rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing
Abstract
:1. Introduction
2. Soft Sensor in Upstream of rAAV Production
3. Designing Soft Sensors
3.1. Data Driven Models
3.2. Mechanistic Models
3.3. Hybrid Models
4. Challenge of Soft Sensors in Upstream rAAV Production and Possible Solutions
4.1. Predictor Variables (Soft Sensor Inputs) Set without rAAV Viral Titer
4.2. Multi-Step Forecasting
4.3. Multi-Phase Process
4.4. Soft Sensor Development Composed of MMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cole, L.; Fernandes, D.; Hussain, M.T.; Kaszuba, M.; Stenson, J.; Markova, N. Characterization of recombinant adeno-associated viruses (rAAVs) for gene therapy using orthogonal techniques. Pharmaceutics 2021, 13, 586. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Maloney, A.J.; Katsikis, G.; Nguyen, T.N.; Neufeld, C.; Wolfrum, J.; Barone, P.W.; Springs, S.L.; Manalis, S.R.; Sinskey, A.J.; et al. Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol. Adv. 2021, 49, 107764. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [PubMed]
- De Alencastro, G.; Pekrun, K.; Valdmanis, P.; Tiffany, M.; Xu, J.; Kay, M.A. Tracking Adeno-Associated Virus Capsid Evolution by High-Throughput Sequencing. Hum. Gene Ther. 2020, 31, 553–564. [Google Scholar] [CrossRef]
- Penaud-Budloo, M.; François, A.; Clément, N.; Ayuso, E. Pharmacology of Recombinant Adeno-associated Virus Production. Mol. Ther.-Methods Clin. Dev. 2018, 8, 166–180. [Google Scholar] [CrossRef]
- Clément, N.; Grieger, J.C. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol. Ther.-Methods Clin. Dev. 2016, 3, 16002. [Google Scholar] [CrossRef]
- Pillay, S.; Meyer, N.L.; Puschnik, A.S.; Davulcu, O.; Diep, J.; Ishikawa, Y.; Jae, L.T.; Wosen, J.E.; Nagamine, C.M.; Chapman, M.S.; et al. An essential receptor for adeno-associated virus infection. Nature 2016, 530, 108–112. [Google Scholar] [CrossRef]
- Ronzitti, G.; Gross, D.A.; Mingozzi, F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front. Immunol. 2020, 11, 670. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Adamson-Small, L.; Potter, M.; Byrne, B.J.; Clément, N. Sodium Chloride Enhances Recombinant Adeno-Associated Virus Production in a Serum-Free Suspension Manufacturing Platform Using the Herpes Simplex Virus System. Hum. Gene Ther. Methods 2017, 28, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Giles, A.R.; Govindasamy, L.; Somanathan, S.; Wilson, J.M. Mapping an Adeno-associated Virus 9-Specific Neutralizing Epitope To Develop Next-Generation Gene Delivery Vectors. J. Virol. 2018, 92, e01011-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.K.; Lapan, S.W.; Hong, C.M.; Krause, T.B.; Cepko, C.L. In Situ Detection of Adeno-associated Viral Vector Genomes with SABER-FISH. Mol. Ther. Methods Clin. Dev. 2020, 19, 376. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Xiao, X. Directed evolution of adeno-associated virus (AAV) as vector for muscle gene therapy. Methods Mol. Biol. 2011, 709, 127–139. [Google Scholar] [CrossRef]
- Adamson-Small, L.; Potter, M.; Falk, D.J.; Cleaver, B.; Byrne, B.J.; Clément, N. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol. Ther.-Methods Clin. Dev. 2016, 3, 16031. [Google Scholar] [CrossRef] [PubMed]
- Bowles, D.E.; McPhee, S.W.; Li, C.; Gray, S.J.; Samulski, J.J.; Camp, A.S.; Li, J.; Wang, B.; Monahan, P.E.; Rabinowitz, J.E.; et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol. Ther. 2012, 20, 443–455. [Google Scholar] [CrossRef]
- Denard, J.; Rouillon, J.; Leger, T.; Garcia, C.; Lambert, M.P.; Griffith, G.; Jenny, C.; Camadro, J.M.; Garcia, L.; Svinartchouk, F. AAV-8 and AAV-9 Vectors Cooperate with Serum Proteins Differently Than AAV-1 and AAV-6. Mol. Ther.-Methods Clin. Dev. 2018, 10, 291–302. [Google Scholar] [CrossRef]
- Tang, F.; Wong, H.; Ng, C.M. Rational Clinical Dose Selection of Adeno-Associated Virus-Mediated Gene Therapy Based on Allometric Principles. Clin. Pharmacol. Ther. 2021, 110, 803–807. [Google Scholar] [CrossRef]
- Grieger, J.C.; Soltys, S.M.; Samulski, R.J. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol. Ther. 2016, 24, 287–297. [Google Scholar] [CrossRef]
- Bower, J.J.; Song, L.; Bastola, P.; Hirsch, M.L. Harnessing the natural biology of Adeno-associated virus to enhance the efficacy of cancer gene therapy. Viruses 2021, 13, 1205. [Google Scholar] [CrossRef]
- Lu, D.; Cushman, S.; Thum, T.; Bär, C. Gene Therapy and Cardiovascular Diseases. In Genome Editing in Cardiovascular and Metabolic Diseases; Springer: Berlin/Heidelberg, Germany, 2022; pp. 235–254. [Google Scholar]
- Md, S.A. Cardiac disease: Current approaches to gene therapy. Bull. Med. Clin. Res. 2020, 1, 62–75. [Google Scholar]
- Flotte, T.R.; Gessler, D.J. Gene therapy for rare neurological disorders. Clin. Pharmacol. Ther. 2022, 111, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Staneka, L.M.; Shihabuddina, L.S.; Chenga, S.H. Gene therapy of neurological diseases. In Advanced Textbook on Gene Transfer, Gene Therapy and Genetic Pharmacology: Principles, Delivery and Pharmacological and Biomedical Applications of Nucleotide-Based Therapies; World Scientific: Singapore, 2019; p. 471. [Google Scholar]
- Robert, M.A.; Chahal, P.S.; Audy, A.; Kamen, A.; Gilbert, R.; Gaillet, B. Manufacturing of recombinant adeno-associated viruses using mammalian expression platforms. Biotechnol. J. 2017, 12, 1600193. [Google Scholar] [CrossRef] [PubMed]
- Rumachik, N.G.; Malaker, S.A.; Poweleit, N.; Maynard, L.H.; Adams, C.M.; Leib, R.D.; Cirolia, G.; Thomas, D.; Stamnes, S.; Holt, K.; et al. Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Mol. Ther.-Methods Clin. Dev. 2020, 18, 98–118. [Google Scholar] [CrossRef] [PubMed]
- Clément, N. Large-scale clinical manufacturing of AAV vectors for systemic muscle gene therapy. In Muscle Gene Therapy; Springer: Berlin/Heidelberg, Germany, 2019; pp. 253–273. [Google Scholar]
- Ayuso, E. Manufacturing of recombinant adeno-associated viral vectors: New technologies are welcome. Mol. Ther.-Methods Clin. Dev. 2016, 3, 15049. [Google Scholar] [CrossRef]
- Zhao, H.; Lee, K.J.; Daris, M.; Lin, Y.; Wolfe, T.; Sheng, J.; Plewa, C.; Wang, S.; Meisen, W.H. Creation of a high-yield AAV vector production platform in suspension cells using a design-of-experiment approach. Mol. Ther.-Methods Clin. Dev. 2020, 18, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Wosnitzka, K.; Pariag, S.; Trottin, H.; Nyamay’Antu, A.; Porte, M.; Hellal, M.; Erbacher, P. Optimization of AAV process development: Transfection matters. Cell. Gene Ther. Insights 2021, 7, 1–7. [Google Scholar] [CrossRef]
- Sanderson, T.; Erlandson, T.; Hazi, N.; MacIntyre, A.; Ingersoll, B.I.; McLaughlin, M.; Wesel, S.; Maples, P.B. Scalability comparison between 50 and 500 liter stirred tank bioreactor for production of rAAV viral vector. Cell Gene Ther. Insights 2021, 7, 1025–1033. [Google Scholar] [CrossRef]
- Zhao, H.; Meisen, H.; Wang, S.; Lee, K.J. Process Development of rAAV Production Platform Results in High Production Yield and Purity. Human Gene Therapy 2022, 34. [Google Scholar] [CrossRef]
- Pais, D.A.; Brown, C.; Neuman, A.; Mathur, K.; Isidro, I.A.; Alves, P.M.; Slade, P.G. Dielectric spectroscopy to improve the production of raav used in gene therapy. Processes 2020, 8, 1456. [Google Scholar] [CrossRef]
- Rieser, R.; Koch, J.; Faccioli, G.; Richter, K.; Menzen, T.; Biel, M.; Winter, G.; Michalakis, S. Comparison of different liquid chromatography-based purification strategies for adeno-associated virus vectors. Pharmaceutics 2021, 13, 748. [Google Scholar] [CrossRef]
- Guan, J.S.; Chen, K.; Si, Y.; Kim, T.; Zhou, Z.; Kim, S.; Zhou, L.; Liu, X. Process Improvement of Adeno-Associated Virus Production. Front. Chem. Eng. 2022, 4, 1. [Google Scholar] [CrossRef]
- Joshi, P.R.; Venereo-Sanchez, A.; Chahal, P.S.; Kamen, A.A. Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnol. J. 2021, 16, 2000021. [Google Scholar] [CrossRef]
- Jang, M.; Pete, E.S.; Bruheim, P. The impact of serum-free culture on HEK293 cells: From the establishment of suspension and adherent serum-free adaptation cultures to the investigation of growth and metabolic profiles. Front. Bioeng. Biotechnol. 2022, 10, 964397. [Google Scholar] [CrossRef]
- Lee, Z.; Lu, M.; Irfanullah, E.; Soukup, M.; Hu, W.S. Construction of an rAAV Producer Cell Line through Synthetic Biology. ACS Synth. Biol. 2022, 11, 3285–3295. [Google Scholar] [CrossRef] [PubMed]
- Shupe, J.; Zhang, A.; Odenwelder, D.C.; Dobrowsky, T. Gene therapy: Challenges in cell culture scale-up. Curr. Opin. Biotechnol. 2022, 75, 102721. [Google Scholar] [CrossRef] [PubMed]
- Weger, S. High-Level rAAV Vector Production by rAdV-Mediated Amplification of Small Amounts of Input Vector. Viruses 2022, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Alcudia, J.; Wright, J.F. Viral vector manufacturing: Quality attributes of rAAV used in clinical development. J. Biomol. Tech. JBT 2020, 31, S43. [Google Scholar]
- Wu, Y.; Han, Z.; Duan, M.; Jiang, L.; Tian, T.; Jin, D.; Wang, Q.; Xu, F. Popularizing recombinant baculovirus-derived onebac system for laboratory production of all recombinant adeno-associated virus vector serotypes. Curr. Gene Ther. 2021, 21, 167–176. [Google Scholar] [CrossRef]
- Srivastava, A.; Mallela, K.M.; Deorkar, N.; Brophy, G. Manufacturing challenges and rational formulation development for AAV viral vectors. J. Pharm. Sci. 2021, 110, 2609–2624. [Google Scholar] [CrossRef]
- Dobrowsky, T.; Gianni, D.; Pieracci, J.; Suh, J. AAV manufacturing for clinical use: Insights on current challenges from the upstream process perspective. Curr. Opin. Biomed. Eng. 2021, 20, 100353. [Google Scholar] [CrossRef]
- Capra, E.; Godfre, A.; Loche, A.; Smith, J. Gene-Therapy Innovation: Unlocking the Promise of Viral Vectors. 2021. Available online: https://www.mckinsey.com/industries/life-sciences/our-insights/gene-therapy-innovation-unlocking-the-promise-of-viral-vectors (accessed on 1 February 2023).
- Rathore, A.S.; Mishra, S.; Nikita, S.; Priyanka, P. Bioprocess control: Current progress and future perspectives. Life 2021, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- López, R.A.; Pérez, P.A.L.; Femat, R. Control in Bioprocessing: Modeling, Estimation and the Use of Soft Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Vaitkus, V.; Brazauskas, K.; Repšytė, J. Soft-sensors based on Black-box Models for Bioreactors Monitoring and State Estimation. In Proceedings of the 2020 12th International Conference on Bioinformatics and Biomedical Technology, Xi’an, China, 22–24 May 2020; pp. 43–47. [Google Scholar]
- Rösner, L.S.; Walter, F.; Ude, C.; John, G.T.; Beutel, S. Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring. Bioengineering 2022, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Murugan, C. Soft Sensors for Biomass Monitoring during Low Cost Cellulase Production. In Biomass; IntechOpen: London, UK, 2021. [Google Scholar]
- Randek, J.; Mandenius, C.F. On-line soft sensing in upstream bioprocessing. Crit. Rev. Biotechnol. 2018, 38, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Guidance for Industry, PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance. 2004. Available online: https://www.fda.gov/media/71012/download (accessed on 1 February 2023).
- Tsopanoglou, A.; del Val, I.J. Moving towards an era of hybrid modelling: Advantages and challenges of coupling mechanistic and data-driven models for upstream pharmaceutical bioprocesses. Curr. Opin. Chem. Eng. 2021, 32, 100691. [Google Scholar] [CrossRef]
- Joiner, J.; Huang, Z.; McHugh, K.; Stebbins, M.; Aron, K.; Borys, M.; Khetan, A. Process modeling of recombinant adeno-associated virus production in HEK293 cells. Curr. Opin. Chem. Eng. 2022, 36, 100823. [Google Scholar] [CrossRef]
- Kang, W.; Wang, L.; Harrell, H.; Liu, J.; Thomas, D.L.; Mayfield, T.L.; Scotti, M.M.; Ye, G.J.; Veres, G.; Knop, D.R. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes. Gene Ther. 2009, 16, 229–239. [Google Scholar] [CrossRef]
- Hartmann, J.; Münch, R.C.; Freiling, R.T.; Schneider, I.C.; Dreier, B.; Samukange, W.; Koch, J.; Seeger, M.A.; Plückthun, A.; Buchholz, C.J. A Library-Based Screening Strategy for the Identification of DARPins as Ligands for Receptor-Targeted AAV and Lentiviral Vectors. Mol. Ther.-Methods Clin. Dev. 2018, 10, 128–143. [Google Scholar] [CrossRef]
- Strobel, B.; Zuckschwerdt, K.; Zimmermann, G.; Mayer, C.; Eytner, R.; Rechtsteiner, P.; Kreuz, S.; Lamla, T. Standardized, Scalable, and Timely Flexible Adeno-Associated Virus Vector Production Using Frozen High-Density HEK-293 Cell Stocks and CELLdiscs. Hum. Gene Ther. Methods 2019, 30, 23–33. [Google Scholar] [CrossRef]
- Ghani, K.; Cottin, S.; Kamen, A.; Caruso, M. Generation of a high-titer packaging cell line for the production of retroviral vectors in suspension and serum-free media. Gene Ther. 2007, 14, 1705–1711. [Google Scholar] [CrossRef]
- Chhatre, S. Modelling approaches for bio-manufacturing operations. In Measurement, Monitoring, Modelling and Control of Bioprocesses; Springer: Berlin/Heidelberg, Germany, 2012; pp. 85–107. [Google Scholar]
- Udugama, I.A.; Lopez, P.C.; Gargalo, C.L.; Li, X.; Bayer, C.; Gernaey, K.V. Digital Twin in biomanufacturing: Challenges and opportunities towards its implementation. Syst. Microbiol. Biomanufacturing 2021, 1, 257–274. [Google Scholar] [CrossRef]
- Kotidis, P.; Pappas, I.; Avraamidou, S.; Pistikopoulos, E.N.; Kontoravdi, C.; Papathanasiou, M.M. DigiGlyc: A hybrid tool for reactive scheduling in cell culture systems. Comput. Chem. Eng. 2021, 154, 107460. [Google Scholar] [CrossRef]
- Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M.G. Soft Sensors for Monitoring and Control of Industrial Processes; Springer: Berlin/Heidelberg, Germany, 2007; Volume 22. [Google Scholar]
- Jiang, Y.; Yin, S.; Dong, J.; Kaynak, O. A review on soft sensors for monitoring, control and optimization of industrial processes. IEEE Sensors J. 2020, 21, 12868–12881. [Google Scholar] [CrossRef]
- Brunner, V.; Siegl, M.; Geier, D.; Becker, T. Challenges in the development of soft sensors for bioprocesses: A critical review. Front. Bioeng. Biotechnol. 2021, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Reyes, S.J.; Durocher, Y.; Pham, P.L.; Henry, O. Modern Sensor Tools and Techniques for Monitoring, Controlling, and Improving Cell Culture Processes. Processes 2022, 10, 189. [Google Scholar] [CrossRef]
- Shirsat, N.P.; English, N.J.; Glennon, B.; Al-Rubeai, M. Modelling of mammalian cell cultures. In Animal Cell Culture; Springer: Cham, Switzerland, 2015; pp. 259–326. [Google Scholar]
- Fernandes, R.L.; Bodla, V.K.; Carlquist, M.; Heins, A.L.; Lantz, A.E.; Sin, G.; Gernaey, K.V. Applying mechanistic models in bioprocess development. Meas. Monit. Model. Control. Bioprocesses 2012, 132, 137–166. [Google Scholar]
- Papathanasiou, M.M.; Kontoravdi, C. Engineering challenges in therapeutic protein product and process design. Curr. Opin. Chem. Eng. 2020, 27, 81–88. [Google Scholar] [CrossRef]
- Lopez, P.C.; Udugama, I.A.; Thomsen, S.T.; Roslander, C.; Junicke, H.; Mauricio-Iglesias, M.; Gernaey, K.V. Towards a digital twin: A hybrid data-driven and mechanistic digital shadow to forecast the evolution of lignocellulosic fermentation. Biofuels Bioprod. Biorefining 2020, 14, 1046–1060. [Google Scholar] [CrossRef]
- Sommeregger, W.; Sissolak, B.; Kandra, K.; von Stosch, M.; Mayer, M.; Striedner, G. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses. Biotechnol. J. 2017, 12, 1600546. [Google Scholar] [CrossRef]
- Choi, H.K.; Son, S.H.; Sang-Il Kwon, J. Inferential model predictive control of continuous pulping under grade transition. Ind. Eng. Chem. Res. 2021, 60, 3699–3710. [Google Scholar] [CrossRef]
- Ohadi, S.K. Development of Soft Sensors for Monitoring of Chinese Hamster Ovary Cell Processes. 2014. Available online: http://hdl.handle.net/10012/8979 (accessed on 1 February 2023).
- Maruthamuthu, M.K.; Rudge, S.R.; Ardekani, A.M.; Ladisch, M.R.; Verma, M.S. Process analytical technologies and data analytics for the manufacture of monoclonal antibodies. Trends Biotechnol. 2020, 38, 1169–1186. [Google Scholar] [CrossRef]
- Arnold, S.A.; Crowley, J.; Woods, N.; Harvey, L.M.; McNeil, B. In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol. Bioeng. 2003, 84, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S.; Thakur, G.; Nikita, S.; Banerjee, S. Control of Continuous Manufacturing Processes for Production of Monoclonal Antibodies. In Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 39–74. [Google Scholar]
- Zhang, A.H.; Zhu, K.Y.; Zhuang, X.Y.; Liao, L.X.; Huang, S.Y.; Yao, C.Y.; Fang, B.S. A robust soft sensor to monitor 1, 3-propanediol fermentation process by Clostridium butyricum based on artificial neural network. Biotechnol. Bioeng. 2020, 117, 3345–3355. [Google Scholar] [CrossRef] [PubMed]
- Brestrich, N.; Briskot, T.; Osberghaus, A.; Hubbuch, J. A tool for selective inline quantification of co-eluting proteins in chromatography using spectral analysis and partial least squares regression. Biotechnol. Bioeng. 2014, 111, 1365–1373. [Google Scholar] [CrossRef]
- Capito, F.; Skudas, R.; Kolmar, H.; Hunzinger, C. At-line mid infrared spectroscopy for monitoring downstream processing unit operations. Process. Biochem. 2015, 50, 997–1005. [Google Scholar] [CrossRef]
- Brunner, V.; Klöckner, L.; Kerpes, R.; Geier, D.U.; Becker, T. Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence. Anal. Bioanal. Chem. 2020, 412, 2165–2175. [Google Scholar] [CrossRef] [PubMed]
- Grigs, O.; Bolmanis, E.; Galvanauskas, V. Application of in-situ and soft-sensors for estimation of recombinant P. pastoris GS115 biomass concentration: A case analysis of HBcAg (Mut+) and HBsAg (MutS) production processes under varying conditions. Sensors 2021, 21, 1268. [Google Scholar] [CrossRef]
- Bayer, B.; von Stosch, M.; Melcher, M.; Duerkop, M.; Striedner, G. Soft sensor based on 2D-fluorescence and process data enabling real-time estimation of biomass in Escherichia coli cultivations. Eng. Life Sci. 2020, 20, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hrnčiřík, P.; Moucha, T.; Mareš, J.; Náhlík, J.; Janáčová, D. Software sensors for biomass concentration estimation in filamentous microorganism cultivation process. Chem. Biochem. Eng. Q. 2019, 33, 141–151. [Google Scholar] [CrossRef]
- Kornecki, M.; Strube, J. Process analytical technology for advanced process control in biologics manufacturing with the aid of macroscopic kinetic modeling. Bioengineering 2018, 5, 25. [Google Scholar] [CrossRef]
- Krishna, V.V.; Pappa, N.; Rani, S.J.V. Deep Learning based Soft Sensor for Bioprocess Application. In Proceedings of the 2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 8–10 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 155–159. [Google Scholar]
- Kornecki, M.; Strube, J. Accelerating biologics manufacturing by upstream process modelling. Processes 2019, 7, 166. [Google Scholar] [CrossRef]
- Solomatine, D.; See, L.M.; Abrahart, R. Data-driven modelling: Concepts, approaches and experiences. In Practical Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 17–30. [Google Scholar]
- Sun, Q.; Ge, Z. A survey on deep learning for data-driven soft sensors. IEEE Trans. Ind. Inform. 2021, 17, 5853–5866. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Min, D.; Kim, W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int. J. Mol. Sci. 2021, 22, 9983. [Google Scholar] [CrossRef] [PubMed]
- Pra, M.D. Time Series Forecasting with Deep Learning and Attention Mechanism. 2020. Available online: https://towardsdatascience.com/time-series-forecasting-with-deep-learning-and-attention-mechanism-2d001fc871fc (accessed on 8 March 2021).
- Zhang, D.; Del Rio-Chanona, E.A.; Petsagkourakis, P.; Wagner, J. Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization. Biotechnol. Bioeng. 2019, 116, 2919–2930. [Google Scholar] [CrossRef] [PubMed]
- Emerson, J.; Kara, B.; Glassey, J. Multivariate data analysis in cell gene therapy manufacturing. Biotechnol. Adv. 2020, 45, 107637. [Google Scholar] [CrossRef] [PubMed]
- Solle, D.; Hitzmann, B.; Herwig, C.; Pereira Remelhe, M.; Ulonska, S.; Wuerth, L.; Prata, A.; Steckenreiter, T. Between the poles of data-driven and mechanistic modeling for process operation. Chem. Ing. Tech. 2017, 89, 542–561. [Google Scholar] [CrossRef]
- Iglesias, C.; Mehta, V.; Bolig, M. Handling Massive Proportion of Missing Labels in Multivariate Long-Term Time Series Forecasting. J. Phys. Conf. Ser. 2021, 2090, 012170. [Google Scholar] [CrossRef]
- Moser, A.; Appl, C.; Brüning, S.; Hass, V.C. Mechanistic mathematical models as a basis for digital twins. In Digital Twins; Springer: Berlin/Heidelberg, Germany, 2021; pp. 133–180. [Google Scholar]
- Dua, V.; Dua, P. A simultaneous approach for parameter estimation of a system of ordinary differential equations, using artificial neural network approximation. Ind. Eng. Chem. Res. 2012, 51, 1809–1814. [Google Scholar] [CrossRef]
- Kyriakopoulos, S.; Ang, K.S.; Lakshmanan, M.; Huang, Z.; Yoon, S.; Gunawan, R.; Lee, D.Y. Kinetic modeling of mammalian cell culture bioprocessing: The quest to advance biomanufacturing. Biotechnol. J. 2018, 13, 1700229. [Google Scholar] [CrossRef]
- Petre, E.; Selişteanu, D. Model approximation and simulations of a class of nonlinear propagation bioprocesses. In Numerical Analysis-Theory And Application; InTech: Rijeka, Croatia, 2011; pp. 211–230. [Google Scholar]
- Dürr, R.; Waldherr, S. Hybrid simulation algorithm for efficient numerical solution of population balance equations. IFAC-PapersOnLine 2018, 51, 290–295. [Google Scholar] [CrossRef]
- Xu, P. Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture. Biotechnol. Bioeng. 2020, 117, 873–878. [Google Scholar] [CrossRef]
- Lee, K.; Parish, E. Parameterized neural ordinary differential equations: Applications to computational physics problems. Proc. R. Soc. A 2021, 477, 20210162. [Google Scholar] [CrossRef]
- Okereke, R.; Maliki, O.; Oruh, B. A novel method for solving ordinary differential equations with artificial neural networks. Appl. Math. 2021, 12, 900–918. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, M.; Luo, J. A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods. Adv. Differ. Equ. 2018, 2018, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bradley, W.; Boukouvala, F. Two-Stage Approach to Parameter Estimation of Differential Equations Using Neural ODEs. Ind. Eng. Chem. Res. 2021, 60, 16330–16344. [Google Scholar] [CrossRef]
- Rackauckas, C.; Innes, M.; Ma, Y.; Bettencourt, J.; White, L.; Dixit, V. Diffeqflux. jl-A julia library for neural differential equations. arXiv 2019, arXiv:1902.02376. [Google Scholar]
- Xia, H.; Suliafu, V.; Ji, H.; Nguyen, T.; Bertozzi, A.; Osher, S.; Wang, B. Heavy ball neural ordinary differential equations. Adv. Neural Inf. Process. Syst. 2021, 34, 18646–18659. [Google Scholar]
- Chen, R.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural ordinary differential equations. arXiv 2018, arXiv:1806.07366. [Google Scholar]
- Dhadphale, J.; Unni, V.; Saha, A.; Sujith, R. Neural ODE to model and prognose thermoacoustic instability. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 013131. [Google Scholar] [CrossRef]
- Alahmadi, A.; Flegg, J.; Cochrane, D.; Drovandi, C.; Keith, J. A comparison of approximate versus exact techniques for Bayesian parameter inference in nonlinear ordinary differential equation models. R. Soc. Open Sci. 2020, 7, 191315. [Google Scholar] [CrossRef]
- Ge, H.; Xu, K.; Ghahramani, Z. Turing: A language for flexible probabilistic inference. In Proceedings of the International Conference on Artificial Intelligence And Statistics, Playa Blanca, Spain, 9–11 April 2018; pp. 1682–1690. [Google Scholar]
- Xing, Z.; Bishop, N.; Leister, K.; Li, Z.J. Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method. Biotechnol. Prog. 2010, 26, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Sha, S.; Hong, M.S.; Maloney, A.J.; Barone, P.W.; Neufeld, C.; Wolfrum, J.; Springs, S.L.; Sinskey, A.J.; Braatz, R.D. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol. Ther.-Methods Clin. Dev. 2021, 21, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, C.F., Jr.; Xu, X.; Mehta, V.; Akassou, M.; Venereo-Sanchez, A.; Belacel, N.; Kamen, A.; Bolic, M. Monitoring the Recombinant Adeno-Associated Virus Production using Extended Kalman Filter. Processes 2022, 10, 2180. [Google Scholar] [CrossRef]
- Von Stosch, M.; Oliveira, R.; Peres, J.; de Azevedo, S.F. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Comput. Chem. Eng. 2014, 60, 86–101. [Google Scholar] [CrossRef]
- Bayer, B.; Striedner, G.; Duerkop, M. Hybrid modeling and intensified DoE: An approach to accelerate upstream process characterization. Biotechnol. J. 2020, 15, 2000121. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, M.; von Stosch, M.; Narayanan, H.; Feidl, F.; Butté, A. Hybrid modeling—A key enabler towards realizing digital twins in biopharma? Curr. Opin. Chem. Eng. 2021, 34, 100715. [Google Scholar] [CrossRef]
- Pinto, J.; Mestre, M.; Ramos, J.; Costa, R.S.; Striedner, G.; Oliveira, R. A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks. Comput. Chem. Eng. 2022, 165, 107952. [Google Scholar] [CrossRef]
- Luo, Y.; Kurian, V.; Ogunnaike, B.A. Bioprocess systems analysis, modeling, estimation, and control. Curr. Opin. Chem. Eng. 2021, 33, 100705. [Google Scholar] [CrossRef]
- Gimpel, A.L.; Katsikis, G.; Sha, S.; Maloney, A.J.; Hong, M.S.; Nguyen, T.N.; Wolfrum, J.; Springs, S.L.; Sinskey, A.J.; Manalis, S.R.; et al. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. Mol. Ther.-Methods Clin. Dev. 2021, 20, 740–754. [Google Scholar] [CrossRef]
- Ohadi, K.; Aghamohseni, H.; Legge, R.L.; Budman, H.M. Fluorescence-based soft sensor for at situ monitoring of chinese hamster ovary cell cultures. Biotechnol. Bioeng. 2014, 111, 1577–1586. [Google Scholar] [CrossRef]
- Claßen, J.; Graf, A.; Aupert, F.; Solle, D.; Höhse, M.; Scheper, T. A novel LED-based 2D-fluorescence spectroscopy system for in-line bioprocess monitoring of Chinese hamster ovary cell cultivations—Part II. Eng. Life Sci. 2019, 19, 341–351. [Google Scholar] [CrossRef]
- Whelan, J.; Craven, S.; Glennon, B. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol. Prog. 2012, 28, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Abu-Absi, N.R.; Kenty, B.M.; Cuellar, M.E.; Borys, M.C.; Sakhamuri, S.; Strachan, D.J.; Hausladen, M.C.; Li, Z.J. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol. Bioeng. 2011, 108, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Berry, B.; Moretto, J.; Matthews, T.; Smelko, J.; Wiltberger, K. Cross-scale predictive modeling of CHO cell culture growth and metabolites using R aman spectroscopy and multivariate analysis. Biotechnol. Prog. 2015, 31, 566–577. [Google Scholar] [CrossRef]
- Faassen, S.M.; Hitzmann, B. Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring. Sensors 2015, 15, 10271–10291. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning Mastery: San Juan, Puerto Rico, 2018. [Google Scholar]
- Brownlee, J. Long Short-Term Memory Networks with Python: Develop Sequence Prediction Models with Deep Learning; Machine Learning Mastery: San Juan, Puerto Rico, 2017. [Google Scholar]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep learning for time series forecasting: A survey. Big Data 2021, 9, 3–21. [Google Scholar] [CrossRef]
- Curreri, F.; Patanè, L.; Xibilia, M.G. RNN-and LSTM-Based Soft Sensors Transferability for an Industrial Process. Sensors 2021, 21, 823. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Z.; Sun, K. Development of a novel soft sensor with long short-term memory network and normalized mutual information feature selection. Math. Probl. Eng. 2020, 2020, 7617010. [Google Scholar] [CrossRef]
- Shen, F.; Zheng, J.; Ye, L.; Ma, X. LSTM Soft Sensor Development of Batch Processes With Multivariate Trajectory-Based Ensemble Just-in-Time Learning. IEEE Access 2020, 8, 73855–73864. [Google Scholar] [CrossRef]
- Vaněk, M.; Hrnčiřík, P.; Vovsik, J.; Nahlik, J. On-line estimation of biomass concentration using a neural network and information about metabolic state. Bioprocess Biosyst. Eng. 2004, 27, 9–15. [Google Scholar] [CrossRef]
- Singh, S.; Rani, A.; Singh, V.; Yadav, J. Soft sensor for inferential control in non-isothermal CSTR. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1785–1790. [Google Scholar]
- Mandenius, C.F.; Gustavsson, R. Mini-review: Soft sensors as means for PAT in the manufacture of bio-therapeutics. J. Chem. Technol. Biotechnol. 2015, 90, 215–227. [Google Scholar] [CrossRef]
- Zhu, X.; Rehman, K.U.; Wang, B.; Shahzad, M. Modern soft-sensing modeling methods for fermentation processes. Sensors 2020, 20, 1771. [Google Scholar] [CrossRef] [PubMed]
- Kiviharju, K.; Salonen, K.; Moilanen, U.; Eerikäinen, T. Biomass measurement online: The performance of in situ measurements and software sensors. J. Ind. Microbiol. Biotechnol. 2008, 35, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, L.; Wang, Y. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Trans. Ind. Inform. 2019, 16, 3168–3176. [Google Scholar] [CrossRef]
- Pisa, I.; Santin, I.; Morell, A.; Vicario, J.L.; Vilanova, R. LSTM-Based Wastewater Treatment Plants Operation Strategies for Effluent Quality Improvement. IEEE Access 2019, 7, 159773–159786. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of uncertainty in deep neural networks. arXiv 2021, arXiv:2107.03342. [Google Scholar]
- Bayer, B.; von Stosch, M.; Striedner, G.; Duerkop, M. Comparison of modeling methods for DoE-based holistic upstream process characterization. Biotechnol. J. 2020, 15, 1900551. [Google Scholar] [CrossRef] [Green Version]
- Kozma, B.; Salgó, A.; Gergely, S. On-line glucose monitoring by near infrared spectroscopy during the scale up steps of mammalian cell cultivation process development. Bioprocess Biosyst. Eng. 2019, 42, 921–932. [Google Scholar] [CrossRef]
- Tamburini, E.; Marchetti, M.G.; Pedrini, P. Monitoring key parameters in bioprocesses using near-infrared technology. Sensors 2014, 14, 18941–18959. [Google Scholar] [CrossRef]
- Zimmerleiter, R.; Kager, J.; Nikzad-Langerodi, R.; Berezhinskiy, V.; Westad, F.; Herwig, C.; Brandstetter, M. Probeless non-invasive near-infrared spectroscopic bioprocess monitoring using microspectrometer technology. Anal. Bioanal. Chem. 2020, 412, 2103–2109. [Google Scholar] [CrossRef]
- Reardon, K.F. Practical monitoring technologies for cells and substrates in biomanufacturing. Curr. Opin. Biotechnol. 2021, 71, 225–230. [Google Scholar] [CrossRef]
- Jin, S.; Sun, F.; Hu, Z.; Li, Y.; Zhao, Z.; Du, G.; Shi, G.; Chen, J. Online quantitative substrate, product, and cell concentration in citric acid fermentation using near-infrared spectroscopy combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121842. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Chopda, V.; Rathore, A.S. Monitoring and control of bioreactor: Basic concepts and recent advances. In Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 201–237. [Google Scholar]
- Gerzon, G.; Sheng, Y.; Kirkitadze, M. Process analytical technologies–advances in bioprocess integration and future perspectives. J. Pharm. Biomed. Anal. 2022, 207, 114379. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Liu, Y. A hybrid science-guided machine learning approach for modeling chemical processes: A review. AIChE J. 2022, 68, e17609. [Google Scholar] [CrossRef]
- Selişteanu, D.; Șendrescu, D.; Georgeanu, V.; Roman, M. Mammalian cell culture process for monoclonal antibody production: Nonlinear modelling and parameter estimation. BioMed Res. Int. 2015, 2015, 598721. [Google Scholar] [CrossRef] [PubMed]
- Kourti, T. Multivariate statistical process control and process control using latent variables. Compr. Chemom. 2020, 275–303. Available online: https://www.sciencedirect.com/science/article/pii/B9780124095472148875 (accessed on 1 February 2023).
- Simutis, R.; Jenzsch, M.; Lübbert, A. Model-Based Technologies Enabling Optimal Bioreactor Performance. In Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 175–200. [Google Scholar]
- Narayanan, H.; Behle, L.; Luna, M.F.; Sokolov, M.; Guillén-Gosálbez, G.; Morbidelli, M.; Butté, A. Hybrid-EKF: Hybrid model coupled with extended Kalman filter for real-time monitoring and control of mammalian cell culture. Biotechnol. Bioeng. 2020, 117, 2703–2714. [Google Scholar] [CrossRef]
- Simutis, R.; Lübbert, A. Hybrid approach to state estimation for bioprocess control. Bioengineering 2017, 4, 21. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, C.F., Jr.; Ristovski, M.; Bolic, M.; Cuperlovic-Culf, M. rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing. Bioengineering 2023, 10, 229. https://doi.org/10.3390/bioengineering10020229
Iglesias CF Jr., Ristovski M, Bolic M, Cuperlovic-Culf M. rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing. Bioengineering. 2023; 10(2):229. https://doi.org/10.3390/bioengineering10020229
Chicago/Turabian StyleIglesias, Cristovão Freitas, Jr., Milica Ristovski, Miodrag Bolic, and Miroslava Cuperlovic-Culf. 2023. "rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing" Bioengineering 10, no. 2: 229. https://doi.org/10.3390/bioengineering10020229
APA StyleIglesias, C. F., Jr., Ristovski, M., Bolic, M., & Cuperlovic-Culf, M. (2023). rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing. Bioengineering, 10(2), 229. https://doi.org/10.3390/bioengineering10020229