Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Description
2.2.1. Demographic and Health Status Variables
Age
Height, Weight, and Body Mass Index (BMI)
Gender
Blood Pressure
Respiratory Problems
Smoking
Physical Activity
Other Variables (Diabetes, Kidney Failure, and Pregnancy)
2.2.2. Pulse Oximetry
Arterial Oxygen Saturation (SpO2)
Pulse Rate
2.2.3. PPG Signal
Systolic Amplitude
Peak-to-Peak Interval (∆T)
Pulse Interval
Crest Time (CT)
Pulse Width (PW)
Dicrotic Notch
Diastolic Time
Pulse Transit Time (PTT)
Total Area and Inflection Point Area Ratio (IPA)
Augmentation Indices (AI) and Time Ratios
APG Parameters and Their Ratios
2.3. Feature Selection and Classification
2.4. Machine Learning Classification Algorithm
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labarthe, D. Epidemiology and Prevention of Cardiovascular Diseases, 2nd ed.; Jones and Bartlett Publishers: Burlington, MA, USA, 2010. [Google Scholar]
- Jordanian Ministry of Health. Periodic-Newsletters, Amman. 2020. Available online: http://www.moh.gov.jo/EN/Pages/Periodic-Newsletters.aspx (accessed on 18 September 2020).
- Jain, P.; Tiwari, A. Heart monitoring systems: A review. Comput. Biol. Med. 2014, 54, 1–13. [Google Scholar] [CrossRef]
- Rácz, A.; Bajusz, D.; Héberger, K. Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics. Molecules 2019, 24, 2811. [Google Scholar] [CrossRef]
- Al-Fahoum, A.; Khadra, L. Combined Bispectral and Bicoherency approach for Catastrophic Arrhythmia Classification. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2005; pp. 332–336. [Google Scholar] [CrossRef]
- Al-Fahoum, A.S.; Qasaimeh, A.M. A practical reconstructed phase space approach for ECG arrhythmias classification. J. Med. Eng. Technol. 2013, 37, 401–408. [Google Scholar] [CrossRef]
- Al-Fahoum, A.; Al-Fraihat, A.; Al-Araida, A. Detection of cardiac ischaemia using bispectral analysis approach. J. Med. Eng. Technol. 2014, 38, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Héberger, K. Sum of ranking differences compares methods or models fairly. TrAC Trends Anal. Chem. 2010, 29, 101–109. [Google Scholar] [CrossRef]
- Angius, G.; Barcellona, D.; Cauli, E.; Meloni, L.; Raffo, L. Infarction and antiphospholipid syndrome: A first study on finger PPG waveforms effects. Comput. Cardiol. 2012, 12, 517–520. [Google Scholar]
- Awad, A.; Haddadin, A.; Tantawy, H.; Badr, T.; Stout, R.; Silverman, D.; Shelley, K. The relationship between the photople-thysmographic waveform and systemic vascular resistance. J. Clin. Monit. Comput. 2007, 21, 365–372. [Google Scholar] [CrossRef]
- Peulic, A.; Milojevic, N.; Jovanov, E.; Radovic, M.; Saveljic, I.; Zdravkovic, N.; Filipovic, N. Modeling of arterial stiffness using variations of pulse transit time. Comput. Sci. Inf. Syst. 2013, 10, 547–565. [Google Scholar] [CrossRef]
- Al Fahoum, A.S.; Al Zaben, A.; Seafan, W. A multiple signal classification approach for photoplethysmography signals in healthy and athletic subjects. Int. J. Biomed. Eng. Technol. 2015, 17, 1–23. [Google Scholar] [CrossRef]
- Aboy, M.; McNames, J.; Thong, T.; Tsunami, D.; Ellenby, M.; Goldstein, B. An Automatic Beat Detection Algorithm for Pressure Signals. IEEE Trans. Biomed. Eng. 2005, 52, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Solosenko, A.; Petrenas, A.; Marozas, V. Photoplethysmography-Based Method for Automatic Detection of Premature Ventricular Contractions. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 662–669. [Google Scholar] [CrossRef]
- Yousefi, M.R.; Khezri, M.; Bagheri, R.; Jafari, R. Automatic detection of premature ventricular contraction based on pho-toplethysmography using chaotic features and high order statistics. In Proceedings of the IEEE International Symposium on Medical Meas-urements and Applications (MeMeA), Rome, Italy, 11–13 June 2018. [Google Scholar]
- Polania, L.F.; Mestha, L.K.; Huang, D.T.; Couderc, J.P. Method for classifying cardiac arrhythmias using photoplethys-mography. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milano, Italy, 25–29 August 2015. [Google Scholar]
- Al-haija, A.A.; Alshraideh, H.; Al-Fahoum, A. Cardiorespiratory Disorders Detection Using Photoplethysmography. In Proceedings of the 81st IASTEM International Conference, Phuket, Thailand, 9–10 October 2017; pp. 65–69. [Google Scholar]
- Nano, M.; Papini, G.; Fonseca, P. Comparing inter beat and inter pulse intervals from ECG and PPG signals. In Proceedings of the Biomedica Summit, Eindhoven, The Netherlands, 9–10 May 2017. [Google Scholar]
- Papini, G.B.; Fonseca, P.; Aubert, X.L.; Overeem, S.; Bergmans, J.W.; Vullings, R. Photoplethysmography beat detection and pulse morphology quality assessment for signal reliability estimation. In Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- Prabhakar, S.K.; Rajaguru, H.; Lee, S.-W. Metaheuristic-Based Dimensionality Reduction and Classification Analysis of PPG Signals for Interpreting Cardiovascular Disease. IEEE Access 2019, 7, 165181–165206. [Google Scholar] [CrossRef]
- Fayyad, U.; Uthurusamy, R. Data mining and knowledge discovery in databases. Commun. ACM 1996, 39, 24–26. [Google Scholar] [CrossRef]
- Ahmed, K.; Abdullah-Al-Emran, A.-A.; Jesmin, T.; Mukti, R.F.; Rahman, Z.; Ahmed, F. Early Detection of Lung Cancer Risk Using Data Mining. Asian Pac. J. Cancer Prev. 2013, 14, 595–598. [Google Scholar] [CrossRef]
- Pilt, K.; Ferenets, R.; Meigas, K.; Lindberg, L.-G.; Temitski, K.; Viigimaa, M. New Photoplethysmographic Signal Analysis Algorithm for Arterial Stiffness Estimation. Sci. World J. 2013, 2013, 169035. [Google Scholar] [CrossRef] [PubMed]
- Yousef, Q.; Reaz, M.B.I.; Ali, M.A.M. The Analysis of PPG Morphology: Investigating the Effects of Aging on Arterial Compliance. Meas. Sci. Rev. 2012, 12, 266–271. [Google Scholar] [CrossRef]
- Tybor, D.J.; Lichtenstein, A.H.; Dallal, G.E.; Daniels, S.R.; Must, A. Independent effects of age-related changes in waist circumference and BMI z scores in predicting cardiovascular disease risk factors in a prospective cohort of adolescent females. Am. J. Clin. Nutr. 2010, 93, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Liu, H.; Iqbal, S.; Zheng, D.; Stansby, G. Deep learning-based photoplethysmography classification for peripheral arterial disease detection: A proof-of-concept study. Physiol. Meas. 2021, 42, 054002. [Google Scholar] [CrossRef] [PubMed]
- Shabaan, M.; Arshid, K.; Yaqub, M.; Jinchao, F.; Zia, M.S.; Bojja, G.R.; Iftikhar, M.; Ghani, U.; Ambati, L.S.; Munir, R. Survey: Smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC Med. Inform. Decis. Mak. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Olsen, M.; Zeitzer, J.M.; Richardson, R.N.; Davidenko, P.; Jennum, P.J.; Sorensen, H.B.D.; Mignot, E. A Flexible Deep Learning Architecture for Temporal Sleep Stage Classification Using Accelerometry and Photoplethysmography. IEEE Trans. Biomed. Eng. 2022, 70, 228–237. [Google Scholar] [CrossRef]
- Schrumpf, F.; Serdack, P.R.; Fuchs, M. Regression or Classification? In Reflection on BP prediction from PPG data using Deep Neural Networks in the scope of practical applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LO, USA, 18–24 June 2022; pp. 2171–2180. [Google Scholar] [CrossRef]
- Fakhry, M.; Brery, A.F. A Comparison Study on Training Optimization Algorithms in the biLSTM Neural Network for Classification of PCG Signals. In Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Bhadri, K.; Karnik, N.; Dhatrak, P. Current Advancements in Cardiovascular Disease Management using Artificial Intelligence and Machine Learning Models: Current Scenario and Challenges. In Proceedings of the 2022 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 29–30 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Neha; Sardana, H.K.; Kanwade, R.; Tewary, S. Arrhythmia detection and classification using ECG and PPG techniques: A review. Phys. Eng. Sci. Med. 2021, 44, 1027–1048. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Aziz, S.; Iqtidar, K.; Zaher, G.F.; Alghamdi, S.; Gull, M. A two-stage classification model integrating feature fusion for coronary artery disease detection and classification. Multimed. Tools Appl. 2022, 81, 13661–13690. [Google Scholar] [CrossRef]
- Beurer PO 80 Pulse Oximeter. Available online: https://www.beurer.com/web/gb/products/medical/pulse-oximeter/po-80.php (accessed on 8 January 2023).
- Freedman, D.; Ogden, C.; Kit, B. Interrelationships between BMI, skinfold thicknesses, percent body fat and cardiovascular disease risk factors among U.S. children and adolescents. BMC Pediatr. 2015, 15, 188. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.; Goscinski, T.; Johansson, A.; Lindberg, L.-G.; Kalman, S. Age and Gender Do Not Influence the Ability to Detect Respiration by Photoplethysmography. J. Clin. Monit. Comput. 2006, 20, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Lehmkuhl, E.; Weickert, M. Gender differences in the metabolic syndrome and their role for cardi-ovascular disease. Clin. Res. Cardiol. 2006, 95, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Arza, A.; Lazaro, J.; Gil, E.; Laguna, P.; Aguilo, J.; Bailon, R. Pulse Transit Time and Pulse Width as Potential Measure for Estimating Beat-to-Beat Systolic and Diastolic Blood Pressure. Comput. Cardiol. 2013, 40, 887–890. [Google Scholar]
- Samria, R.; Jain, R.; Jha, A.; Saini, S.; Chowdhury, S. Noninvasive cuffless estimation of blood pressure using photople-thysmography without electrocardiograph Measurement. In Proceedings of the International Conference IEEE Region 10 Symposium, Kuala Lumpur, Malaysia, 14–16 April 2014. [Google Scholar]
- Clair, C.; Rigotti, N.A.; Porneala, B.; Fox, C.S.; D’Agostino, R.B.; Pencina, M.J.; Meigs, J.B. Association of Smoking Cessation and Weight Change with Cardiovascular Disease Among Adults with and Without Diabetes. JAMA 2013, 309, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Durand, C.P.; Andalib, M.; Dunton, G.F.; Wolch, J.; Pentz, M.A. A systematic review of built environment factors related to physical activity and obesity risk: Implications for smart growth urban planning. Obes. Rev. 2011, 12, e173–e182. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Shaper, A.G.; Whincup, P.; Lennon, L.; Sattar, N. Impact of Diabetes on Cardiovascular Disease Risk and All-Cause Mortality in Older Men. Arch. Intern. Med. 2011, 171, 404–410. [Google Scholar] [CrossRef]
- Kuntamalla, S.; Reddy, L.R.G. An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals. Int. J. Comput. Appl. 2014, 97, 18–23. [Google Scholar] [CrossRef]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef]
- Usman, S.; Reaz, M.; Ali, M. Repeated measurement analysis of the area under the curve of photoplethysmogram among diabetic patients. Life Sci. J. 2011, 10, 532–539. [Google Scholar]
- Wang, J. Data Mining; Idea Group Pub: Hershey, PA, USA, 2003. [Google Scholar]
- Manimegalai, P.; Jacob, D.; Thanushkodi, K. An Early Prediction of Cardiac Risk using Augmentation Index Developed based on a Comparative Study. Int. J. Comput. Appl. 2012, 49, 27–32. [Google Scholar]
- Jayasree, V.; Sandhya, T.; Radhakrishnan, P. Non-invasive Studies on Age Related Parameters Using a Blood Volume Pulse Sensor. Meas. Sci. Rev. 2008, 8, 82–86. [Google Scholar] [CrossRef]
- Beak, H.; Kim, J.; Kim, Y.; Lee, H.; Park, K. Second derivative of photoplethysmography for estimating vascular aging. In Proceedings of the 6th International Special Topic Conference on Information Technology Applications in Biomedicine, Tokyo, Japan, 8–11 November 2007. [Google Scholar]
- Kruschke, J. Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen. 2013, 142, 573–603. [Google Scholar] [CrossRef]
- Rácz, A.; Bajusz, D.; Héberger, K. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters. SAR QSAR Environ. Res. 2015, 26, 683–700. [Google Scholar] [CrossRef]
- Héberger, K.; Rácz, A.; Bajusz, D. Which Performance Parameters Are Best Suited to Assess the Predictive Ability of Models? In Advances in QSAR Modeling; Roy, K., Ed.; Springer: Cham, Switzerland, 2017; pp. 89–104. [Google Scholar] [CrossRef]
- Rácz, A.; Bajusz, D.; Héberger, K. Modelling methods and cross-validation variants in QSAR: A multi-level analysis. SAR QSAR Environ. Res. 2018, 29, 661–674. [Google Scholar] [CrossRef]
AI/Time Ratio | Mathematical Formula |
---|---|
AI of Amplitude | (SA-Dicrotic Notch Amplitude)/SA |
Reflection Index (RI) | Dicrotic Notch Amplitude/SA |
AI of Time | PTT/Pulse Interval |
Stiffness Index (SI) | Subject’s Height/PTT |
Relative Crest Time (T1 Ratio) | CT/∆T |
T2 Ratio | Systolic Time/∆T |
T3 Ratio | PTT/∆T |
Classifier | Selected Demographic Features | Selected PPG Features |
---|---|---|
J48 | Age, weight | Pulse rate, PW, diastolic time, a, variance of e |
Random forest | Pulse rate, variance of ∆T | |
J-Rip | Age | Pulse rate, variance of pulse interval, notch, variance of e |
PART | Age, weight | Pulse rate, variance of total area, diastolic time, a, variance of e |
Naïve Bayes | Age, smoking, respiratory problem, others | SA, variance of diastolic time |
ANN | Age, height, BMI, gender, smoking, respiratory problem, blood pressure, others | SA, variance of SA, Notch, variance of diastolic time, AI of amplitude |
KNN | Age | Variance of total area |
Classifier | Accuracy (%) |
---|---|
J48 | 89.10 |
Random forest | 62.94 |
J-Rip | 85.15 |
PART | 85.33 |
Naïve Bayes | 94.44 |
ANN | 89.56 |
KNN | 82.08 |
Classifier | Selected Demographic Features | Selected PPG Features |
---|---|---|
J48 | Age, weight, BMI | Pulse rate, SpO2, SA, diastolic time, T1, b, e, e/a |
Random forest | ∆T | |
J-Rip | Age, weight, height, BMI, smoking | SpO2, Notch, SI, b/a |
PART | Age, weight, BMI, smoking | Total area, A1, T2, AI of amplitude, b, e, e/a |
Naïve Bayes | Age, height, gender, smoking, respiratory problem, blood pressure | SpO2, ∆T, Notch, total area, b/a, e, e/a, SI |
ANN | Age, height, gender, physical activity, smoking, respiratory problem, blood pressure | CT, Notch, diastolic time, SI, a, b, b/a, e, e/a, (b–e)/a |
KNN | Age, height | Notch |
Classifier | Accuracy (%) |
---|---|
J48 | 59.36 |
Random forest | 34.12 |
J-Rip | 69.07 |
PART | 72.07 |
Naïve Bayes | 89.37 |
ANN | 88.52 |
KNN | 83.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Fahoum, A.S.; Abu Al-Haija, A.O.; Alshraideh, H.A. Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process. Bioengineering 2023, 10, 249. https://doi.org/10.3390/bioengineering10020249
Al Fahoum AS, Abu Al-Haija AO, Alshraideh HA. Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process. Bioengineering. 2023; 10(2):249. https://doi.org/10.3390/bioengineering10020249
Chicago/Turabian StyleAl Fahoum, Amjed S., Ansam Omar Abu Al-Haija, and Hussam A. Alshraideh. 2023. "Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process" Bioengineering 10, no. 2: 249. https://doi.org/10.3390/bioengineering10020249
APA StyleAl Fahoum, A. S., Abu Al-Haija, A. O., & Alshraideh, H. A. (2023). Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process. Bioengineering, 10(2), 249. https://doi.org/10.3390/bioengineering10020249