 2006, 31, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.D.; Guo, L.X. Biomechanical role of osteoporosis in the vibration characteristics of human spine after lumbar interbody fusion. Int. J. Numer. Methods Biomed. Eng. 2020, 36, e3402. [Google Scholar] [CrossRef]
- Rockenfeller, R.; Müller, A. Augmenting the Cobb angle: Three-dimensional analysis of whole spine shapes using Bézier curves. Comput. Methods Programs Biomed. 2022, 225, 107075. [Google Scholar] [CrossRef]
- Kim, J.W.; Eom, G.M.; Kwon, Y.R. Analysis of maximum joint moment during infant lifting-up motion. Technol. Health Care 2022, 30, S441–S450. [Google Scholar] [CrossRef]
- Nowakowska-Lipiec, K.; Michnik, R.; Linek, P.; Myśliwiec, A.; Jochymczyk-Woźniak, K.; Gzik, M. A numerical study to determine the effect of strengthening and weakening of the transversus abdominis muscle on lumbar spine loads. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 1287–1296. [Google Scholar] [CrossRef]
- Bauer, S.; Paulus, D. Analysis of the biomechanical effects of spinal fusion to adjacent vertebral segments of the lumbar spine using multi body simulation. Int. J. Simul. Syst. Sci. Technol. 2014, 15, 1–7. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef]
- Foltz, M.H.; Kage, C.C.; Johnson, C.P.; Ellingson, A.M. Noninvasive assessment of biochemical and mechanical properties of lumbar discs through quantitative magnetic resonance imaging in asymptomatic volunteers. J. Biomech. Eng. 2017, 139, 111002. [Google Scholar] [CrossRef]
- Bogduk, N.; Macintosh, J.E.; Pearcy, M.J. A universal model of the lumbar back muscles in the upright position. Spine 1992, 17, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Aiyangar, A.; Zheng, L.; Anderst, W.; Zhang, X. Instantaneous centers of rotation for lumbar segmental extension in vivo. J. Biomech. 2017, 52, 113–121. [Google Scholar] [CrossRef]
- Daggfeldt, K.; Thorstensson, A. The mechanics of back-extensor torque production about the lumbar spine. J. Biomech. 2003, 36, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Cresswell, A.G.; Daggfeldt, K.; Thorstensson, A. In vivo measurement of the effect of intra-abdominal pressure on the human spine. J. Biomech. 2001, 34, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.; Damsgaard, M.; Voigt, M. Muscle recruitment by the min/max criterion—A comparative numerical study. J. Biomech. 2001, 34, 409–415. [Google Scholar] [CrossRef]
- Crowninshield, R.D.; Brand, R.A. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 1981, 14, 793–801. [Google Scholar] [CrossRef]
- Ezati, M.; Ghannadi, B.; McPhee, J. A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst. Dyn. 2019, 47, 265–292. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 2001, 34, 153–161. [Google Scholar] [CrossRef]
- Morrow, M.M.; Rankin, J.W.; Neptune, R.R.; Kaufman, K.R. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion. J. Biomech. 2014, 47, 3459–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Included Segments | Joint Definition | Generic/Indiv. | Passive Force Elements | Muscle Model and Force Estimation | Software | Related Studies |
---|---|---|---|---|---|---|---|
de Zee et al. [30] | Pelvis, sacrum, L1-L5, thorax | 3 rot. DOFs (IV) | Generic | - | Act., ID, SO | AnyBody | [33,35,36,39,44,45,47,65] |
Christophy et al. [31] | Pelvis, sacrumL1-L5, thorax | 3 rot. DOFs (IV) | Generic | - | Hill type | OpenSim | [37,40,41,46,48,49,50,51,52,53] |
Bruno et al. [32] | Pelvis, sacrumT1-L5, ribs, sternum, upper limbs, head–neck | 3 rot. DOFs (IV)1 rot. DOFs (CV) | Generic | - | Hill type, ID, SO | OpenSim | [38,42,43,54,55,56,57,58] |
Ignasiak et al. [33] | Pelvis, sacrum T1-L5, ribs, sternum head–neck | 6 rot. DOFs (IV)1 rot. DOFs (CV/CT)3 rot. DOFs (CS I)6 rot. DOFs (CS II-X) | Generic | CS, CT, CV, IV joint (lin.) | Act., ID, FSK [66], SO | AnyBody | [39,67,68] |
Lerchl et al. [59] | Pelvis, sacrum, L1-L5, thorax, upper limbs, head–neck | 3 rot. DOFs (IV) | Semi-indiv. | Lig. (nonlin.)IVD (nonlin.) | Actuators, ID, SO | Simpack | - |
Favier et al. [69] | Lower limbspelvis, sacrum, L1-L5, thorax (3 segments), upper limbs, head–neck | 3 rot. DOFs (IV) | Semi-indiv. | Joint (lin.) | Hill type, IK, ID, SO | OpenSim | - |
Malakoutian et al. [60] | Pelvis, sacrum, L1-L5, thorax, humeri | 6 DOFs (IV) | generic | Joint, IAP | Hill type, FD-assisted SO | AriSynth | [70] |
Rupp et al. [61] | Pelvis, sacrum, L1-L5, thorax | 6 DOFs (IV) | Generic | Lig. (nonlin.)IVD (nonlin.) | Hill type, FD | In-house | - |
Fasser et al. [62] | Pelvis, sacrum, L1-L5, thorax | 3 rot. DOFs (IV) | Semi-indiv. | - | Hill type, IK, ID, SO | Matlab | [71] |
Bayoglu et al. [72] | Pelvis, sacrum, C1-L5, ribs, sternum, skull (3 segments), shoulder (3 Segments) | 3 rot. DOFs (IV)6 DOFs (CS)1 DOF (CV/CT) | Individ. | Joint (lin.) | Act., ID, SO | AnyBody | [73,74,75] |
Huynh et al. [63] | Full-body, C1-L5 | 3 rot. DOFs (IV) | Generic | Lig. (lin.)IVD (lin.), IAP | IK, ID, SO | LifeMOD | [76] |
Khurelbaatar et al. [64] | Pelvis, sacrum, C1-L5, ribs, sternum, upper limbs, head | 6 DOFs (IV/CS), 3 rot. DOFs (CV) | Semi-indiv. (bones) | Lig. (nonlin.), IVD (nonlin.), CS cartilage (lin.), facet joints | Act., ID, SO | RECURDYN | - |
Guo et al. [77] | Pelvis, sacrum, C1-L5, ribs, sternum, upper limbs, head | 6 DOFs (IV) | Generic | Lig. (nonlin.), IVD (lin.), facet joints, IAP | Hill type, ALE, FD | OpenSim | - |
Study | Focus | Modifications | Original Model |
---|---|---|---|
Actis et al. [48] | Methodological Validation for flexion, extension, lateral bending, axial rotation for participants with and without transtibial amputation | model extension by lower body [110], muscle strength [32], and body mass distribution [86] inclusion of experimental protocol for EMG and kinematic data collection | [31] |
Arshad et al. [38] | Biomechanical Influence of spinal rhythm and IAP on lumbar loads during trunk inclination | Adapted spinal rhythm, inclusion of ligaments, IVD, and IAP | [30] |
Arx et al. [83] | Biomechanical Lumbar loading during different lifting styles | Integration of measured kinematic data | [32] |
Banks et al. [58] | Biomechanical Comparison of static and dynamic vertebral loading during lifting patient-specific models in an older study population | CT-based individualization and integration of patient-specific kinematic data | [32] |
Bassani et al. [45] | Methodological Model validation for various loading tasks via spinopelvic rhythm and IDP according to [4] | Integration of kinematic data | [30] |
Bassani et al. [47] | Biomechanical Effect of spinopelvic sagittal alignment on lumbar loads | Variation of spinal alignment based on four parameters | [30]. |
Bayoglu et al. [75] | Methodological Sensitivity of muscle and IV disc force computations to variations in muscle attachment sites | Variation of the location of muscle insertion | [72] |
Raabe et al. [40] | Biomechanical Jogging biomechanics | Combination with full-body model by [111] | [31] |
Beaucage-Gauvreau et al. [49,50,51] | Biomechanical Effects of lifting techniques on lumbar loads | Adjust all spinal joints with 3 DOFs and inclusion of kinematic data from motion capturing during lifting | [31,40] |
Burkhart et al. [54] | Methodological Reliability of optoelectronic motion capturing for subject-specific spine model generation | Combination with model of lower limbs [110] | [32] |
Malakoutian et al. [70] | Methodological Effect of muscle parameters on spinal loading | Variation of biomechanical parameters of paraspinal muscles | [60] |
Senteler et al. [41] | Methodological Joint reaction forces for flexion and lifting | Combination with models of upper limbs and neck, IV joints set to 6 DOFs, added passive lin. joint stiffness | [31] |
Meng et al. [37] | Methodological Force-motion coupling in 6-DOF joint | 6 DOFs (IV), added 6-DOF stiffness | [31] |
Molinaro et al. [52] | Biomechanical Effects of throwing technique solid waste collection occupation on lumbar loads | Incorporation of collected kinematics and EMG data, EMG-assisted muscle force estimation and SO | [49] |
Schmid et al. [56] | Methodological Validation of a thoracolumbar model for children and adolescents | Combination with model of the lower limbs [112], scaling to anthropometry of children and adolescents | [32] |
Schmid et al. [57] | Methodological Feasibility of a skin-marker based method for spinal alignment modeling | Reduction of muscle architecture, implementation of skin-marker derived alignment | [56] |
Wang et al. [84] | Methodological Implementation of a physiological FSU | Adaption of IV joints to represent passive properties of a physiological FSU | [32] |
Overbergh et al. [55] | Methodological Workflow for generation of an image-based (CT), subject-specific thoracolumbar model of spinal deformity | Addition of kinematic coupling constraints, personalization of bone geometries, alignment, IV joint definitions and kinematics | [32] |
Han et al. [36] | Methodological Effect of centers of rotation on spinal loads and muscle forces in total disc replacement of lumbar spine | Ligaments and facet joints added, altering location of CoR | [30] |
Zhu et al. [46] | Biomechanical Effects of lifting techniques on lumbar loads | Combining with models of upper and lower limbs, 6-DOF IV joint, integration of a customized marker set | [31] |
Kuai et al. [44] | Biomechanical Influence of disc herniation on kinematics of the spine and lower limbs | Integration of kinematic data from patients with lumbar disc herniation | [30] |
Senteler et al. [113] | Methodological Sensitivity of intervertebral joint forces to CoR location | Altering location of CoR | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lerchl, T.; Nispel, K.; Baum, T.; Bodden, J.; Senner, V.; Kirschke, J.S. Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges. Bioengineering 2023, 10, 202. https://doi.org/10.3390/bioengineering10020202
Lerchl T, Nispel K, Baum T, Bodden J, Senner V, Kirschke JS. Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges. Bioengineering. 2023; 10(2):202. https://doi.org/10.3390/bioengineering10020202
Chicago/Turabian StyleLerchl, Tanja, Kati Nispel, Thomas Baum, Jannis Bodden, Veit Senner, and Jan S. Kirschke. 2023. "Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges" Bioengineering 10, no. 2: 202. https://doi.org/10.3390/bioengineering10020202
APA StyleLerchl, T., Nispel, K., Baum, T., Bodden, J., Senner, V., & Kirschke, J. S. (2023). Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges. Bioengineering, 10(2), 202. https://doi.org/10.3390/bioengineering10020202