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Abstract: MRI of effective transverse relaxation rate (R2*) measurement is a reliable method for liver
iron concentration quantification. However, R2* mapping can be degraded by noise, especially in the
case of iron overload. This study aimed to develop a deep learning method for MRI R2* relaxometry
of an iron-loaded liver using a two-stage cascaded neural network. The proposed method, named
CadamNet, combines two convolutional neural networks separately designed for image denoising
and parameter mapping into a cascade framework, and the physics-based R2* decay model was
incorporated in training the mapping network to enforce data consistency further. CadamNet was
trained using simulated liver data with Rician noise, which was constructed from clinical liver
data. The performance of CadamNet was quantitatively evaluated on simulated data with varying
noise levels as well as clinical liver data and compared with the single-stage parameter mapping
network (MappingNet) and two conventional model-based R2* mapping methods. CadamNet
consistently achieved high-quality R2* maps and outperformed MappingNet at varying noise levels.
Compared with conventional R2* mapping methods, CadamNet yielded R2* maps with lower errors,
higher quality, and substantially increased efficiency. In conclusion, the proposed CadamNet enables
accurate and efficient iron-loaded liver R2* mapping, especially in the presence of severe noise.

Keywords: MR relaxometry; R2* mapping; liver iron overload; convolutional neural network;
cascade network

1. Introduction

Primary hemochromatosis (i.e., hereditary hemochromatosis) and secondary hemochro-
matosis (e.g., thalassemia, sickle cell disease, chronic liver disease, and long-term red blood
cell transfusions) result in excessive iron deposition in the body and cause structural and
functional damage to vital organs, especially the liver [1]. Accurate quantification of hepatic
iron concentration (HIC) is critical to managing and monitoring iron chelation therapy.
Magnetic resonance imaging (MRI) is commonly adopted for hepatic iron quantification
instead of liver biopsy, which is invasive and has a low inter- and intra-observer repeatabil-
ity [2,3]. MRI effective transverse relaxation rate (R2* = 1/T2*) of liver parenchyma linearly
rises with HIC and has been established as a reliable and accurate quantitative measure of
HIC in transfusion-dependent patients [4].

Due to the high scan efficiency [5] and high intercenter agreement [6], the MRI R2*
technique is widely performed for assessing HIC in clinical practice. A representative
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R2* value is typically obtained for the liver parenchyma and then transformed to HIC.
Compared with regions of interest (ROI)-based R2* quantification, which fits averaged
decay signals in ROI, R2* mapping has the ability to depict the spatial distribution of
HIC [7]. The R2* map is obtained by pixel-wise fitting multiple images at varying echo
times (TEs) to an exponential decay function using a multi-gradient recalled echo (mGRE)
sequence. However, R2* mapping is adversely affected by the presence of fat in tissue
and noise-related bias. Fat-water oscillations can be eliminated by using fat-suppression
techniques [8]. The noise level in MRI is usually quantified in terms of a signal-to-noise
ratio (SNR), a measure of signal strength relative to background noise. In scenarios of severe
liver iron overload and high magnetic field (for example, 3.0 T), the intensities of signals
in the acquired serial T2*-weighted images usually decay and thus have low SNRs [9].
Noise in T2*-weighted magnitude MR images, which can be characterized by Rician or
non-central chi distribution [10], degrades the accuracy and precision of R2* estimation
and thus might mislead clinical interpretation. It is essential to suppress the effect of noise
on R2* quantification for assessing HIC.

The effect of Rician noise includes signal bias and fluctuation. The offset model [4]
represents the signal bias by adding a constant to the mono-exponential function. In theory,
the bias caused by Rician noise depends on the intensity of the underlying truth signal.
Thus, the offset model cannot correctly address the effect of Rician noise on the decay
signal, and it tends to overestimate R2* by a factor depending on the noise level [11]. The
truncation model only fits data with high signal intensities (i.e., SNRs) to minimize the
impact of noise [12]. However, this method tends to underestimate high R2* where the
signal decays rapidly, and the SNR of remaining data after truncation is still poor [11].
The first-moment (M1NCM) and second-moment (M2NCM) noise correction models can
correctly describe the effect of Rician noise on the R2* decay signal by fitting the measured
data to the first and second moments of mono-exponential signal in the presence of Rician
noise, respectively [11]. The impact of intensity fluctuations on R2* mapping can be
reduced by filtering images before curve fitting [13]. Recently, a curve fitting method
with adaptive neighborhood regularization (PCANR) [14] was developed to improve
liver R2* mapping by incorporating noise suppression and curve fitting into a unified
regularization framework. This approach can avoid the error propagation from image
filtering to parameter mapping and generate R2* maps with significantly reduced noise
and well-preserved tiny structures. Although the above methods achieve high performance
in noise correction, the slow speed of computation is a shortcoming of them and needs to
be improved.

Recently, deep learning has been successfully applied to MR parameter mapping.
Quantitative parameter maps can be estimated from measured images through deep neural
networks. The popular U-Net has shown inspiring results in the parameter mapping
domain [15–20]. The performance of deep learning-based parameter mapping can be
further improved by incorporating regularization terms, such as total variation [16], or
incorporating data consistency terms, such as MR physical models [16–19], into the loss
function during network training. Although the training of deep networks for parameter
reconstruction is computationally intensive, the implementation of a trained network is
highly efficient. However, deep neural networks are highly nonlinear and nonconcave, and
they may yield unstable results for parameter reconstruction, especially in the presence
of perturbations, such as noise [21]. Actually, noise in MR images can also be suppressed
by using deep learning methods [22–24]. As such, we hypothesize that combined image
denoising and parameter mapping using deep learning would benefit the R2* mapping of
an iron-loaded liver, especially in the presence of severe noise for high HIC.

In this paper, we propose a novel two-stage cascade network named CadamNet for
MRI R2* mapping of an iron-loaded liver. The proposed CadamNet directly reconstructs
R2* map from multi-echo T2*-weighted images with Rician noise. CadamNet accomplishes
R2* mapping task in two stages, including the image denoising stage and the parame-
ter estimation stage, which are achieved through a denoising network and a parameter
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mapping network, respectively. An analytical biophysical model is incorporated into the
training of the parameter mapping network to enforce data and model consistency. A
mass of simulated data generated from clinical liver data is used to train the networks, the
construction of which is guided by a biophysical model. Extensive evaluation experiments
are conducted on simulated and clinical liver data. The proposed method achieves accurate
and efficient R2* mapping of an iron-loaded liver, especially in the presence of severe noise.

2. Materials and Methods
2.1. Clinical Datasets

For clinical data, we retrospectively selected 121 patients with thalassemia major
(53 females, 68 males, aged 9–66 years) with iron overload from normal to severe according
to their R2* measurements. All MRI examinations were performed using a 1.5 T Siemens
Sonata MRI scanner (Siemens Medical Solutions, Erlangen, Germany) and a 6-channel
anterior array coil combined with a 2-channel spine array coil. Axial T2*-weighted images
were acquired using a 2D spoiled gradient-echo sequence with the following parameters:
repetition time = 200 ms, number of echoes = 12, TEmin = 0.93 ms, echo spacing = 1.34 ms,
flip angle = 20◦, slice thickness = 10 mm, signal average = 1, acquisition matrix = 64 × 128,
and in-plane resolution = 3.125 × 3.125 mm2. Fat saturation was used to eliminate fat-
water oscillations [8]. The multiple TE images were acquired within a breath-hold of
approximately 13 s. The study was approved by the local institutional review board, and
informed content was obtained. In total, 121 clinical datasets with a size of 64 × 128 × 12
were acquired. The 12 channels contain data acquired at 12 TEs, respectively. One hundred
datasets were used to generate simulation data for training the proposed method, and
twenty-one datasets were used to generate simulation data for testing and also used for
in vivo assessment.

2.2. Simulation Datasets

Generally, the training of deep networks is conducted in a supervised fashion, which
needs to collect input images and corresponding ground-truth labels. However, high-
quality ground-truth R2* maps are unavailable due to the low SNR of iron-loaded liver
data. Thus, we used simulated data to train the network. The simulation data were
generated from clinical data to ensure that they reflected structural features in real liver
data. The clinical data were first denoised using the non-local means method [25] to
reduce the influence of noise on the quantification of the relaxation parameters. The signal
intensity at zero TE (S0) and R2* maps were then calculated from the denoised clinical
data using the automatic truncation method [26] with the same truncation rules. These
calculated R2* maps were used as the reference R2* maps of the simulation data. After that,
noise-free T2*-weighted images with TEs similar to that in the clinical data acquisition were
synthesized by using the mono-exponential model with parameters from the calculated S0
and R2* maps. Finally, the simulated images at multiple TEs were added with Rician noise
with varying levels. The liver parenchyma R2* values of training data were approximately
uniformly distributed over a wide range of 45 to 956 s−1. The training data were augmented
by rotating and flipping the input data to satisfy the requirement of a large number of
training samples. In addition, overlapping patches were extracted from the samples via a
fixed sliding step of eight [27]. A total of 15,200 multi-channel 2D patches with a size of
32 × 32 × 12 were generated for training. The resolution of the simulated data was the
same as the clinical data.

2.3. CadamNet Framework

The architecture of the proposed CadamNet framework is illustrated in Figure 1. This
cascade framework mainly consists of an image-denoising stage and a parameter estimation
stage. Images at different TEs are concatenated and treated as a multi-channel 2D image
input (analogous to the RGB channels in natural images). In the image denoising stage, a
denoising network recovers high-quality T2*-weighted MR images from the corresponding
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noisy MR images, and then a mapping network maps the denoised T2*-weighted images
to S0 and R2* parameter maps in the parameter estimation stage. The denoising network
and mapping network were separately trained in an end-to-end manner. The loss function
of the denoising network minimizes the pixel-wise differences between the denoised and
reference noise-free images, which is defined as:

Ldenoising = ‖Φ(Y)− X‖2
2, (1)

where Y are the noisy input T2*-weighted images, Φ is the denoising network, X is the
reference noise-free images, and ‖ ‖2 denotes the l2 norm. The denoising loss enforces
the denoising network to find the original signal from the noisy data. For the mapping
network, the mapping loss is designed as follows:

Lmapping = ‖M(U(Xdenoise))− X‖2
2, (2)

where Xdenoise = Φ(Y) represent the denoised T2*-weighted images from the denoising net-
work, U is the mapping network that computes the S0 and R2* maps given by the denoised
T2*-weighted images, Xdenoise, and M is the signal-decaying model for T2* relaxometry [16],
which is given by

S̃i = M(S0, R∗2 , TEi) = S̃0 · exp
(
−TEi · R̃∗2

)
, (3)

where S̃0 and R̃∗2 are estimated parameter maps, and TEi denotes the ith TE for acquiring an
MRI image S̃i. The mapping loss, Lmapping, ensures that T2*-weighted images synthesized
from the estimated parameter maps match the reference noise-free images.
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Figure 1. Overall architecture of the proposed CadamNet framework. Blue box: image denoising
stage, the inputs to the denoising network are 12 images (12 echo times). The outputs are 12 denoised
images. Red box: parameter estimation stage, the mapping network estimates S0 and R2* maps from
the denoised images. Green box: the losses used for network training.

Once the training process is completed, the noisy T2*-weighted images at multiple
TEs can be efficiently converted to their corresponding parameter maps (S̃0, R̃∗2) as follows:(

S̃0, R̃∗2
)
= U(Φ(Y)). (4)

The architecture of the denoising network is illustrated in Figure 2. A separable
convolutional neural network (CNN) structure, which was proposed for application to
hyperspectral image restoration [28], was adopted for image denoising. It has been shown
that separable CNN can extract more delicate features of the images by separately consid-
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ering the information of the position and channel. The key idea is to replace a standard
convolution with two separable convolutions in spatial and channel (temporal here) dimen-
sions. Convolution in the spatial dimension was independently performed in each channel
(spatial convolution), while convolution in the channel dimension was performed using a
1D kernel (temporal convolution). The denoising network was composed of eight separable
convolution layers. Each separable convolution layer contained 10 spatial convolution
kernels with a size of 3 × 3 × 1 followed by 40 temporal convolution kernels with a size
of 1 × 1 × 10, batch normalization, and ReLU [29]. The denoising network further used a
residual learning strategy to improve training efficacy and efficiency [22].
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Figure 2. The architecture of denoising network.

As shown in Figure 3, the mapping network has the same structure as the popular
2D U-Net [30] architecture but with a 12-channel input for the mGRE data and 2-channel
output for computed S0 and R2* maps. The U-Net had a symmetric structure and consisted
of an encoder network and a decoder network. The encoder extracts robust and spatial
invariant image features from the input images, while the decoder restores image details
through multilevel deconvolution. Skip connections were used to concatenate features from
the encoder to the decoder. The multi-scale structure of U-Net is effective in making use of
global information in the images. When noise-free maps are taken as training targets, the
mapping network will also have the function of noise reduction and can learn a mapping
from noisy input to noise-free output.
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Figure 3. The architecture of the mapping network. The yellow and blue blocks are feature maps in
the encoder and decoder, respectively.

2.4. Network Training

Both two-stage CadamNet and the single-stage mapping network (Figure 3) (denoted
as MappingNet) were trained to demonstrate the performance of networks with and
without the image denoising stage. Specifically, MappingNet outputs estimated parameter
directly maps from the noisy T2*-weighted MR images. Both networks were trained on
simulated datasets with specific noise levels (noise standard deviations ranging from 7 to 17
with an increment of two, and corresponding SNR ranging from 31 to 13) and also trained
on the dataset with a mix of noise levels (referred to as CadamNet-m and MappingNet-
m) [23]. The noise standard deviations of mixed noise levels range from 1 to 19 with a
step of two (corresponding SNRs range from 216 to 11) and are evenly proportioned. The
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SNR of each dataset was calculated as the division of the mean intensity value within a
selected ROI of liver parenchyma at the T2*-weighted image at the first TE by the noise’s
standard deviation. The Adam algorithm was used to optimize the loss function, with an
initial learning rate of 0.01, which was halved every dozen of epochs. The mini-batch size
was set to 128. All networks were trained on a GeForce TITAN X Pascal GPU (NVIDIA
Corporation, Santa Clara, CA, USA) and implemented in Python 3.6 with the Keras and a
TensorFlow backend (Google, Mountain View, CA). Training times were approximately
12 h for the CadamNet/CadamNet-m and 10 h for the MappingNet/MappingNet-m.

2.5. Evaluation Metrics

The proposed CadamNet method was compared with MappingNet, as well as two
conventional model-based methods (M1NCM [11] and PCANR [14]). It is worth noting
that PCANR is the state-of-the-art method for liver R2* mapping. The normalized root-
mean-square error (NRMSE) and structural similarity index (SSIM) [31] were employed to
evaluate the performance of these R2* mapping methods. The NRMSE considers the pixel
intensity-wise variations between reconstructed and reference R2* maps. The SSIM mea-
sures the structural similarity between reconstructed and reference R2* maps. The NRMSE
and SSIM were computed inside the whole liver region (including liver parenchyma and
vessels). The NRMSE is defined as:

NRMSE =
‖R∗2 − R̃∗2‖2,Ω

‖R∗2‖2,Ω
, (5)

where R∗2 and R̃∗2 are the reference and estimated R2* values respectively, and ‖‖ 2,Ω denotes
the l2 norm measured over the whole liver region Ω. The SSIM is defined as:

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , (6)

where x and y are the reference and reconstructed R2* maps, µx and µy are the mean values
of maps x and y, σx and σy are the standard deviation values of maps x and y, σxy is the
covariance of x and y, and C1 = (k1L)2 and C2 = (k2L)2 are variables that stabilize the
division with weak denominator, where k1 = 0.01, k2 = 0.03 and L = max(x) −min(x).

2.6. Statistical Analysis

The SciPy Python package was used for statistical analysis. A Wilcoxon signed-rank
test was performed to demonstrate the statistical difference between methods with a
significance level of p < 0.05.

3. Results
3.1. Simulated Results

Table 1 presents the average NRMSE and SSIM measures of M1NCM, PCANR, Map-
pingNet, CadamNet, MappingNet-m, and CadamNet-m on simulated testing datasets with
varying noise levels (noise standard deviations σg ranging from 7 to 17 with an increment of
two, and corresponding SNR ranging from 31 to 13). The selected noise levels are those that
can be encountered in clinical practice. The SNR of each dataset is shown under the noise’s
standard deviations in Table 1. The MappingNet and CadamNet models were trained on
datasets under a fixed noise level and tested on datasets under a noise level identical to that
in the training datasets. The performances of the deep learning-based methods in terms of
NRMSE and SSIM were significantly superior (all p < 0.05) to the conventional M1NCM
and PCANR algorithms. In all noise levels, CadamNet yielded better reconstruction perfor-
mance (all p < 0.05) than all the other three methods. When the two models were trained on
datasets with a mix of noise levels, CadamNet-m consistently outperformed (all p < 0.05)
MappingNet-m under varying noise levels. In addition, CadamNet-m obtained NRMSE
and SSIM scores comparable to those of CadamNet.
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Table 1. The NRMSE (%) and SSIM (%) measures of different methods on simulated testing datasets
with various noise standard deviations (σg).

Methods Metrics σg = 7 (SNR
= 30.95)

9 (SNR =
24.07)

11 (SNR =
19.71)

13 (SNR =
16.64)

15 (SNR =
14.46)

17 (SNR =
12.70)

M1NCM
NRMSE

SSIM
6.15 (4.00)

94.03 (7.46)
8.49 (6.26)

91.40 (10.14)
10.55 (7.69)

88.22 (12.32)
12.86 (9.98)

85.34 (14.66)
15.30 (12.14)
82.33 (16.66)

18.03 (13.81)
78.48 (18.71)

PCANR NRMSE
SSIM

5.91 (2.19)
94.55 (4.63)

7.00 (2.44)
92.68 (5.85)

7.82 (2.60)
91.12 (6.73)

8.69 (2.91)
89.18 (8.07)

9.49 (2.96)
87.81 (8.49)

10.24 (3.09)
85.91 (9.57)

MappingNet NRMSE
SSIM

4.06 (1.73)
97.40 (3.19)

4.87 (2.00)
96.35 (3.47)

5.71 (2.21)
95.50 (3.97)

6.35 (2.36)
94.63 (4.28)

6.96 (2.56)
93.53 (5.21)

8.50 (2.49)
92.40 (5.96)

CadamNet NRMSE
SSIM

3.96 (1.66)
97.60 (2.33)

4.73 (1.87)
96.64 (3.16)

5.34 (2.02)
96.05 (3.29)

6.00 (2.21)
95.00 (3.86)

6.69 (2.39)
94.03 (4.82)

7.25 (2.50)
93.09 (5.30)

MappingNet-m NRMSE
SSIM

4.20 (1.88)
97.26 (2.78)

4.93 (2.04)
96.29 (3.61)

5.60 (2.23)
95.49 (4.05)

6.25 (2.31)
94.60 (4.50)

6.97 (2.50)
93.46 (5.31)

7.57 (2.73)
92.19 (6.33)

CadamNet-m NRMSE
SSIM

4.06 (1.76)
97.48 (2.41)

4.77 (1.98)
96.55 (3.23)

5.43 (2.11)
95.79 (3.66)

6.05 (2.20)
95.02 (3.96)

6.68 (2.36)
94.05 (4.64)

7.22 (2.51)
93.00 (5.34)

Notes: Results are shown as the mean (SD) values over the testing datasets.

Figures 4 and 5 provide a visual evaluation of the results for one representative
simulated testing dataset with noise standard deviations of 9 and 15, respectively. The R2*
maps generated by the pixel-wise fitting using the M1NCM model were severely degraded
by the noise. The effect of noise was well suppressed by the PCANR, MappingNet, and
CadamNet methods. Although some small details at the right lobe of the liver became
blurred (e.g., the R2* values of the regions with extremely high iron deposition were slightly
underestimated), the CadamNet obtained the most consistent results with respect to the
reference R2* map. The quantitative results from different methods suggest that CadamNet
achieved the best performance in terms of SSIM and NRMSE.
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Figure 6 shows the R2* maps generated by CadamNet and CadamNet-m for one rep-
resentative simulated testing dataset with a noise standard deviation of 17. CadamNet was
trained using the simulated dataset with a noise standard deviation of 17, and CadamNet-m
was trained using the simulated dataset with a mix of noise levels. Both models provided
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R2* maps close to the reference. Quantitatively, these two models produced close NRMSE
and SSIM values.
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Figure 6. R2* maps reconstructed by CadamNet and CadamNet-m for the simulated testing dataset
with Rician noise (σg = 17). It should be noted that CadamNet was trained by the simulated dataset
with a noise standard deviation of 17, while CadamNet-m was trained by the simulated dataset with
a mix of noise levels.

Scatterplots and Bland–Altman plots comparing the mean liver parenchyma R2* values
of subjects in the simulated testing dataset under high noise levels (σg = 17) from different
methods against the reference R2* values are illustrated in Figure 7. For low R2* values, all
four methods produced accurate R2* estimates. For high R2* values, M1NCM overestimated
the R2*, whereas PCANR underestimated the R2* values. Compared with M1NCM and
PCANR, deep learning methods achieved a better agreement with the reference R2* values
for liver parenchyma with narrower limits of agreement lines (the dashed lines), which
were calculated at the ± 1.96*SD of the mean differences. CadamNet achieved further
improved agreement compared with MappingNet. MappingNet yielded a mean difference
of 9.88 ± 15.36 s−1, while CadamNet yielded a smaller mean difference of 0.19 ± 7.67 s−1.
The mean liver parenchyma R2* value was obtained by averaging R2* values in all pixels
of liver parenchyma. It should be noted that the liver parenchyma region (excluding
vasculature) was manually segmented from the reference R2* map and applied to the R2*
maps estimated by different methods.
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Figure 7. Scatterplots and Bland–Altman plots for the agreement of the mean R2* values in liver
parenchyma (excluding vasculature) between the reference and the R2* maps reconstructed from
different methods. The blue dots denote the subjects in the simulated testing liver dataset (σg = 17).
The solid lines represent mean differences, and the dashed lines indicate 95% confidence intervals in
Bland–Altman plots.

3.2. Clinical Results

Experiments were conducted on 21 real human liver data to verify the effectiveness
of the proposed method on real clinical data. Figure 8 shows the results of Bland–Altman
analysis for the agreement of the mean R2* values in liver parenchyma (excluding vascula-
ture) between different methods. Due to the lack of knowledge of the exact noise levels in
the in vivo data, CadamNet and MappingNet trained with a mix of noise levels were used
for real clinical data. The approximate noise standard variances of these clinical data are
in the regions from 6.0 to 12.0, which were calculated by multiplying the mean signal in
a manually selected background ROI of all TE images with 0.80 [11]. For low R2*, these
four methods agreed well. With regard to high R2*, M1NCM produced R2*s significantly
higher than CadamNet, and PCANR produced lower R2*s than CadamNet. The R2*s from
MappingNet were slightly higher than those from CadamNet. These results are consistent
with those of the simulation study (Figure 7).

Figure 9 shows the results of different methods on four representative clinical data from
patients with normal, mild, moderate, and severe iron loads. For the normal liver, there
was no apparent difference between the R2* maps produced by the four methods. For mild,
moderate, and severe iron-overloaded livers, the R2* maps produced by the M1NCM were
apparently degraded by the noise. The PCANR, MappingNet, and CadamNet methods
all suppressed the noise effect and preserved tiny details. Compared with PCANR, deep
learning-based methods achieved a better noise suppression effect in the regions, as pointed
out by the white arrows. CadamNet slightly outperformed MappingNet in the regions, as
pointed out by the black arrows, where MappingNet led to a blurring of tiny details. The
mean R2* values of the liver parenchyma (excluding vasculature) produced by CadamNet
were slightly lower than those of MappingNet for moderate and severe iron-loaded livers.
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Figure 9. R2* maps for four representative real human liver data. The first row shows the T2*-
weighted images at the first echo time (TE = 0.93 ms). The second-to-final rows show the R2* maps
reconstructed using M1NCM, PCANR, MappingNet, and the proposed CadamNet methods. The
mean and standard deviation of R2* values in liver parenchyma (excluding vasculature) are shown
in the top-left corner of the R2* map.

4. Discussion

In this work, we proposed a deep learning method called CadamNet for R2* mapping
of an iron-loaded liver. CadamNet first employed a separable CNN to denoise the measured
multi-echo T2*-weighted images and then employed a U-Net to estimate R2* map from the
denoised data. The validation results on both simulated and clinical data demonstrated that
the two-stage CadamNet method outperformed the single-stage U-Net mapping method
and conventional model-based methods in the liver R2* mapping, especially under the
condition of high noise level and in the presence of moderate to severe iron overload.
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CadamNet can be considered a data-driven method for liver R2* mapping. Compared
with conventional model-based methods (M1NCM and PCANR), CadamNet showed
significantly improved reconstruction performance. The M1NCM method fitted the data in
a pixel-wise manner, and this resulted in noisy maps because of the lack of utilization of
neighborhood information [32]. PCANR suppressed the noisy appearance in the R2* maps
but produced oversmoothing in certain liver parenchyma regions under high noise levels.
The suboptimal performance of PCANR in certain regions may be due to the fact that
this algorithm cannot find effective temporal signals with similar underlying R2* values
for regularization, especially at high noise levels. The results showed that CadamNet
could simultaneously suppress the noise and preserve details in R2* maps. This might be
attributed to the fact that the CNN-based architecture of CadamNet can leverage the prior
spatial patterns of the signals in the images to reduce the effect of noise.

Both CadamNet and MappingNet can reduce the effect of noise on the liver R2* map-
ping because these two networks were trained to approximate a mapping from noisy serial
image patches to noise-free reference image patches synthesized from parameter maps.
Compared with pixel-based training [33], patch-based training can exploit neighboring
information and prior spatial patterns in images for noise reduction. CadamNet slightly
outperformed MappingNet in terms of NRMSE and SSIM. CadamNet and MappingNet
have nearly the same number of trainable parameters (CadamNet contained 8,766,254
parameters and MappingNet 8,633,122 parameters). The performance gap could not be
attributed to a difference in network capacity. Thus, the improved performance of two-state
CadamNet over single-stage Mapping net is related to the incorporation of the auxiliary
denoising task. The image denoising stage tries to find the real signal from the noisy images,
and it will reduce the disruption of the noise in parameter estimation and simplify the
subsequent parameter mapping problem.

The performance of deep learning-based denoising methods is related to noise lev-
els [23]. The noise level in the clinical MR images is generally unknown. Thus, it is
important to evaluate the performance of CadamNet on data with unknown noise levels.
In this study, we trained CadamNet using data with a mix of noise levels and evaluated its
performance on both simulations with varying noise levels and clinical data. The results
demonstrated that CadamNet trained with mixed noise consistently achieved performance
comparable to that of CadamNet trained using data with a specific noise level. This means
that training CadamNet using data with a mix of noise levels may be one of the potential
solutions for real clinical data applications without prior knowledge of the noise levels.

With respect to the computational cost, CadamNet was proven to be a time-efficient
method. Although the training of the network requires many hours, the prediction of a
single-slice liver R2* map can be accomplished within ~0.1 s (using a GeForce TITAN X
Pascal GPU). Compared to conventional model-based liver R2* mapping approaches that
generally take approximately 1 min (implemented using Python on a modern PC with four
cores), the proposed method achieves approximately one magnitude of acceleration.

Our current work has several limitations. First, the trained CadamNet model can
only be applied to multi-echo images with TE patterns identical to the training data. TE
sampling patterns in R2* relaxometry sequences usually vary in different scanners and/or
centers. For the application to R2* relaxometry in practice, CadamNet needs to be retrained
using data synthesized with actual TEs. Another possible solution is to incorporate the TE
information into the input and learn a TE-independent model. Second, the performance of
CadamNet was only demonstrated on datasets with spatially stationary Rician noise. For
single-coil acquisition or SENSE [34] reconstructed images from array coils, the magnitude
signal can be considered Rician distributed. However, for a multiple-coil acquisition with
sum-of-squares or GRAPPA [35] reconstruction, the magnitude signal follows a non-central
chi distribution. The variance of noise becomes position-dependent in images reconstructed
by using parallel MRI. The extension of CadamNet to spatially variable non-central chi
noise is expected in the future. Although complex data is not always available and may
be corrupted by phase errors, complex R2* fitting does not suffer bias caused by the
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nonzero mean noise and can be used to address background field variation effects in R2*
mapping [36,37]. Third, although the fat-suppression technique is a solution to eliminate
most of the lipid signal [38], another way to correct fat-water modulations is to model the
T2* decay and fat interactions simultaneously [39]. Finally, although we used separate
CNN and U-Net as the backbone networks of CadamNet, which have been validated in
denoising and parameter mapping tasks, respectively, the choice of backbone network is
unrestricted. More sophisticated network architectures, such as ConvNeXt [40] and Swin
Transformer [41], may be adopted instead to improve the performance of CadamNet in
future work. Physical constraints and experiential regularizations in conventional methods
could be incorporated into the CadamNet framework, in a way similar to the recently
developed unrolling techniques [42–45], for further improving reconstruction performance.

5. Conclusions

In conclusion, this work presents a novel deep learning method for liver R2* mapping.
The proposed two-stage CadamNet method reduces the noise effect on R2* mapping
by implementing a denoising network and a mapping network in a sequential manner.
Extensive simulated datasets constructed from clinical liver data are used to train the
networks. CadamNet demonstrated improved accuracy and efficiency over the single-stage
mapping network and conventional model-based fitting methods. The cascade framework
of CadamNet is expected to be useful for quantitative MR applications involving T1
relaxometry, diffusion, and perfusion parameter mapping.
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