Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli Materials
2.3. Procedures
2.4. EEG Recordings and Data Analysis
2.5. fNIRS Recording and Data Analysis
3. Results
3.1. Behavioral Results
3.2. ERP Results
3.3. fNIRS Results
3.4. Correlational Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levelt, W.J. Speaking: From Intention to Articulation; MIT Press: Cambridge, MA, USA, 1993; Volume 1. [Google Scholar]
- Hsu, C.-H.; Pylkkänen, L.; Lee, C.-Y. Effects of morphological complexity in left temporal cortex: An MEG study of reading Chinese disyllabic words. J. Neurolinguist. 2019, 49, 168–177. [Google Scholar] [CrossRef]
- Chung, K.K.; Tong, X.; Liu, P.D.; McBride-Chang, C.; Meng, X. The processing of morphological structure information in Chinese coordinative compounds: An event-related potential study. Brain Res. 2010, 1352, 157–166. [Google Scholar] [CrossRef]
- Gao, F.; Wang, J.; Zhao, C.G.; Yuan, Z. Word or morpheme? Investigating the representation units of L1 and L2 Chinese compound words in mental lexicon using a repetition priming paradigm. Int. J. Biling. Educ. Biling. 2021, 25, 2382–2396. [Google Scholar] [CrossRef]
- De Grauwe, S.; Lemhöfer, K.; Willems, R.M.; Schriefers, H. L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Front. Hum. Neurosci. 2014, 8, 802. [Google Scholar] [CrossRef] [Green Version]
- Schiller, N.O.; Lieber, R. Neurolinguistic approaches in morphology. In Oxford Research Encyclopedia, Linguistics; Leiden University: Leiden, The Netherlands, 2020; pp. 1–23. [Google Scholar]
- Jiang, N. Second Language Processing: An Introduction; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Leminen, A.; Smolka, E.; Dunabeitia, J.A.; Pliatsikas, C. Morphological processing in the brain: The good (inflection), the bad (derivation) and the ugly (compounding). Cortex 2019, 116, 4–44. [Google Scholar] [CrossRef]
- Bulut, T. Neural correlates of morphological processing: An activation likelihood estimation meta-analysis. Cortex 2022, 151, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Whiting, C.M.; Marslen-Wilson, W.D.; Shtyrov, Y. Neural dynamics of inflectional and derivational processing in spoken word comprehension: Laterality and automaticity. Front. Hum. Neurosci. 2013, 7, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grainger, J.; Beyersmann, E. Effects of lexicality and pseudo-morphological complexity on embedded word priming. J. Exp. Psychol. Learn. Mem. Cogn. 2021, 47, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Bölte, J.; Jansma, B.M.; Zilverstand, A.; Zwitserlood, P. Derivational morphology approached with event-related potentials. Ment. Lex. 2009, 4, 336–353. [Google Scholar] [CrossRef]
- Carrasco-Ortiz, H.; Frenck-Mestre, C. Phonological and orthographic cues enhance the processing of inflectional morphology. ERP evidence from L1 and L2 French. Front. Psychol. 2014, 5, 888. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.J.; Ullman, M.T.; Pancheva, R.; Waligura, D.L.; Neville, H.J. An ERP study of regular and irregular English past tense inflection. Neuroimage 2007, 34, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Schremm, A.; Novén, M.; Horne, M.; Roll, M. Brain responses to morphologically complex verbs: An electrophysiological study of Swedish regular and irregular past tense forms. J. Neurolinguist. 2019, 51, 76–83. [Google Scholar] [CrossRef]
- Bozic, M.; Marslen-Wilson, W. Neurocognitive contexts for morphological complexity: Dissociating inflection and derivation. Lang. Linguist. Compass 2010, 4, 1063–1073. [Google Scholar] [CrossRef]
- Marslen-Wilson, W.D.; Tyler, L.K. Morphology, language and the brain: The decompositional substrate for language comprehension. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 823–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libben, G. The nature of compounds: A psychocentric perspective. Cogn. Neuropsychol. 2014, 31, 8–25. [Google Scholar] [CrossRef]
- Libben, G.; Gagné, C.L.; Dressler, W.U. The representation and processing of compounds words. In Word Knowledge and Word Usage; De Gruyter Mouton: Berlin, Germany, 2020; p. 336. [Google Scholar]
- Andrews, S.; Miller, B.; Rayner, K. Eye movements and morphological segmentation of compound words: There is a mouse in mousetrap. Eur. J. Cogn. Psychol. 2004, 16, 285–311. [Google Scholar] [CrossRef]
- Libben, G.; Gibson, M.; Yoon, Y.B.; Sandra, D. Compound fracture: The role of semantic transparency and morphological headedness. Brain Lang. 2003, 84, 50–64. [Google Scholar] [CrossRef]
- Smolka, E.; Libben, G. ‘Can you wash off the hogwash?’–semantic transparency of first and second constituents in the processing of German compounds. Lang. Cogn. Neurosci. 2017, 32, 514–531. [Google Scholar] [CrossRef]
- Brooks, T.L.; Cid de Garcia, D. Evidence for morphological composition in compound words using MEG. Front. Hum. Neurosci. 2015, 9, 215. [Google Scholar] [CrossRef] [Green Version]
- Marelli, M.; Luzzatti, C. Frequency effects in the processing of Italian nominal compounds: Modulation of headedness and semantic transparency. J. Mem. Lang. 2012, 66, 644–664. [Google Scholar] [CrossRef]
- Olsen, S. Semantics of compounds. In Semantics: An International Handbook of Natural Language Meaning; Maienborn, C., von Heusinger, K., Portner, P., Eds.; De Gruyter Mouton: Berlin, Germany, 2012; Volume 3, pp. 2120–2150. [Google Scholar]
- Huang, B.; Liao, X. Xiandai Hanyu [现代汉语], 5th ed.; Higher Education Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Cao, W. Investigating the differences between colloquial and literary words in modern Chinese [现代汉语口语词和书面语词的差异初探]. Yuyan Jiaoxue Yu Yanjiu 2003, 6, 39–44. (In Chinese) [Google Scholar]
- Su, B. The implicity, diversity and cognitive features of Chinese compounding [汉语复合词结构的隐含性, 多元性及其认知原则]. Xueshu Yanjiu 2016, 1, 162–165. (In Chinese) [Google Scholar]
- Zhang, B.; Peng, D. Decomposed storage in the Chinese lexicon. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1992; Volume 90, pp. 131–149. [Google Scholar]
- Huang, C.Y.; Lee, C.Y.; Huang, H.W.; Chou, C.J. Number of sense effects of Chinese disyllabic compounds in the two hemispheres. Brain Lang. 2011, 119, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Lee, C.Y.; Tsai, J.L.; Tzeng, O.J. Sublexical ambiguity effect in reading Chinese disyllabic compounds. Brain Lang. 2011, 117, 77–87. [Google Scholar] [CrossRef]
- Liu, L.; Tao, R.; Wang, W.; You, W.; Peng, D.; Booth, J.R. Chinese dyslexics show neural differences in morphological processing. Dev. Cogn. Neurosci. 2013, 6, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wu, Y.; Tsang, Y.-K.; Sui, X.; Zhu, Z. Morpho-semantic analysis of ambiguous morphemes in Chinese compound word recognition: An fMRI study. Neuropsychologia 2021, 157, 107862. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, R.; Zhao, S.; Tsang, Y.-K. Processing Ambiguous Morphemes in Chinese Compound Word Recognition: Behavioral and ERP Evidence. Neuroscience 2020, 446, 249–260. [Google Scholar] [CrossRef]
- Zou, L.; Packard, J.L.; Xia, Z.; Liu, Y.; Shu, H. Morphological and Whole-Word Semantic Processing Are Distinct: Event Related Potentials Evidence from Spoken Word Recognition in Chinese. Front. Hum. Neurosci. 2019, 13, 133. [Google Scholar] [CrossRef]
- Zou, L.; Packard, J.L.; Xia, Z.; Liu, Y.; Shu, H. Neural Correlates of Morphological Processing: Evidence from Chinese. Front. Hum. Neurosci. 2015, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Tsang, Y.-K.; Wong, A.W.-K.; Huang, J.; Chen, H.-C. Morpho-orthographic and morpho-semantic processing in word recognition and production: Evidence from ambiguous morphemes. Lang. Cogn. Neurosci. 2013, 29, 543–560. [Google Scholar] [CrossRef]
- Jia, X.; Wang, S.; Zhang, B.; Zhang, J.X. Electrophysiological evidence for relation information activation in Chinese compound word comprehension. Neuropsychologia 2013, 51, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Jared, D. Effects of Chinese word structure on object categorization in Chinese-English bilinguals. Lang. Cogn. 2020, 12, 468–500. [Google Scholar] [CrossRef]
- Ji, H.; Gagné, C.L. Lexical and relational influences on the processing of Chinese modifier-noun compounds. Ment. Lex. 2007, 2, 387–417. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, D. The relationship between the processing of semantic relation information and morphological awareness among Hong Kong Chinese children. Read. Writ. 2019, 32, 357–375. [Google Scholar] [CrossRef]
- Li, F.; Xu, X. Electrophysiological evidence for the coexistence of expectancy fulfillment and semantic integration during the processing of binding and compound nouns. Int. J. Psychophysiol. 2021, 166, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; McBride-Chang, C. What is morphological awareness? Tapping lexical compounding awareness in Chinese third graders. J. Educ. Psychol. 2010, 102, 62–73. [Google Scholar] [CrossRef]
- Laudanna, A.; Burani, C. Distributional properties of derivational affixes: Implications for processing. In Morphological Aspects of Language Processing; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1995; pp. 345–364. [Google Scholar]
- Liu, D.; McBride-Chang, C. Morphological processing of Chinese compounds from a grammatical view. Appl. Psycholinguist. 2010, 31, 605–617. [Google Scholar] [CrossRef]
- Liu, D. The involvement of morphological information in the memorization of Chinese compound words: Evidence from memory errors. J. Psycholinguist. Res. 2016, 45, 157–176. [Google Scholar] [CrossRef]
- Liu, D. The influence of morphological structure information on the memorization of Chinese compound words. Read. Writ. 2017, 30, 1813–1834. [Google Scholar] [CrossRef]
- Collins, A.M.; Loftus, E.F. A spreading-activation theory of semantic processing. Psychol. Rev. 1975, 82, 407. [Google Scholar] [CrossRef]
- Taft, M. Interactive-activation as a framework for understanding morphological processing. Lang. Cogn. Process. 1994, 9, 271–294. [Google Scholar] [CrossRef]
- Cui, L.; Cong, F.; Wang, J.; Zhang, W.; Zheng, Y.; Hyona, J. Effects of Grammatical Structure of Compound Words on Word Recognition in Chinese. Front. Psychol. 2018, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, H.; Strube, M.; Roesch-Ely, D.; Weisbrod, M. Automatic vs. controlled processes in semantic priming—Differentiation by event-related potentials. Int. J. Psychophysiol. 2002, 44, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Ip, K.I.; Hsu, L.S.; Arredondo, M.M.; Tardif, T.; Kovelman, I. Brain bases of morphological processing in Chinese-English bilingual children. Dev. Sci. 2017, 20, e12449. [Google Scholar] [CrossRef] [Green Version]
- Ip, K.I.; Marks, R.A.; Hsu, L.S.; Desai, N.; Kuan, J.L.; Tardif, T.; Kovelman, L. Morphological processing in Chinese engages left temporal regions. Brain Lang. 2019, 199, 104696. [Google Scholar] [CrossRef]
- Gao, F.; Wang, R.; Armada-da-Silva, P.; Wang, M.-Y.; Lu, H.; Leong, C.; Yuan, Z. How the brain encodes morphological constraints during Chinese word reading: An EEG-fNIRS study. Cortex 2022, 154, 184–196. [Google Scholar] [CrossRef]
- Fiorentino, R.; Naito-Billen, Y.; Bost, J.; Fund-Reznicek, E. Electrophysiological evidence for the morpheme-based combinatoric processing of English compounds. Cogn. Neuropsychol. 2014, 31, 123–146. [Google Scholar] [CrossRef] [Green Version]
- Forster, K.I.; Mohan, K.; Hector, J.; Kinoshita, S.; Lupker, S. The mechanics of masked priming. In Masked Priming: The State of the Art; Psychology Press: London, UK, 2003; pp. 3–37. [Google Scholar]
- Jiang, N. Conducting Reaction Time Research in Second Language Studies; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Liao, L.-D.; Tsytsarev, V.; Delgado-Martínez, I.; Li, M.-L.; Erzurumlu, R.; Vipin, A.; Orellana, J.; Lin, Y.-R.; Lai, H.-Y.; Chen, Y.-Y. Neurovascular coupling: In vivo optical techniques for functional brain imaging. Biomed. Eng. Online 2013, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Perfetti, C.; Cao, F.; Booth, J. Specialization and Universals in the Development of Reading Skill: How Chinese Research Informs a Universal Science of Reading. Sci. Stud. Read. 2013, 17, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Share, D.L. On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychol. Bull. 2008, 134, 584–615. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, L.; Yao, P.; Hyönä, J. Universal and specific reading mechanisms across different writing systems. Nat. Rev. Psychol. 2022, 1, 133–144. [Google Scholar] [CrossRef]
- Lavric, A.; Clapp, A.; Rastle, K. ERP evidence of morphological analysis from orthography: A masked priming study. J. Cogn. Neurosci. 2007, 19, 866–877. [Google Scholar] [CrossRef]
- Tsang, Y.K.; Huang, J.; Lui, M.; Xue, M.; Chan, Y.F.; Wang, S.; Chen, H.C. MELD-SCH: A megastudy of lexical decision in simplified Chinese. Behav Res Methods 2018, 50, 1763–1777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, Q.; Peng, G.; Song, X.; Bai, X. The Representation of Chinese Two-character Words in Mental Lexicon: Evidence from an fNIRS Study [汉语双字词在心理词典中的表征方式: 来自 fNIRS 的证据]. J. Psychol. Sci. 2016, 39, 849–855. (In Chinese) [Google Scholar]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage 2009, 44, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Graber, H.L.; Schmitz, C.H.; Barbour, R.L. nirsLAB: A Problem-Solving Environment for fNIRS Neuroimaging Data Analysis. 2014. Available online: https://shorturl.at/wyLMO (accessed on 30 December 2022).
- Hu, Z.; Zhang, J.; Couto, T.A.; Xu, S.; Luan, P.; Yuan, Z. Optical Mapping of Brain Activation and Connectivity in Occipitotemporal Cortex During Chinese Character Recognition. Brain Topogr. 2018, 31, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, M.Y.; Li, D.; Yuan, Z. Optical mapping of brain activation during the English to Chinese and Chinese to English sight translation. Biomed. Opt. Express 2017, 8, 5399–5411. [Google Scholar] [CrossRef] [Green Version]
- Noble, W.S. How does multiple testing correction work? Nat. Biotechnol. 2009, 27, 1135–1137. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, E.; Colé, P.; Badier, J.-M.; Zielinski, C.; Chanoine, V.; Ziegler, J.C. Spatiotemporal dynamics of morphological processing in visual word recognition. J. Cogn. Neurosci. 2016, 28, 1228–1242. [Google Scholar] [CrossRef]
- Lehtonen, M.; Vorobyev, V.A.; Hugdahl, K.; Tuokkola, T.; Laine, M. Neural correlates of morphological decomposition in a morphologically rich language: An fMRI study. Brain Lang. 2006, 98, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Bozic, M.; Marslen-Wilson, W.D.; Stamatakis, E.A.; Davis, M.H.; Tyler, L.K. Differentiating morphology, form, and meaning: Neural correlates of morphological complexity. J. Cogn. Neurosci. 2007, 19, 1464–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Prime | Frequency | Stroke Number | Target | Frequency | Stroke Number | Cloze Probability | Semantic Relatedness | |
---|---|---|---|---|---|---|---|---|
Derivational word | 网/wang3/, net | 94 (145) | 8.3 (2.3) | 网民/wang3 min2/, netizen | 8 (32) | 15.3 (3.8) | 0.07 (0.12) | 5.2 (0.9) |
Compound word | 花/hua1/, flower | 83 (109) | 8.6 (3.1) | 花草/hua2 cao3/, plant | 7 (10) | 16.9 (4.6) | 0.12 (0.19) | 5.4 (0.9) |
Non-morphological | 脏/zang1/, dirty | 356 (1076) | 8.8 (2.8) | 污水/wu1 shui3/, dirty water | 34 (79) | 17.8 (4.5) | / | 5.3 (0.5) |
CH# | MNI Coordinates | BA | Anatomical Label | Overlap | Comparisons | t | p (Uncorrected) | p (FDR Corrected) | ||
---|---|---|---|---|---|---|---|---|---|---|
x | y | z | ||||||||
5 | −21 | 67 | 53 | 9 | Dorsolateral prefrontal cortex | 0.8178 | Compound > Non-morphological | 2.42 | 0.02 | 0.07 |
6 | −44 | 67 | 27 | 10 | Frontopolar area | 0.95455 | Compound > Non-morphological | 2.84 | 0.01 | 0.02 |
11 | −15 | 61 | 61 | 8 | Includes frontal eye fields | 0.77686 | Compound > Non-morphological | 2.07 | 0.05 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Hua, L.; He, Y.; Xu, J.; Li, D.; Zhang, J.; Yuan, Z. Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex. Bioengineering 2023, 10, 288. https://doi.org/10.3390/bioengineering10030288
Gao F, Hua L, He Y, Xu J, Li D, Zhang J, Yuan Z. Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex. Bioengineering. 2023; 10(3):288. https://doi.org/10.3390/bioengineering10030288
Chicago/Turabian StyleGao, Fei, Lin Hua, Yuwen He, Jie Xu, Defeng Li, Juan Zhang, and Zhen Yuan. 2023. "Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex" Bioengineering 10, no. 3: 288. https://doi.org/10.3390/bioengineering10030288
APA StyleGao, F., Hua, L., He, Y., Xu, J., Li, D., Zhang, J., & Yuan, Z. (2023). Word Structure Tunes Electrophysiological and Hemodynamic Responses in the Frontal Cortex. Bioengineering, 10(3), 288. https://doi.org/10.3390/bioengineering10030288