
Finite Element Models of gold nanoparticles and their 

suspensions for photothermal effect calculation 

J.M. Terrés-Haro, J. Monreal-Trigo, A. Hernández-Montoto, F. J. Ibáñez-Civera, R. Masot-Peris 

and R. Martínez-Máñez 

SUPPORTING MATERIAL 

Introduction to plasmonics 

The techniques used for the modeling and calculation of the response of a material in an 

electromagnetic field rely on Maxwell's electromagnetic theory, which is expressed in four 

partial differential equations for the electric and magnetic fields and describes the behavior of 

the whole electromagnetic spectrum in classical electromagnetism. 

Light interacting with matter may suffer commonly known effects, referred to as interaction 

with the bulk material. One way to precisely calculate the effect of this interaction in classical 

physics is to treat the matter as a set of charged particles and study the effect of the 

electromagnetic field on their position, as the electric and magnetic fields of the incident wave 

will exert forces on the electrons of the material's atoms, causing them to oscillate [1]. This is 

the field of plasmonics, which has been developed extensively [2]. 

It is essential to note that a constant, characteristic of the material being studied, describes this 

charge density oscillation at an angular speed, which is called the plasma frequency, as indicated 

in (1). 
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Where the material characteristics are reduced to a number (n) of charged particles (electrons, 

e) of individual effective mass (m) related to the vacuum permittivity (𝜀0). Plugging this into 

Maxwell's equations, it can be found that the dielectric function of the material (𝜀) is a function 

of its plasma frequency, its plasma oscillation damping characteristic frequency (𝛾) and the 

incident electromagnetic wave frequency (𝜔) as expressed in (2). 

𝜀(𝜔) = 1 −
𝜔𝑝

2

𝜔2 + 𝑖𝛾𝜔
    (2) 

Where (𝑖) is the imaginary operator. This equation is often referred to as the Drude Model, as it 

makes a simple approach by approximating the metal as a homogeneous domain [3]. Now (2) 

can be broken down into its real (3) and imaginary (4) parts, where the relation 𝜏 =  1/𝛾 is 

applied. 
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Each part changes with the properties of the material; normally, at near-visible or visible 

frequencies, the real part is predominant, but in noble metals, due to interband transitions at 

those frequencies, 𝜀2 increases breaking the model in experimental measurements [4], and 



absorption predominates over reflection and transmission. In the case of bulk gold, this 

frequency falls in the blue range, so when illuminated with a white light, the blue is absorbed, 

and its aspect is yellow [5]. This is the case for bulk materials, where the oscillation is damped 

and dispersed in their relatively vast volume. However, when nanoparticles come into play, the 

oscillation is confined to a small volume, and some other effects occur, which will be described 

in the following lines. 

The case of the nanoparticle 

When a particle is in an electromagnetic field with a wavelength much greater than its size, a 

simplification of the analysis can be made by supposing that the phase of the wave that the 

nanoparticle suffers is the same on each oscillation as represented in Figure 1, so the analysis is 

made for an electrostatic field. This approximation works well for particles with sizes less than 

100 nm. 

 

Figure 1. The analysis can be simplified by supposing that a nanoparticle with its dimensions smaller than the 
wavelength is always affected by the same phase of the electromagnetic wave on its position 

Consider a sphere of radius 𝑎 in a uniform static electric field 𝐸 = 𝐸0𝑧̂, situated in a surrounding 

non-absorbing medium with dielectric constant 𝜀𝑚. A solution for the Laplace equation of 

potential ∇2Φ = 0 can be found, from which the electric field 𝐸 = −∇Φ can also be solved. This 

problem has a general solution form, once considered azimuthal symmetry, given by (5): 

Φ(𝑟, 𝜃) = ∑[𝐴𝑙𝑟𝑙 + 𝐵𝑙𝑟−(𝑙+1)]𝑃𝑙(𝑐𝑜𝑠(𝜃))    (5)

∞

𝑙=0

 

Which corresponds to the partial derivative equation solution, giving the series (𝐴𝑙𝑟𝑙 +

𝐵𝑙𝑟−(𝑙+1))  for the r-dependant term and the Legendre Polynomial of 𝑐𝑜𝑠(𝜃) for the 𝜃-

dependant term, as the equation takes the Legendre Differential equation form [6]. 

The sphere is placed in a medium with dielectric constant 𝜀𝑚, where a homogeneous electric 

field exists. If the sphere has a different dielectric constant, a charge will be induced in its 

surface, and the electric field will be distorted. Therefore, the case must be studied for both the 

electric field outside and inside the sphere, defining (6). 

𝐸1 = −ΔΦ1    𝑎𝑛𝑑     𝐸2 = −ΔΦ2    (6) 

Where the conditions (7) and (8) apply. 



Δ2Φ1 = 0   𝑓𝑜𝑟   (𝑟 < 𝑎)    (7) 

Δ2Φ2 = 0   𝑓𝑜𝑟   (𝑟 > 𝑎)    (8) 

At the boundary, the potentials must be equal, so the (9) and (10) relationships must be true for 

𝑟 =  𝑎. 

Φ1 = Φ2    (9) 
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In addition, at a large distance from the sphere, the electric field is still the unperturbed initial 

field, so (11) applies. 

lim
𝑟→∞

Φ2 = −𝐸0𝑟𝑐𝑜𝑠(𝜙) = −𝐸0𝑧     (11) 

These are the necessary boundary conditions to find the solution coefficients, so the results of 

the potentials are (12) for the internal potential and (13) for the external potential, which satisfy 

the partial differential equations and boundary conditions. 
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It can be observed that (13) describes the superposition of two terms: one is the applied field, 

and the other corresponds to a dipole located at the particle center that is proportional to the 

magnitude of 𝐸0 and takes the geometry (by the term radius 𝑎3 into account. From this, the 

complex polarizability (14) of the spherical particle is extracted. 

𝛼 = 4𝜋𝑎3
𝜀 − 𝜀𝑚
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    (14) 

Plotting the polarizability against different energy levels applied as an electric field, using 

different wavelengths, it is found that it suffers a resonant enlargement only when (14) applies 

[7]. 

R[𝜀(𝜔)] = −2𝜀𝑚    (14) 

This states the importance of the environment's dielectric function. When 𝜀𝑚 increases, the 

resonance wavelength is increased. In addition, the resonant wavelength is affected by the 

geometry of the particle. When incorporating the solutions of Φ into the distribution of the 

electric field 𝐸  =   − ΔΦ it results in (15) for the inside and (16) for the outside. 
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This implies that, at the exterior of the particle, the electric field is not only its initial value but 

sums a term that is higher when closer to the particle, so the resonance in the polarizability also 



causes an enhancement of the electric field. Because of this, the nanoparticles find a field of 

applicability in optical devices that rely on sensing changes in the electric field. 

Another of the consequences of this resonance is that the particle suffers an enhancement in 

the efficiency with which it scatters and absorbs light as extensively developed by Bohren and 

Huffman [8], which resulted in the scattering (17) and absorption (18) cross-section equations 

for the case of the sphere, as well as for many other symmetric geometries, where 𝑘 =  2𝜋/𝜆 

and 𝜆 is the wavelength of the incident field. 

𝐶𝑠𝑐𝑎 =
𝑘4

6𝜋
R[𝛼]2     (17) 

𝐶𝑎𝑏𝑠 = 𝑘I[𝛼]     (18) 

As the particle's radius is much smaller than the wavelength, absorption dominates over 

scattering. 
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