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Abstract: The high frequency of dental caries is amajor public health concernworldwide. The condi‑
tion is common, particularly in developing countries. Because there are no evident early‑stage signs,
dental caries frequently goes untreated. Meanwhile, early detection and timely clinical intervention
are required to slow disease development. Machine learning (ML) models can benefit clinicians in
the early detection of dental cavities through efficient and cost‑effective computer‑aided diagnoses.
This study proposed a more effective method for diagnosing dental caries by integrating the GINI
andmRMR algorithmswith the GBDT classifier. Because just a few clinical test features are required
for the diagnosis, this strategy could save time andmoneywhen screening for dental caries. The pro‑
posed method was compared to recently proposed dental procedures. Among these classifiers, the
suggested GBDT trained with a reduced feature set achieved the best classification performance,
with accuracy, F1‑score, precision, and recall values of 95%, 93%, 99%, and 88%, respectively. Fur‑
thermore, the experimental results suggest that feature selection improved the performance of the
various classifiers. The suggested method yielded a good predictive model for dental caries diagno‑
sis, which might be used in more imbalanced medical datasets to identify disease more effectively.

Keywords: disease dental caries; gradient boosting decision tree; feature selection; machine learning;
feature importance

1. Introduction
Oral health is essential for general health and quality of life. Oral health means being

free from throat cancer, infections and sores in the mouth, gum disease, tooth loss, dental
caries, and other diseases so that no disturbances limit biting, chewing, smiling, speaking,
andpsychosocialwell‑being. One of themost occurring oral health diseases is dental caries.
Dental caries is a health issue caused by residual food that attaches to the teeth, causing
calcification. Teeth become porous, hollow, and sometimes fractured as a result. Dental
caries is a disease associatedwith the hard tissues of the teeth, namely, enamel, dentin, and
cementum, in the form of decayed areas on the teeth, occurring as a result of the process of
gradually dissolving the mineral surface of the teeth and continuing to grow to the inside
of the teeth.

According to Global Burden studies in 2019, dental caries is the most frequent oral
illness impacting around 3.5 billion individuals, with 2 billion suffering from permanent
dental caries [1]. Moreover, in 2020, more than 6 million patients with dental caries in the
Republic of Korea visited dentists, of which 1.45 million were children (0~9 years old) [2].
Therefore, dental caries illness is a challenge for scientists to address.

Recent research on dental caries was conducted by Rimi et al. [3], who discussed the
prediction of dental caries using machine learning (ML). In their experiments, they used
nine algorithms, namely, K‑NearestNeighbor (KNN), logistic regression (LR), support vec‑
tor machine (SVM), random forest (RF), naïve Bayes (NB), classification and regression
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trees, multilayer perception (MLP), linear discriminant analysis (LDA), and adaptive boost‑
ing (AdaBoost). The best results were obtained through LR, with an accuracy of 95.89%.

Meanwhile, to detect dental caries, researchers use data images, such as those pro‑
duced by Zhang, X. et al. [4], Lee, S. et al. [5], Estai, M. et al. [6], Lee, J.‑H. et al. [7], and
Megan Leo et al. [8]. Zhang, X. et al. [4] used the convolutional neural network model
method to classify 3932 images of dental caries. They managed to obtain a value of 0.8565
for the area under the curve (AUC). In their research, Lee, S. et al. [5] proposed a U‑shaped
Deep Convolution Neural Network (U‑Net). The highest sensitivity value was 0.9372. Es‑
tai et al. [6] proposed the Inception‑ResNet‑v2 model to classify as many as 2468 images.
The image dataset sample size was less than that in the study by. Lee, J.‑H. et al. [7], which
classified 3000 images using the transfer learningmethod based on the InceptionV3model.
Similar to [7], Megan Leo et al. [8] employed a Google Net inception V3 Convolutional
based deep learning method to detect the presence of cavities in images. The noise in the
input images was reduced using the selective median filter method and achieved an accu‑
racy of 86.7%.

The study by Karhade et al. [9] predicted the prevalence of Early Children Caries
(ECC) in infants through clinical, demographic, behavioral, andparent‑reported oral health
status. A set of 10 ECC predictors closely related to ECC induction were deployed with
AutoML on Google Cloud. Via the survey recorded data, experimentation was conducted
to detect dental caries, and ECC classification accuracy (area under the ROC curve (AU‑
ROC), sensitivity, and positive predictive value) was evaluated. As a result of the study,
the model performance of single‑item reporting was the highest, with an AUROC of 0.74,
a sensitivity of 0.67, and a positive predictive value of 0.64. In a similar case study, Ramos‑
Gomez et al. [10] identified variables for induced dental caries in infants 2–7 years of age
living in Los Angeles. An RF algorithm was trained to identify dental caries predictors.
The most influential variables were the parent’s age (MDG = 2.97, MDA = 4.74) and the
presence or absence of dental health problems in infants within 12 months (MDG = 2.20,
MDA = 4.04).

You‑Hyun Park et al. [11] proposed a predictive model for caries in infancy utilizing
the LR, XGBoost (version 1.3.1), RF, and LightGBM (version 3.1.1) algorithms. Feature
selection was performed through regression‑based reverse removal and an RF‑based per‑
mutation importance classifier. The results of this study showed that LR had an AUROC
value of 0.784, XGBoost had an AUROC value of 0.785, RF had an AUROC value of 0.780,
and LightGBM had an AUROC value of 0.78.

The efficiency of data modeling varies greatly depending on the type of processing
and the ML model used. The preprocessing technique employed to identify the essential
characteristics of a particular problem is referred to as feature selection, frequently per‑
formed for two reasons: to reduce dataset dimensionality and to tailor the dataset to suit
the selected analysis method best. Input dimensionality reduction can increase perfor‑
mance by lowering learning time, reducing model complexity, and enhancing generaliza‑
tion capacity. The selection of appropriate characteristics can help reduce measurement
costs and increase problem comprehension [12].

S. Memiş et al. [13] investigated and proposed a new kNN algorithm, Fuzzy Parame‑
terized Fuzzy Soft kNN (FPFS‑kNN),which is based on several pseudo‑metrics of fuzzy pa‑
rameterized fuzzy softmatrices (fpfs‑matrices). FPFS‑kNNcan take into account the effects
of parameters on classification by employing the pseudo‑metrics of fpfs‑matrices—a novel
approach. FPFS‑kNN also finds the nearest neighbors for each pseudo‑metric and classi‑
fies data using the previously mentioned multiple distance functions. They conducted an
experimental study with 35 UCI datasets to demonstrate the suggested method’s effective‑
ness in classifying data, and they compared it to the state‑of‑the‑art kNN‑based and non‑
kNN‑based algorithms. Through five‑fold cross‑validation, all algorithms were trained
and tested for ten runs. The findings of FPFS‑kNN were then compared to those of the
others in terms of the most often used measures, such as accuracy, precision, recall, micro
F‑score, and macro F‑score. Following that, they presented experimental and statistical
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results showing that the proposed FPFS‑kNN, designated as FPFS‑kNN (P) and based on
Pearson’s correlation coefficient, outperforms the state‑of‑the‑art kNN‑based algorithms
in 24 of 35 datasets in terms of each studied measure and 31 of 35 datasets in terms of
the accuracy measure. Furthermore, the results demonstrate that FPFS‑kNN (P) outper‑
forms the others in 29 datasets for accuracy and macro F‑score rates and in 24 datasets for
precision, recall, and macro F‑score rates.

Over the last few years, gene expression data have been widely used with ML and
computational tools. Several matrix‑factorization‑based dimensionality reduction algo‑
rithms have been developed in gene expression analyses. However, such systems can
be improved in terms of efficiency and dependability. The research conducted by Farid
Saberi‑Movahed et al. [14] proposed a Dual Regularized Unsupervised Feature Selection
Based onMatrix Factorization andMinimumRedundancy (DR‑FS‑MFMR), a newapproach
to feature selection. The primary goal of DR‑FS‑MFMR is to remove unnecessary features
from the original feature set. To achieve this goal, the primary feature selection problem
is stated in terms of two aspects: (1) the data matrix factorization in the feature weight
matrix and the representation matrix and (2) the correlation information connected to the
selected feature set. The objective function is then enhanced by applying twodata represen‑
tation features and an inner product regularization criterion to complete the redundancy
minimization process and the sparsity taskmore precisely. A vast number of experimental
investigations on nine gene expression datasetswere carried out to demonstrate the compe‑
tency of the DR‑FS‑MFMR approach. The computational results show that DR‑FS‑MFMR
is efficient and productive for gene selection tasks.

The research conducted by Saeid Azadifar. et al. [15] proposed a unique graph‑based
relevancy–redundancy gene selection method for cancer diagnosis approaches that can ef‑
fectively eliminate redundant and irrelevant genes. The proposed method uses a unique
algorithm that finds gene clusters (i.e., maximum‑weighted cliques). By grouping similar
genes, the proposed method prevents the selection of redundant and similar genes. The
provided findings show that the performance of the created similarity measure outper‑
forms all other measures. On a colon dataset, the classification accuracy was 87.89%; on a
Small‑Round‑Blue‑Cell Tumor (SRBCT) dataset, it was 83.19%; on a Leukemia dataset, it
was 92.14%; and on a Prostate Tumor dataset, it was 83.73%.

The main contributions of this study are as follows: to identify the most important
characteristics needed to improve the detection of dental caries and to obtain the most per‑
formant model for dental caries prediction via comparative experimentation on a novel
combination of GINI and mRMR techniques, which allow imbalanced dental data with a
high number of features to be classified under GBDT selection to achieve efficient perfor‑
mance. The ML model described in this study efficiently provides patients with superior‑
quality dental services, including diagnosis and treatment.

The rest of this paper is structured as follows: Section 2 describes the caries prediction
model proposed in this study. The experimentation and results are presented in Section 3.
Section 4 presents the discussion, while Section 5 concludes the paper.

2. Materials and Methods
This section presents the dataset, data preprocessing, an overview of the different

methods used in this study, and the proposed prediction model employed for predict‑
ing dental caries. Five prediction methods were trained using the reduced subsets of fea‑
tures obtained via feature selection algorithms, and the performances of the ML methods
were compared. A conceptual representation of the proposed dental caries prediction
model is shown in Figure 1. Following data collection via the GMFT survey, a prepro‑
cessing operation was performed in which feature selection (Chi‑Square, Relief F, mRMR,
and Correlation) and feature importance (Chi‑Square + GINI, Relief F + GINI, mRMR + GINI,
Correlation + GINI) methods were used to curate the dataset and obtain the optimal dataset.
Finally, the prediction algorithms were fine‑tuned, and experimentation was carried out.
The best performer was chosen as the final classifier.
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2.1. Data Collection
The dataset used in this study is the 2018 Children’s Oral Health Survey conducted

by the Korea Centers for Disease Control and Prevention. The data were collected by den‑
tists visiting each institution for an oral examination survey. A total of 22,288 respondents
were surveyed, and the oral health awareness questionnaire was selected and used for the
survey. The oral health questionnaire consisted of a total of 43 items and 1 label, includ‑
ing age, gender, place of residence, snack frequency, tooth brushing frequency, oral care
use, smoking experience, oral health awareness, and behavior, with act_caries as the label.
These data are not subject to Institutional Review Board (IRB) approval, as they do not
record patients’ personal information. Complete descriptions of the questionnaire items
are available in Table S1 (see the Supplementary File).

2.2. Data Preprocessing
Data cleaning before building ML models is an essential step in increasing the effi‑

ciency and accuracy of the models [16], hence preventing bias or degradation of the model
performance. The raw data were stripped of any empty or less critical features. The most
significant features were chosen using feature importance and feature selection techniques
(themethods used are described in the Supplementary File). Features thatwere redundant,
less significant, or unrelated to the target variable were discarded, leaving just the optimal
features. The selected optimal features were scaled (using theMin–Max algorithm) to val‑
ues between 0 and 1 to improve training speed and model performance and to facilitate
more effective learning and the understanding of the task.

Definition 1. The normalization of u is defined by

ûi :=
ui − min

i
ui

max
i

ui − min
i

ui
(1)

In Equation (1), ûi is the transformed value, ui is the original value, min
i

ui is the mini‑
mum value of the column, and max

i
ui is the maximum value. TheMin–Maxmethod reacts

quickly in the presence of outliers and does not change the original content of the data.
This study adopted the Synthetic Minority Oversampling Technique (SMOTE) algorithm,
considered the most widely used oversampling technique employed to generate synthetic
data [17]. This technique solves the problem of class imbalance present in the experimen‑
tal data, therefore increasing the classification accuracy by solving the biased problem [18].
Our dataset contained an uneven data distribution, with almost 20,593 samples represent‑
ing patients without dental caries “labeled 0” and 1695 samples for thosewith dental caries
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“labeled 1,” as seen in Figure 2a. The data distribution ratio with reference to the target
variable before and after the applied SMOTE is shown in Figure 2.
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2.3. Methods Used in the Proposed Prediction Model
This section describes the mRMR feature selection techniques, the GINI feature im‑

portance, and the GBDT algorithms. These were the three methods utilized in the design
of the proposed model.

2.3.1. Minimum Redundancy–Maximum Relevance (mRMR)
The features are rated according to their relevance to the target variable in themRMR

feature selection approach. The redundancy of the features is taken into account when
ranking them. The feature with the highest rank in mRMR is the one with the most rele‑
vance to the target variable and the least redundancy among the characteristics. Redun‑
dancy and relevance are measured usingMutual Information (MI) [19–21].

Definition 2. Joint entropy is defined by

I (X, Y) = ∑y∈Y , ∑x∈X(x, y)log
(

p(x, y)
p1(x)p2(y)

)
(2)

In this equation, p(x, y) signifies the compound probability distribution function of X
andY random variables, whereas p1(x) and p2(y) define themarginal probability distribu‑
tion function of X and Y random variables, respectively. When two random variables are
totally independent, the mutual information is 0. It is symmetrical and cannot have a neg‑
ative value (I(X, Y) ≥ 0, I(X, Y) = I(X, Y)). Assume that S is the feature to be chosen
and that |S| denotes the number of items in this collection. The two criteria listed above
must be met to ensure that the feature set chosen is the most efficient set [12].

Definition 3. The mutual information between the targeted class and feature is defined by

MI f ·t(S, t) =
1
|S| ∑Fi∈S I(Fi, t) (3)

Definition 4. The mutual information between a defined feature is defined by

MI f · f =
1

|S|2 ∑
Fi Fj∈S

I
(

Fi, Fj
)

(4)
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2.3.2. GINI
GINI impureness (or the GINI index) is a statistic utilized in decision trees to deter‑

mine how to divide the data into smaller groups. It estimates the frequency with which a
randomly selected element from a set would be erroneously classified if randomly labeled
according to the distribution of labels in a subset [22]. GINI importance (also known as the
mean decrease in impurity) is one of the most often used processes for estimating feature
importance. It is simple to implement and readily available in most tree‑based algorithms,
such as RF and gradient boosting. The GINI significance of a feature gauges its effective‑
ness in minimizing uncertainty or variance in decision tree creation. Thus, each time a
split occurs in a tree regarding a particular characteristic, the GINI impurity is added to its
total importance [23].

2.3.3. Gradient Boosting Decision Tree (GBDT)
Gradient boosting is a type of ML technique used for regression and classification

problems, with its weak prediction model (typically the decision tree) generating a fore‑
cast model in the form of a collection. It, like other strengthening approaches, constructs
the model in stages and allows for the optimization of the loss function of any separable
variables to a generalized model [24–26].

Definition 5. The initial constant value C is obtained as

f0 = argmin
c

∑N
i=1 L(yi, C) (5)

where L(yi C) is the loss function. argmin
c .

Definition 6. For each j = 1, 2, . . . , J, the residual along the gradient direction is written as

rim = −
∣∣∣∣∂L(yi, f (xi))

∂ f (xi)

∣∣∣∣
f (x)= fm−1(x)

(6)

Definition 7. The corresponding optimal fitting value for each j = 1, 2, . . . , J, is computed
as follows:

γjm = argmin︸ ︷︷ ︸
Y

∑
xi∈Rjm

L(yi, fm−1(x) + γ) (7)

Definition 8. The following depicts the model update operation:

fm(x) = fm−1(x) +
J

∑
j=1

γjm, I
(
x ∈ Rjm

)
(8)

Definition 9. The final model is obtained by

f (x) = fm(x) = f0(x) + ∑M
m=1

j

∑
j=1

γjm I
(
x ∈ Rjm

)
(9)

2.4. Dental Caries Prediction Model
This section describes the proposed prediction model. The model receives three pa‑

rameters: the training dataset S, the number of features to be considered, and the threshold
of feature importance to be considered. At every iteration of the set of features, the weight
importance of the feature is computed, and the mRMR is used to select the subset of fea‑
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tures from the feature in S. The mRMR is calculated to rate the features according to their
relevance to the target feature while considering redundancy. The features are ranked
according to their mRMR, and a subset of features is selected according to the specified
threshold. From the selected subset of features H, a sub‑subset of features is selected via
Gini Impurity (GI).

Four machine learning algorithms (RF, LR, SVM, and GBDT) and one Deep Learning
(DL) model, Long Short‑TermMemory (LSTM), are experimented on using the sub‑subset
features. RandomizedSearchAlgorithm is employed to find the best hyperparameters and
reduce unnecessary computation, therein solving the drawback of GridSearchCV. Once
the best parameters are found, training is performed. The best classifier (GBDT) is obtained
after comparisons of the model evaluation metrics (accuracy, F1‑score, recall, precision,
and receiver operating curve (AUROC)). The complete algorithm of the proposed model
is presented in Algorithm 1.

Algorithm 1: Proposed model for Dental Caries Prediction.

Input: Training dataset S := (x1, y1), (x2, y2), . . . , (xn, yn); Fn Number of features to be selected, and θ threshold of
feature importance.
Output: highest performing classification approach C.

1. Begin algorithm:
2. for ( f eature fi in S, i + 1): Compute the weight importance of features.

 

relevance = mutualIn f ormation ( fi, y)
 redundancy = initialize to 0

for ( f eature f j in S, j + 1)
 redundancy += mutualIn f ormation (fi, fj)

end for
mrmrValues[ fi] = relevance −redundancy;

3. end for
4. H = sort(mrmrValues).take(θ) select a subset of the most important features from the total set S.
5. for ( f eature fk in H, i + 1): rank features by their predictive power and select the most important one.

• Compute the Gini impurity of the target variable on fk as GI = GiniImpurity( fk).
• Split the data samples x from fk into two subsets x1∼k and xk∼n then compute the Avg Gini impurity of the

two subsets.
Gavg_1 = AVGGiniImpur(x1∼k)

Gavg_2 = AVGGiniImpur(xk∼n)

• Store in the list of feature importance the Gini impurity caused by the splitting of the data on the current feature.
6. Normalize the feature importances so that they sum to 1.
7. Select a final subset of features based on feature importances obtained.
8. Features = Select(List_ f eature_importance, Fn)
9. PERFORM the Caries Prediction

  Hyper‑parameter
  Machine Learning model include:
    List_Classi f iers: GBDT, RF, SVM, LR, LSTM
  for Ci in List_Classi f iers:
      Ci = RandomizedSearchAlgorithm(Hyper_parameters)
  C_metric = Evaluate(Features, C, Accuracy, F1score, Recall, Precision, ROC)

 ListClassi f ier_evaluation_metrics.append (Ci, C_metric)
 end for

10. Final classifier is obtained as: Cl f = ArgMax
{

ListClassi f ier_evaluation_metrics

}
     argmax operator returns the classifier that maximizes the evaluation metric.
11. END algorithm
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3. Experimentation
This section describes the experimental data, the hyperparameter tuning process for

the various ML models, and the caries prediction model results. The initial stage in the
experiment was to construct different subsets of features from the dataset using feature
selection and feature importance methods (explained in Section 2.3 and in the Supplemen‑
taryMaterial). Following that, theMLmodels were applied to the complete feature set and
the different subsets of features to demonstrate the benefit of feature selection. Finally, the
results of each model were compared to determine which model performed best.

3.1. Dataset
The 2018 pediatric oral health examination data were used to train, validate, and eval‑

uate the proposed method’s effectiveness and performance. This dataset has 43 attributes
in total. Chi‑Square, Relief F, and mRMR techniques were utilized, with the number of fea‑
tures (k) adjusted to forty‑three, forty, thirty‑five, thirty, twenty‑five, twenty, fifteen, ten,
and five per experiment. The correlation method was also used to determine which vari‑
ables to investigate further and to perform rapid hypothesis testing. A cutoff of 0.85was set
while performing the correlation technique, and features with a correlation value greater
than that of the threshold were removed from the dataset’s 43 features. In addition, GINI
feature importance was applied to these four methods (Chi‑square, Relief F, mRMR, and
Correlation). The dataset was subjected to eight different approaches. The different sub‑
set numbers of features to which the feature selection and importance techniques were
applied are shown in Table S2 (see Supplementary File). Except for LSTM and SVM, the
study used feature importance with the GBDT, RF, and LRmodels. Because SVM lacks fea‑
ture importance properties, they cannot be applied [27]. For LSTM, only the permutation
importance algorithm can be applied [28]. The dataset attribute descriptions are available
in Table S1 (see Supplementary).

3.2. Hyperparameters of Different Machine Learning Models
A well‑selected training dataset and properly tuned ML algorithms were necessary

to accurately predict dental caries. In this study, five models were employed, with 80%
of the data used for training and validation, while the remaining 20% were set aside for
testing and determining the best model for caries prediction. The hyperparameter tuning
was caried out through randomizedSearch instead of GridSearch. Table 1 shows the models
used, the different feature selection and feature importance techniques, the hyperparame‑
ters of each model, and the optimal hyperparameter values achieved using the randomized
Search algorithm.

Table 1. Optimizable parameters for different models.

Models Feature Selection/
Feature Importance Parameters Optimal Values

GBDT mRMR + GINI

subsample 0.80
n_estimators 200

min_samples_leaf 8
max_features 5
max_depth 320
learning_rate 0.02

RF Relief F + GINI

n_estimators 320
min_samples_leaf 1
max_features 5
max_depth None

LR Chi‑Square + GINI
solver sag
penalty l2

C 5

SVM Relief F

probability True
kernel rbf
gamma 0.01

C 10

LSTM Chi‑Square

learning rate 0.001
beta_1 0.09
beta_2 0.999
epsilon 1 × 10−2
epochs 100
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3.3. Results
This section discusses the result obtained from the performed experimentation. The

MLmodels were trainedwith the complete feature sets first and thenwith various reduced
sets of features to demonstrate the effects of feature selection and importance techniques on
the classification performances. Out of the 80% ratio of the dataset used for cross‑validation
training, 20%was utilized to evaluate themodel efficacy, highlight selection bias or overfit‑
ting issues, and provide insights into how the model would generalize to an independent
dataset. The results described below, which are the test data results, only present the ex‑
cellent accuracy of each experimental condition.

3.3.1. Performance of the Classifiers without Feature Selection
This subsection presents the experimental findings achievedwhen training the GBDT,

RF, LR, SVM, and LSTMmodels with the full feature set. A summary of these observations
is provided in Table 2. Further, Figure 3 depicts the AUC‑ROC curves for the GBDT, RF,
LR, and SVM algorithms, as well as the training vs. validation accuracy and loss for the
LSTM model. The findings reveal that RF outperformed the other ML classifiers, with
F1‑score, precision, recall, and accuracy values of 0.87, 0.92, 0.86, and 0.91, respectively.
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Table 2. Classifier performance when trained with the complete set of features.

Models #of Features F1‑Score Precision Recall Accuracy

GBDT

43

0.8635 0.9490 0.7921 0.8966

RF 0.8868 0.9186 0.8572 0.9105

LR 0.7773 0.7959 0.7598 0.8203

SVM 0.7862 0.7434 0.8345 0.8128

LSTM 0.7575 0.7428 0.7436 0.7467

3.3.2. Performance of the Classifiers after Feature Selection
Various reduced feature sets were produced in this study using the Chi‑Square, Relief

F, mRMR, Correlation, and GINI methods. The combination of the mRMR feature selec‑
tion and GINI importance algorithms enabled the selection of features with the highest
relevance to the label. The experimental results of the experimentation performed using
various subsets of features are shown in Table 3 and Figure 4. Table 3 depicts the feature
selection procedures (mRMR + GINI, Relief F + GINI, Chi‑Square + GINI, Relief F, and Chi‑
Square) used to construct the datasets, with different numbers of features chosendepending
on their importance in the prediction of the target variable.

The results obtainedwith the reduced feature setswere compared to show the efficacy
of feature selection on model performance. As seen in Table 3, all the classifiers employed
outperformed their respective performances when trained on the complete feature set (as
shown in Table 2). The F1‑score, precision, recall, accuracy, and AUC values of the pro‑
posed model (combining mRMR + GINI and GBDT) were 93.79%, 99.84%, 88.44%, 95.19%,
and 95%, respectively, which outperformed the RF, LR, SVM, and LSTM models both be‑
fore and after feature selection, aswell as the conventional GBDT. This gain in performance
highlights the usefulness of feature selection in the ML models. As a result, the proposed
model is an effective method for predicting dental caries.

Table 3 summarizes the study’s findings and presents eachmodel’s performance. The
proposed approach demonstrated the best predictive performance. As shown in
Tables 3 and S2, each model’s appropriate number of features varied. Table 3 presents the
best performance producedvia various optimal feature sets. The accuracy ofmRMR + GINI
paired with GBDT was 95.19%, which was 5.53% higher than the traditional GBDT. RF
(with Relief F + GINI for feature selection) produced an accuracy of 95.13%, 5.08% higher
than the conventional RF; similarly, LSTM (with Chi‑Square + GINI), SVM (with Relief F),
and LSTM (with Chi‑Square) achieved accuracies of 82.56%, 90.39%, and 84%, respectively.
These results were 0.53%, 9.11%, and 9.33% higher than their counterparts trained on the
complete feature sets, as shown in Table 2.

Table 3. Performance of the classifiers trained with the subset.

Models Feature Selection # of
Features F1‑Score Precision Recall Accuracy

GBDT mRMR + GINI 18 0.9379 0.9984 0.8844 0.9519

RF Relief F + GINI 20 0.9372 0.9978 0.8835 0.9513

LR Chi‑Square + GINI 40 0.7814 0.8012 0.7625 0.8256

SVM Relief F 43 0.8806 0.9028 0.8596 0.9039

LSTM Chi‑Square 15 0.8300 0.8400 0.8300 0.8400
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4. Discussion
Dental caries is rapidly increasing and recognized as a significant public health prob‑

lem beyond personal health care. In addition, the prevention and early detection of dental
caries are critical for reducing the social costs of dental caries that will occur in the fu‑
ture. Currently, a caries diagnosis is performed using radiographs or probes. According
to the clinical experience of dental specialists, these procedures demonstrate significant
variations in the accuracy and reliability of dental caries diagnoses. Given the difficulties
and limitations of diagnoses based on the clinician’s subjective opinion and experience, re‑
search on and the development ofML‑based dental caries decision support systems (DSSs)
are required. These DSS tools will aid in the prevention of dental caries, the management
of oral hygiene, the improvement of dietary‑caries‑related food habits, and the reduction
of diagnostic time and expense.

The main purpose of this study was to construct a dataset comprising the most rel‑
evant features to enable an effective prediction of dental caries. Moreover, a model was
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proposed that can effectively and accurately classify dental caries using the selected fea‑
ture set. Four ML algorithms (RF, LR, SVM, and GBDT) and one DL were trained on both
the complete feature set and the optimized datasets (consisting of reduced feature sets).

The present study used the Chi‑Square, Relief F,mRMR, Correlation, andGINImethods
to obtain the optimal dataset. The most optimal dataset consisted of a feature set reduced
to 18 out of 43 features, resulting in a 6% improvement in accuracy over training with the
complete feature set. The experimental results reveal that the models trained on the re‑
duced feature sets performed better than their respective counterparts trained on the com‑
plete feature sets. The proposed model trained on the reduced set of features remarkably
predicted dental caries and yielded better performances than the previously published
questionnaire‑based dental caries prediction DSS.

Karhade, D. S. et al. [22] used data from 6404 people to study the classification of early
childhood dental caries. Their proposed model yielded an AUC‑ROC of 0.74, a sensitiv‑
ity of 0.67, and a positive predictive value of 0.64. Park Y.H. et al. [24] performed a similar
study in children under the age of 5 and reported an AUC‑ROC value of 0.784 for LR, 0.785
for XGBoost, 0.780 for RF, and 0.780 for LightGBM. These findings outperformed those of
Karhade, D. S. et al. [22] and Park, Y. H. et al. [24]. Our proposed prediction model’s
AUC‑ROC values were 0.96, 0.95, 0.89, 0.90, and 0.83 for RF, GBDT, LR, SVM, and LSTM,
respectively. The current study’s data collection included 22,287 survey data samples. The
proposed (mRMR + GINI and GBDT) model in our work achieved an accuracy of 95%, an
F1‑score of 93%, a precision of 99%, and a recall of 88%. However, because the data uti‑
lized were from the Korean child population, the performance analysis is only indicative
of the Korean population rather than other groups. Simultaneously, an absolute compar‑
ison with other published studies was not possible due to the data’s privacy restrictions,
resulting in its nonpublic availability.

5. Conclusions
The analysis of dental caries is one of the most frequent topics for modern‑day oral

health care research due to its severity and alarming rising rate. This study proposed an
approach that combines mRMR + GINI feature selection and the GBDT classifier to im‑
prove the detection of dental caries. Five ML classifiers (LR, RF, SVM, LSTM, and GBDT)
were implemented as benchmarks for a performance comparison. To start, the relevance
of the various attributes was computed using Chi‑Square, Relief F, mRMR, Correlation, and
GINI. The classifiers were then trained using both the reduced and complete feature sets.
The experimental results show that the feature selection improved the classifiers’ perfor‑
mance. The proposed approach achieved superior performance over the other classifiers
and methods in the recent literature. Therefore, combining mRMR + GINI and GBDT is a
practical approach to dental caries detection and can be potentially applied for the early
detection of dental caries through DSS diagnosis tools.

In this experiment, the importance of features was selected through the GINI tech‑
nique. The GINI technique employed to perform feature importance could not be used
with the SVM and LSTMmodels and could only be used with LR, RF, and GBDT. In future
work, we plan to use datasets collected from Korea and other countries to analyze similari‑
ties in dental caries occurrence. In addition, we intend to apply permutation importance (a
feature importance technique) to improve the models’ performance. The proposed model
shows promising performance and can be applied as a diagnostic aid to identify patients
with dental caries. It can also make practical suggestions for caries prevention and treat‑
ment plan design. Through this, it is possible to drastically reduce patient diagnosis time
and social costs due to tooth decay.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10020245/s1, Table S1. Description of attributes of
the survey dataset used in our experiment; Table S2. The performance of difference models used.
References [29–43] are cited in the supplementary materials.
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