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Abstract: The current research is concerned with the synthesis of magnesium oxide (MgO) nanoparti-
cles (NPs) from Abrus precatorius L. bark extract via the green chemistry method. The synthesized
MgO NPs was confirmed by using several characterization methods like XRD, FTIR, SEM, TEM, and
UV-visible analysis. The synthesized MgO NPs displayed a small particle size along with a specific
surface area. Abrus precatorius bark synthesized MgO NPs with a higher ratio of dye degradation,
and antioxidant activity showed a higher percentage of free radical scavenging in synthesized MgO
NPs. Zebrafish embryos were used as a model organism to assess the toxicity of the obtained MgO
nanoparticles, and the results concluded that the MgO NPs were nontoxic. In addition, the anticancer
properties of MgO nanoparticles were analyzed by using a human melanoma cancer cell line (A375)
via MTT, XTT, NRU, and LDH assessment. MgO NPs treated a human melanoma cancer cell line
and resulted in apoptosis and necrosis based on the concentration, which was confirmed through a
genotoxicity assay. Moreover, the molecular mechanisms in necrosis and apoptosis were conferred to
depict the association of magnesium oxide nanoparticles with the human melanoma cancer cell line.
The current study on MgO NPs showed a broad-scope understanding of the use of these nanoparticles
as a medicinal drug for melanoma cancer via its physiological mechanism and also a novel route to
obtain MgO NPs by using the green chemistry method.

Keywords: Abrus precatorius; MgO nanoparticles; biomedical engineering; cytotoxicity; genotoxicity;
protein signaling pathways

1. Introduction

Cancer is the most obvious form of fetal disease because the cell grows uncontrollably.
Melanoma is the third-most important type of skin cancer, following basal and squamous
cell cancer. This type of cancer might originate from melanocytes, cells that are esoteric
in the manufacture of the pigment melanin and that are subject to the color of the hair,
skin, and eyes [1]. The majority of melanoma is black or brown in color, though other
colors can appear. UV rays and skin phenotype were the two most important factors in
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the development of melanoma. Then the UV revelation shows the most likely alterable
peril, and because of this, it has gained much more interest. Melanoma cancer can affect
all types of skin and can be treated by removing the patient’s genetic background [2].
Almost 10% of patients are likely affected by the family origin of melanoma. Nowadays,
a sequence of genes bearing melanoma preremoval mutations has been determined, but
it is believed that other conductive genes are still to be identified. Each year there is a
higher ratio of casualties because of some types of cancer, and in the majority of cases,
targetable therapeutic substances still need to be identified [3]. Cancer therapies like
radiotherapy, surgery, and chemotherapy are currently used for medicinal purposes. This
therapy has different problems and also includes some restrictions. To overcome such
problems, synthesized MgO NPs are manufactured, and they have shown potential effects
in cancer treatment [4].

The nanotechnology field has attracted many researchers due to its broad range of
applications. This field has technology combined in synthesis, characterization, and the
creation of implementations from the manufactured particles, which is a minimum of one
dimension on the nanoscale. Nanoparticles are structural constituents on the scale between
1- and 100-nm particles [5]. Magnesium oxide nanoparticles are attracting more interest
compared with other metal oxide nanoparticles. They are effectively used in several areas,
and they have interesting structural particles in biological applications because of their
increased stability-to-weight ratio, less witness, better properties, are recyclable, nontoxic,
and are hygroscopic in nature. These properties of MgO NPs enhance the activity and also
have several applications like an increase in melting point, high cost, biocatalytic properties,
and biocompatibility [6,7]. MgO NPs have a broad scope of implementation in the medicinal
field, especially bone regrowth for antibacterial and antimicrobial suppression. They are
also applied in cryoinjury. Based on this, it was used in the absorption of uranium ions,
catalysis, lithium-ion powers, and excretion of toxic waste [8].

Until now, there has been a variety of approaches used for the synthesis of MgO NPs,
like combustion, sonochemical, spray pyrolysis, and coprecipitation approaches. All of the
abovementioned methods require toxic chemicals, costly instruments, and time-consuming
processes. In order to overcome these difficulties, an alternative route of green chemistry
approaches is used for the obtaining of magnesium oxide NPs [9,10]. Recently, there have
been various biomediated materials used for green syntheses, such as bacteria, fungi,
enzymes, and plants [11]. Compared with these diverse materials, plants have rich sources
of active metabolites, are ecofriendly, are available in large quantities, and can be used for
the large-scale formation of nanomaterials [12,13].

Abrus precatorius, known as the Fabaceae family and locally as a jequirity bean or
rosary pea, was an herbaceous flowering plant in the bean family [13]. It is a slender,
perennial climber, and its long, pinnately leafed leaves are double-surrounded by trees.
This plant’s leaves are used for various medicinal applications. This plant is marked as
an Indian medical codex. This plant contains flavonoids and titerpines, which are the
main phytochemical agents [14]. Abrus precatorius extract is traditionally applied to cure
tetanus and inhibit rabies. The whole plant is used in various medicinal implementations
to cure scratches, sores, and wounds. The plant’s leaves are used to treat coughs, fevers,
and colds. Due to the medicinal properties of this plant, we have used it for the synthesis
of MgO NPs. Hence, this plant was used for the treatment of liver disease, worm infection,
and blisters [15]. Therefore, we have made an alternative route to identify the application
of A. precatorius-mediated synthesized MgO NPs. The present research was intended to
synthesize MgO NPs via A. precatorius bark leaf extract to analyze the prospective of ap-
plying MgO NPs as an anticancer medicine and also examine the toxicity of MgO NPs via
zebrafish eggs. In addition, the antioxidant, photocatalytic, cytotoxicity, genotoxicity, intra-
cellular ROS, and cellular mechanisms of MgO NPs are also analyzed through the human
melanoma cancer cell line (A375) to confirm MgO NPs as an efficient anticancer medicine.
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2. Materials and Methods
2.1. Sample Preparation

The young bark of Abrus precatorius L. was collected from the rainforest of the An-
daman and Nicobar Islands, India, of latitude 11.9761◦ N and longitude 92.9876◦ E. The
obtained bark of A. precatorius was allowed to be shade-dried for 10 days at 37 ◦C. Con-
tinuing to dry reactions, the plant bark was completely washed with DD H2O in order to
eliminate dust materials. A total of 10 g of the dried powder was diluted with the help of
100 mL and then the diluted suspension was exposed to a heating process under a hot plate
(80 ◦C) for 3 h. After completion of the heating process, the bark extract was filtered via
Whatman No. 1. Then the suspension was stored at 4 ◦C for further analysis [16].

2.2. Synthesis of MgO NPs

Green chemistry was used to create magnesium oxide nanoparticles from A. preca-
torius bark extract. The hydroxyl and carbonyl groups acted as stabilizing and reducing
substances and were used as coprecipitation agents for synthesizing MgO NPs. A total of
10 mL of 0.1 M Mg(NO3)2 was added to 40 mL of A. precatorius aqueous bark and stirred
continuously for 45 min. Following that, 6.0 mL of 0.2 M NaOH was added drop by drop to
the mixture suspension to form a visible precipitate. Furthermore, the solution was allowed
to remain at 25 ± 3 ◦C. Then the precipitates were washed three times with the help of
DD water, and the dried precipitate was calcinated at 873 K for 4 h to obtain a fine pure
powder [17].

2.3. Characterization of MgO NPs

The obtained fine form of powder was allowed for confirmation process by using
different characterization techniques for the determination of the nanoparticle’s physico-
chemical constituents like size, structure, shape, and purity. The X-ray diffraction method
(XRD) (Difray, Leninskiy, Russia) was applied for crystal structure identification, via CuKα

(λ = 1.542 Å), the intent for the formation of X-ray analyzed at 40 kV and 30 mA along with
scan-step of 0.02◦ in between 10 and 80◦ (293 K). Fourier transform infrared spectroscopy
(FTIR) analysis of MgO NPs was identified by using an FTIR spectrometer (Spectrum 100,
Perkin Elmer, Waltham, MA, USA) [18]. The frequency scale of 400–4000 cm−1 was used
to analyze the magnification of 4 cm−1 at 25 ± 3 ◦C, which was applied to determine
the functional properties formed in the sample. Scanning electron microscope-coupled
energy-dispersive X-ray spectroscopy was implemented to determine the shape of elemen-
tal components by analyzing samples on higher power X-ray (Tescan Vega 3, (TESCAN,
Brono-Kohoutovice, Czech Republic) with SDD—XMAS, Tokyo, Japan). A total of 0.001
g of MgO NPs was diluted into 10 mL of ethanol then the suspension was maintained
under sonication for 30 min. After the sonication, the diluted suspension was kept under
a carbon tube that was enabled with an SEM holder. Then the drop of the sample was
thoroughly dried and the sample was analyzed by maintaining the power of 10 kV [19].
The size and shape of the A. precatorius bark extract-mediated obtained MgO NPs were
analyzed via transmission electron microscope JEOL (TEM, JEM-2010, JEOL, Tokyo, Japan).
A total of 0.03 g of synthesized MgO NPs was diluted in distilled water after the solution
was sonicated for 10 min. We added a single drop of nanoparticle solution onto a carbon-
coated copper grid, and then dried at room temperature. Furthermore, it was allowed
for imaging of the obtained sample. The absorption wavelength was analyzed through
the exposure of synthesized MgO NPs by using a UV–Vis spectrophotometer (Cary 8454;
Agilent Technologies, Singapore), which was analyzed by using the visible and infrared
frequency range of 180–800 nm [20].

2.4. Photocatalytic Activity

The photocatalytic activity was evaluated by diluting the Abrus precatorius L. bark
extract of synthesized MgO NPs (20, 40, 60, 80, 100, and 120 µg/mL) in methylene blue
(MB) dye (Himedia, Mumbai, India). In this assay, the MgO NPs 5 g/L was dispersed
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on 30 mg/L methylene blue dye and the suspension solution was nourished with pH 7.
Afterward, the solution was subjected to the agitation process with the help of a magnetic
stirrer for homogenous formation under a cubic UV chamber followed by constant UV
irradiation at 40 W. The photocatalytic activity was evaluated by 1 mL of the homogenous
sample intensity wavelength determined at (λ) 665 nm, and the untreated methylene blue
sample alone was used as the control sample [21]. The catalytic ratio of methylene blue
was analyzed by initial and end absorption via the equation mentioned below,

In (C/C0) = −kt,

whereas starting and end absorbance was marked as C and C0, k depicts as the catalytic
ratio of MB and t was marked as time [22].

2.5. Antioxidant Activity

The antioxidant activity was analyzed via 2,2-diphenyl-1-picrylhydrazyl (DPPH)
assay. For this assay, various ratios (20, 40, 60, 80, 100 and 120 µg/mL) of MgO NPs
mixed with H2O were used in a dose-mediated reaction. The obtained magnesium oxide
nanoparticles sample was dispersed to various ratios, and then the suspension sample was
moved into vials. A total of 3 mL of DPPH solution was mixed with MgO NPs, and the
mixed suspension was noted as a test sample, whereas the DPPH solution was marked
as a control sample, and then the suspension samples were kept for incubation for about
30 min at 27 ◦C. Then the supernatant was procured via the centrifugation process at
10,000 rpm for 3 min [23,24]. The absorbance frequency was evaluated via UV visible
spectrophotometer, and the amount of free radical and maximum solidity was measured
through the following equation:

Antioxidant activity (%) =
Absorption × Test absorption
DPPH percentage = Control

× 100

This equation shows that CA was noted as control absorbance and TA was noted as
test absorbance.

2.6. Evaluation of in Vitro Toxicity

A. precatorius bark extract of obtained magnesium oxide NPs toxicity was determined
by using zebrafish embryos. Various ratios of magnesium oxide nanoparticles were exposed
to measure the mortality percentage in zebrafish under a marked time period and the
unexposed embryos were marked as control. Based on the OECD-203 protocol, the toxicity
was evaluated by using 30 marked zebrafish eggs at various ratios (control, 20, 40, 60, 80,
100 and 120 µg/mL) of MgO NPs in Hank’s solution. Then, the embryos were moved to
respective wells for the development of the eyes, tail, and head. This was done by using a
microscope at 40× in 24 h time duration. In this assay, the H2O is maintained at a sustained
temperature. The mortality and viable embryos were measured for each 24-h time duration
to excrete impurity on the suspension. The mortality of hatched embryos was evaluated
for 24 h [25].

2.7. Cytotoxicity Evaluation
2.7.1. MTT Assay

The cytotoxicity of obtained MgO nanoparticles was analyzed by using a human
melanoma cancer cell line (A375) depending on the intake of tetrazolium salts, i.e., 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetraazolium bromide with different concentrations of
the synthesized MgO NPs (control, 20, 40, 60, 80, 100 and 120 µg/mL). For the assay, cells
were transferred to 96-well plates, and the cells were subjected to development in the
incubator (5% CO2) for 48 h. Then 100 mL of DMSO solution were transferred to each
well, and then the well was kept under incubation for 48 h. Additionally, 100 µL of MTT
solution was transferred to each well and then kept for 2 h incubation, and then the viable



Bioengineering 2023, 10, 302 5 of 20

and mortality cells were determined. The mitochondria of the cells included succinate
dehydrogenase and mitochondrial enzyme (NADPH) that converts the yellow MTT salt to
purple insoluble formazan because of the tetrazolium ring damage [26]. The ratio of purple
MTT was determined via spectrophotometer at 570 nm, and the percentage of mortality
cells was evaluated through the following equation:

MTT % =
Absorption of control wells – Absorption of test wells

Absorption of control wells
× 100

2.7.2. XTT Assay

A (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium
hydroxide) XTT test was analyzed to prove the cytotoxicity of synthesized MgO NPs toward
the human melanoma cancer cell line (A375). In this study, the cells were exposed to MgO
NPs at different concentrations of control, 20, 40, 60, 80, 100 and 120 µg/mL for various
time intervals. The cells were made in accordance with the accrual of XTT salt, and the ratio
of XTT damage via the mitochondria of the viable cells resulted in the formation of soluble
formazan, which was applied to evaluate the ratio of the viable cells. The total amount of
formazan that appears on the sample suspension was evaluated spectrophotometrically at
an absorption frequency of 450 nm [27].

2.7.3. Neutral Red Uptake (NRU)

Neutral red uptake (NRU) assay, human melanoma cancer cell line (A375) cells were
exposed to various ratios of control, 20, 40, 60, 80, 100, and 120 µg/mL synthesized MgO
NPs at different time intervals in 96-well plates. Continuing to the incubation time, the A375
cells were treated to a neutral red dye suspension along with 100 µL of NRU (50 µg/mL)
and then the serum-free medium was diluted. Afterward, the cells were washed through
PBS and the dead intake cells were also diluted in 200 µL for a constant solution. The ratio
of intake neutral red through A375 effectively showed the amount of live cells [28].

2.7.4. Lactase Dehydrogenase Release Assay

Lactase dehydrogenase (LDH) breakage or excretion due to the synthesized MgO
NPs was evaluated with help of an LDH kit. The membrane stability of the cells after
the treatment to different ratios of synthesized MgO NPs (control, 20, 40, 60, 80, 100, and
120 µg/mL) was determined by analyzing the ratio of LDH elimination. In this assay, 10 µL
of the collected supernatant solution was dispersed to HBBS solution at different time
periods in order to avoid impurities of phenyl red and FES suspension in culture media.
The 100 mL of freshly prepared solution was moved into the separate wells and then placed
in an incubation chamber under dark conditions for 30 min. Then 50 mL of 1N HCL was
added to the reaction that catalyzes the lactate into pyruvate with immediate reaction to
the NAD+ to NADH. The transformation of NAD+ was evaluated by absorption frequency
at 340 nm. Unexposed cells were used as a control sample. For the highest elimination of
LDH assessment, the cell was treated with 1% Triton X-100 for 1 h prior to the assessment
and the higher amount of NAD+ reduction was calculated via UV spectrophotometer [29].

2.8. Genotoxic Evaluation
Comet Assay

The human melanoma cancer cell line (A375) was treated with different ratios of
synthesized MgO NPs (Control, 20, 40, 60, 80, 100, and 120 µg/mL). The cells also treated
with 3 µg/mL of H2O2 (hydrogen peroxide) were noted as a positive control sample, and
untreated cells were noted as a negative control sample. Afterward, the cells were kept for
incubation reaction for about 4 h and the incubated cells were washed with the help of cold
PBS solution along with the trypsin-EDTA. The cells were admitted to the centrifugation
process at 1500 rpm for 10 min. For the evaluation, 50 cells from each ratio were selected
blindly, and the cells were viewed in 400× resolution power by using analyzing instrument
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(C omet 4.0 which is coupled with a fluorescence microscope connected to a CCD camera).
The total amount of DNA damage and olive tail migration was mentioned as a criterion for
the determination of the maximum tail DNA in every cell. The entire assay was reperformed
three times to analyze the dose dependency [29].

2.9. Oxidative Stress Parameters
2.9.1. Determination of ROS

Human melanoma cancer cell lines (A375) were added to a 96-well plate along with
the different ratios of 104 cells/well. After the cells were exposed to different concentrations
of synthesized MgO NPs (control, 20, 40, 60, 80, 100, and 120 µg/mL) and the treated cells
were kept for 6 h incubation. The MgO NPs treated cells were rinsed by using phosphate
saline solution and then incubated via 20 µm (2,7-dichlorofluorescein diacetate) DCFDA
dye for 1 h at 27 ◦C. Continuing the reaction process, the 200-µL phosphate saline solution
was added, and then the fluorescence frequency was evaluated at 528 and 485 nm [30].

2.9.2. Measurement of Lipid Peroxidation

Human melanoma cancer cell lines (A375) were transferred to a 96-well plate, and the
fresh cells in the ratio of 104 cells/well. Then the cells were allowed to grow in the plate
and the cells were exposed to various ratios of obtained MgO NPs (control, 20, 40, 60, 80,
100 and 120 µg/mL) and incubated for 6 h. The treated cells were chilled with the help of
PBS solution, and then the cells were rinsed with PBS solution for 10 min at 1500 rpm at 4 ◦C.
The attained cells were sonicated at 15 W to procure the lysis cell. Then the lysate cells were
filtered by lipid hydroperoxide and then mixed with the chloroform. The end suspension
was exposed to ferrous ions to attain the ferric ions. The ferric ions were analyzed by using
spectrophotometry at the absorption frequency of 500 nm by thiocyanatechemogen, with
standard 13-HpODE solution [31].

2.10. Antibacterial Activity

Antibacterial activity was performed against human bacterial disease-generating
pathogens such as Gram-positive bacteria, namely S. epidermidis MTCC 2639, B. subtilis
MTCC 1133, and Gram-negative bacteria such as P. aeruginosa MTCC 2582 and E. coli MTCC
1692, applied on this study. The nutrient broth was procured and kept for the sterilization
process. The human bacterial pathogens was inoculated separately and then the sample
was incubated at 37 ◦C for 8 h to obtain fresh bacterial inoculums separately. The Kirby–
Bauer disk diffusion assessment was used in this activity. Each bacterial sample was spread
over the Muller–Hinton agar plates. The plates containing disks of 5-mm width were added
on with respective NPs disk A (Control), disk B (MgO NPs in various concentrations 20,
40, 60, 80, 100, and 120 µg/mL), disk C (leaf extract), and disk D (standard antibiotics).
Then, all the plates were incubated at 37 ◦C for 24 h, and the results were noted as a zone
of inhibition [32].

3. Results
3.1. Synthesis and Physico-Chemical Characterization of MgO NPs

The phytochemical constituents that appear in the A. precatorius bark were identified as
a useful substance for obtaining MgO NPs. The aqueous magnesium ions were treated with
A. precatorius extract and were reduced, and magnesium oxide nanoparticles formed [33].
The synthesis mechanism of MgO NPs concluded through the obtained solution from
brownish to dark brownish-red precipitation was revealed in Figure 1. The precipitated
solution was heated to 80 ◦C for 3 h to attain MgO NPs. Figure 2A XRD spectrum of
synthesized MgO NPs showed the presence of a sharp frequency: ~18.59◦ (101), ~38.04◦

(200), ~50.95◦ (220), ~62.04◦ (103), and ~72.44◦ (311).
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The obtained XRD spectrum matched with the JCPDS file no. 076-0704 concluded
that the particles were developed with a hexagonal, tightly packed structure (hcp), which
confirmed the particles are crystalline in nature [34]. The FTIR absorption frequency, re-
spective to the synthesized MgO NPs, was depicted in Figure 2B. The IR spectrum depicted
the wavenumber at 573, 661, 1065, 1391, 1610, 2042, 2367, 2824, 3279, and 3416 cm−1, corre-
spondingly. Alcohol and phenol compounds of O–H stretching were deduced from the
wavelength spectrum depicted at 3279 and 3416 cm−1. In addition, the absorption spectrum
from the wavenumber at 2824, 2367, 2042, 1610, and 1391 cm−1 showed the presence of
C-H stretch, C=C stretch, and C=O band, due to the presence of phenol, alkynes molecules,
and amide group, which has biological roles including defense responses, antitumor, and
ripening fruits [35]. Moreover, a similar IR spectrum at 1065, 661, and 573 cm−1 reveals
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C-N stretching, C-Cl halogen compounds, and C-Br stretching of proteins and alkyl halides.
FTIR spectrum shows the formation of dust, which might be because of the functional
compounds of phytochemicals or because of the intake of moisture content. However, the
closer results of moisture intake appeared in published data.

Figure 2C,D depicts that the A. precatorius-associated green synthesis of MgO nanopar-
ticles of SEM pictures concludes irregular agglomerate shape with the size scale of 100 nm.
The magnesium oxide nanoparticle’s shape was determined via transmission electron mi-
croscopy (TEM), which provides clear details about the shape of the obtained nanoparticles.
Figure 3A,B depicts that the obtained MgO nanoparticles have an agglomerate shape in the
scale of 100–200 nm along with uniform particle distribution. The absorbance spectrum
of the synthesized MgO NPs might be seen at 272 nm (Figure 3C), and the absorption
wavelength of the MgO NPs was matched with the published data for confirmation [36].
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Figure 3. (A,B) TEM images under different resolutions and (C) UV-Vis spectrum.

3.2. Photocatalytic Activity

For this study, methylene blue was used as an environmental contaminating agent
to evaluate the property of MgO NPs to eliminate the contaminants that appear in the
wastewater for analyzing the environmental uses. Based on Figure 4A the synthesized
MgO NPs revealed 30.89% photocatalytic degradation at (20 µg/mL) lower concentration
whereas the higher concentration (120 µg/mL) revealed 96.78% for 120 min. From the
results, the synthesized MgO NPs not only revealed a higher amount of photocatalytic
degradation but also showed dose-dependent activity.
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Figure 4A shows that the photocatalytic degradation of MB by synthesized MgO
NPs directly revealed the sample’s spectral absorbance. The untreated MgO NPs and
MB were marked as controls, and no changes were observed. Figure 4B concluded that
the photocatalytic activity of synthesized MgO NPs through a plot of A◦/A against time
and rate constant, half-life, and R2 to be 9589 min−1, 40.29 min and 0.9989 in 40 µg/mL
ratio, effectively [22,37]. The synthesized MgO NPs revealed better photocatalytic activity
by direct means of the degradation of MB, which acts as a catalyst. The mechanism of
photocatalytic degradation happens in the system. In the prior stage, the presence of UV
light causes the MgO NPs to strongly rupture the MB via electron-hole pair development
that induces the conduction band and valence band gap, which leads to coupling with
the synthesized MgO NPs exterior. The electron-hole pair development captures the MB
dye by developing reactive intermediates via oxidation. The presence of diluted oxygen
causes the formation of O2 via synthesized MgO NPs electrons after its conversion to
hydrogen peroxide to hydroxyl radical. Through decomposed H2O, the increased electron-
hole pair and induced oxidative ability generate an increased hydroxyl radical [38]. The
vacant oxygen species of active electron acceptors hold the light-stimulated electrons on
the exterior of photocatalytic degradation, which converts O2 to O2

− in the exterior radical
of OH− band change dye. The degradation mechanism happens in the systems. The
energy of the valence band and conduction band is clearly known from the surface of MgO
NPs. The entire mechanism happens on the surface of synthesized nanoparticles, and the
catalysis happens in the formation of hydroxyl radicals, which results in the stimulation of
methylene blue degradation, as illustrated in Figure 4A,B.

3.3. Antioxidant Activity

The free radical scavenging percentage of synthesized MgO NPs was assessed via
the DPPH assay, and the assay depended on the time and concentration of the reaction.
The synthesized MgO NPs free radical scavenging was depicted in Figure 5 and Table 1.
The obtained results showed that the low concentration (20 µg/mL) revealed 15.8% and
the increased ratio (120 µg/mL) revealed 65.93% free radical scavenging, whereas the
standard ascorbic acid concentration (20 µg/mL) revealed 11.66% and the increased ratio
(120 µg/mL) revealed 60.86% free radical scavenging. Compared to ascorbic acid, the
synthesized MgO NPs showed a better percentage of free radical scavenging. Because of
the particle’s colloidal futures and exterior characteristic nature, the synthesized MgO NPs
produced better results [39].



Bioengineering 2023, 10, 302 10 of 20

Bioengineering 2023, 10, x FOR PEER REVIEW 10 of 20 
 

 

synthesized MgO NPs showed a better percentage of free radical scavenging. Because of 
the particle’s colloidal futures and exterior characteristic nature, the synthesized MgO 
NPs produced better results [39]. 

 
Figure 5. Antioxidant properties of Abrus precatorius bark-mediated synthesized MgO NPs and 
ascorbic acid. 

Table 1. Antioxidant activity of synthesized MgO NPs synthesized from Abrus precatorius bark ex-
tract. 

Concentration (µg/mL) 
Antioxidant (%) 

Percentage of DPPH Inhibition (Absorbance 517 nm) 
Ascorbic Acid  MgO NPs 

20 11.66 15.8 
40 19.93 32.33 
60 32.33 43.16 
80 38.16 46.2 
100 51.00 56.06 
120 60.86 65.93 

3.4. In Vitro Toxicity 
The various concentrations of obtained MgO NPs dispersed in Hank’s suspension 

for the study of in vitro toxicity assessment. The selected zebrafish eggs were applied for 
a toxicity assay depending on mortality and viable eggs after the exposure of nanoparti-
cles. Figure 6a depicted that the synthesized MgO NPs exposed eggs and matured eggs 
in 24 and 48 hpf seemed under 40× resolution via light microscope. 

Figure 6b depicts that the synthesized nanoparticles reveal a 1.7% death rate at 20 
μg/mL, whereas a 60 μg/mL concentration showed a 3.9% death rate. Then 72-h treated 
eggs were viewed under a microscope for visual observation of tail, head, and eye for-
mation and deformation, whereas at 92-h and 120-h treated eggs, the majority of eggs 
were hatched because of nanoparticle-influenced development in zebrafish eggs. Figure 
6a,b reveals that at the prior stage, the egg development and toxicological effects of syn-
thesized MgO NPs seemed to be very low. 

Figure 6b and Table 2 show that the synthesized MgO NPs showed no toxicological 
properties in the treated zebrafish eggs [25]. The results confirmed that a few synthesized 
MgO NPs exposed eggs showed delayed hatching during the earlier period of exposure. 
The obtained results from the zebrafish toxicological assay confirmed that no toxicity was 
observed in higher ratios of 100 and 200 μg/mL, which revealed a prior embryonic period 
and retard hatching. The retardation in the hatching period might be because of the ad-
aptation of eggs for hatching; moreover, it is not showing any toxic effects; therefore the 

Figure 5. Antioxidant properties of Abrus precatorius bark-mediated synthesized MgO NPs and
ascorbic acid.

Table 1. Antioxidant activity of synthesized MgO NPs synthesized from Abrus precatorius bark extract.

Concentration (µg/mL)

Antioxidant (%)

Percentage of DPPH Inhibition (Absorbance 517 nm)

Ascorbic Acid MgO NPs

20 11.66 15.8
40 19.93 32.33
60 32.33 43.16
80 38.16 46.2

100 51.00 56.06
120 60.86 65.93

3.4. In Vitro Toxicity

The various concentrations of obtained MgO NPs dispersed in Hank’s suspension for
the study of in vitro toxicity assessment. The selected zebrafish eggs were applied for a
toxicity assay depending on mortality and viable eggs after the exposure of nanoparticles.
Figure 6a depicted that the synthesized MgO NPs exposed eggs and matured eggs in
24 and 48 hpf seemed under 40× resolution via light microscope.

Figure 6b depicts that the synthesized nanoparticles reveal a 1.7% death rate at
20 µg/mL, whereas a 60 µg/mL concentration showed a 3.9% death rate. Then 72-h
treated eggs were viewed under a microscope for visual observation of tail, head, and
eye formation and deformation, whereas at 92-h and 120-h treated eggs, the majority of
eggs were hatched because of nanoparticle-influenced development in zebrafish eggs.
Figure 6a,b reveals that at the prior stage, the egg development and toxicological effects of
synthesized MgO NPs seemed to be very low.

Figure 6b and Table 2 show that the synthesized MgO NPs showed no toxicological
properties in the treated zebrafish eggs [25]. The results confirmed that a few synthesized
MgO NPs exposed eggs showed delayed hatching during the earlier period of exposure.
The obtained results from the zebrafish toxicological assay confirmed that no toxicity
was observed in higher ratios of 100 and 200 µg/mL, which revealed a prior embryonic
period and retard hatching. The retardation in the hatching period might be because of the
adaptation of eggs for hatching; moreover, it is not showing any toxic effects; therefore the
synthesized MgO NPs are nontoxic in nature. The in vitro toxicity study of zebrafish reveals
less toxicological results concluded from reported data [36]. However, the synthesized
MgO NPs is one of the essential steps for the utilization of biomedicine and are applied
because of their biocompatibility.
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Figure 6. (a). Images representing the zebrafish embryos with hours postfertilization (hpf) (A) Control
after 24 hpf. (B) MgO nanoparticles treated after 24 hpf (20 µg/mL). (C) MgO nanoparticles treated
after 24 hpf (120 µg/mL). (D) Control after 48 hpf. (E) MgO nanoparticles treated after 48 hpf
(20 µg/mL). (F) MgO nanoparticles treated after 48 hpf (120 µg/mL). (G) Control after 72 hpf.
(H) MgO nanoparticles treated after 72 hpf (20 µg/mL). (I) MgO nanoparticles treated after 72 hpf
(120 µg/mL). (b). Bar graph represents the mortality percentage of prepared MgO nanoparticles with
respect to time and concentration.

Table 2. In vitro toxicity assay of zebrafish death percentage, A. precatorius bark extract synthesized
MgO NPs against various time and dosage manner.

MgO NPs

Concentration
(µg/mL)

Mortality (%)

24 h 48 h 72 h 96 h 120 h

Control 0.2 ± 0.2 0.2 ± 0.4 0.3 ± 0.5 0.6 ± 0.6 0.1 ± 0.4
20 1.2 ± 0.4 1.5 ± 0.3 1.7 ± 0.4 1.5 ± 0.5 0.0 ± 0.5
40 0.1 ± 0.6 1.3 ± 0.2 2.8 ± 0.4 1.4 ± 0.9 0.0 ± 0.4
60 1.0 ± 0.3 1.8 ± 0.4 3.9 ± 0.1 1.5 ± 0.3 0.0 ± 0.2
80 0.1 ± 0.3 1.5 ± 0.8 1.6 ± 0.3 1.0 ± 0.2 0.0 ± 0.4
100 0.2 ± 0.5 0.6 ± 0.7 1.3 ± 0.2 0.9 ± 0.1 0.0 ± 0.1
120 0.1 ± 0.7 0.2 ± 0.3 1.0 ± 0.8 0.6 ± 0.5 0.0 ± 0.3
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3.5. Cytotoxic Evaluation
3.5.1. MTT Assay

MTT assessment was implemented to determine the cell viability of A375 human
melanoma cancer cells via cellular-mediated activity. Figure 7 depicts that the initial
concentration at 20 µg/mL shows 96.09% of cell reduction in 6 h, whereas at 120 g/mL, it
shows 89.09% of cell reduction in MTT. In increased time and concentration, the synthesized
MgO NPs at 20 µg/mL reveal 49.89% cell reduction, whereas at a higher concentration of
120 µg/mL, a higher ratio of cell reduction is observed, up to 20.18% in 24 h. The obtained
results show the dose-mediated activities of the obtained magnesium oxide nanoparticles
toward the A375 melanoma cancer cell line. Figure 6a revealed the percentage of MTT
cell reduction due to cell mortality through the treatment of synthesized MgO NPs on the
A375 cell line, which is based on time-mediated activity. For confirmation, the procured
results were matched with published data. Therefore, the synthesized magnesium oxide
nanoparticles most effectively target the cancer cell, and the closer results are mentioned in
published data [40,41].
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3.5.2. XTT Assay

The XTT assay was a closer version of the MTT assessment where the cell viability was
evaluated via XTT salt breakage into XTT formazan via mitochondrial enzymes and the al-
teration due to the cell viability using calorimetrically. Figure 8 reveals that the synthesized
MgO NPs show ratio and time-related cytotoxic effects on the human melanoma cancer
cell line (A375) [42]. From the obtained results, a 20 µg/mL concentration showed 94.89%
percentage of XTT salt-reduction whereas a 120 µg/mL concentration shows a higher ratio
of XTT salt reduction up to 86.67% in 6 h. Based on the result at lower concentrations, the
synthesized MgO NPs does not show a higher percentage of cell reduction compared with
increased concentration. The 24-h treated sample shows 39.80% salt reduction at 20 µg/mL,
whereas the 120 µg/mL sample shows 17.01% cell reduction inferring that the properties of
obtained magnesium oxide nanoparticles are confirmed dose- and time-mediated reaction.
Hence, the obtained results concluded that the obtained magnesium oxide nanoparticles
have eventually proved targeted activity against cancer cells, which does not affect normal
cells in the body. Stimulated activity and cell reduction of obtained nanoparticles was
confirmed via previously published data [43]. The cell mortality of the human melanoma
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cancer cell line (A375) might be related to the aggregation of obtained MgO NPs on the cell
leading to oxidative stress-mediated apoptosis.
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3.5.3. NRU Assay

The NRU assay is utilized to determine the cytotoxic properties of the synthesized
MgO NPs in human melanoma cancer cell lines by analyzing the concentration of live
cells. When the live cells are exposed to the neutral red dye, the dye gets patched to the
surface of the lysosome due to the various pH levels between the intracellular cytoplasm
and lysosome. The viability of the cells is determined by the uptake of neutral red dye in
the cell [35,44]. Figure 9 reveals that the NRU was also a concentration- and time-mediated
activity. A 20 µg/mL sample exposed to A375 cells reveals 96.79% of neutral red dye
absorbed, whereas a higher ratio of 120 µg/mL shows 88.89% of NRU reduction in 6 h.
As a result, the 24-h treated sample at 20 µg/mL shows 37.81% cell reduction, whereas
the increased concentration of 120 µg/mL shows 20.98% cell reduction, and the results
confirmed the higher percentage of cell reduction. Effectively, the NRU results show that
the MTT and XTT studies are much more similar to each other. This suggests that both
assays, namely mitochondrial breakage and lysosomal breakage, are part of the same path
that leads to cell death [45].

3.5.4. LDH Release Assay

LDH excretion assessment is a class of cytotoxic assessment in which cell membrane
breakage and excretion of lactase dehydrogenase in culture media are analyzed to conclude
cell mortality. Compared with previous studies, the LDH excretion assessment depicts
effective results. Figure 10 shows that the lower concentration at 20 µg/mL shows no
excretion of LDH in the media, whereas the higher ratio at 120 µg/mL depicts 65% of LDH
excretion in the media. The total percentage of LDH excretion was directly mediated by the
ratio of cell formation.
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Figure 10. Cell viability of MgO nanoparticles as analyzed by LDH release assay.

The LDH assessment related that the cell death due to the suppression of membrane
solidity was effectively noted as necrosis. When the cells are exposed to the increased ratio
of synthesized MgO NPs, it enhances the oxidative stress inside the cell, which leads to
impediments to the membrane’s stability. The release of LDH into the culture medium
speeds up the process of changing NADP to NADPH or lactate to pyruvate [46].

3.6. Genotoxic Assay
Comet Assay

The comet assay is an improved and ideal assay for genotoxicity caused by chemogens
in cells. This test was used to determine the total tail length and also the distortion and non-
formed shape depicted by the genomic components of the damaged cell when it migrates
on the agarose gel. The human melanoma cancer cell line (A375) was treated with MgO
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NPs in this study, and the effect on DNA tail migration in agarose gel was tested. Figure 11
depicts the comet assessment results in the A375 at various concentrations (control, 20,
40, 60, 80, 100, and 120 µg/mL) [47]. According to the results, a lower concentration of
20 µg/mL results in 90.98% breakage of genomic DNA, whereas an increased concentration
results in 19.98% breakage of genomic DNA. Based on genomic DNA damage, Figure 11B
concluded that, at a lower ratio, 20 µg/mL depicts 16.9% of olive tail migration, whereas
120 g/mL depicts 70.98% of olive tail migration [48]. For eventual proof, the obtained
results were compared with previously published data, revealing 22% and 5.37% of the
olive tail movement in 20 µg/mL and 120 µg/mL, depending on the ratio-mediated
activity, and the obtained results showed the enhanced ratio of DNA damage and olive
tail movement.
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The increased ratio of MgO NPs in the human melanoma cancer cell line (A375) causes
increased DNA damage, which leads to cell death. The DNA strand breakage with the
exposure of synthesized MgO NPs depicts that the cell has gone into apoptosis. The MgO
NPs effectively stimulate natural ROS at the exterior position, which effectively initiates
the formation of free radicals when it’s attached to lipids and protein substances, leading
to cellular breakage or necrosis [49].

3.7. Measurement of Oxidative Stress Parameters

The genotoxic assay of the synthesized MgO NPs exposed to A375 cell lines depicts an
effective concentration of genomic damage, which infers that cell death because of genetic
damage depends on the apoptotic pathway caused by intracellular ROS. The oxidative
stress components of synthesized MgO NPs treated in the A375 human melanoma cancer
cell line were examined by using this assay. The major component targeted in this study
was used to measure the oxidative stress components, i.e., the intracellular ROS, which
effectively confirmed that the cell mortality resulted in ROS−related apoptosis. The lipid
peroxidation shows the cell has gone through necrosis and the absence of membrane
stability [50].

3.7.1. Measurement of Intracellular ROS

The intracellular ROS measurement gives acceptable facts about oxidative stress-
related apoptosis inside the cell. Based on the higher absorption of cell-penetrable DCFDA
dye, Table 3 depicts the better ratio of ROS formation inside the cell. Table 3 shows that
the treatment of A375 cell lines with synthesized MgO NPs increased intracellular ROS
formation by 51% in 24 h. The genesis of random ROS is because of the chemical and
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exterior features of synthesized MgO NPs on the A375 human melanoma cancer cell
line. This ROS surrounding the exterior of synthesized MgO NPs might further induce
the formation of free radicals due to the activation of intracellular constituents, which
leads to damage to mitochondria. The intracellular ROS formation due to the initiation of
the oxidase enzyme (NADPH) induces the formation of the superoxide anion O2 in the
membrane of phagocytic cells. This intracellular chemical species, like DNA, oxidizes and
reduces to lesser macromolecules, resulting in oxidative stress-mediated apoptosis [51].

Table 3. Abrus precatorius bark extract synthesized MgO NPs effect on the ROS generation and lipid
peroxidation in A549 cells after 24 h.

Concentration ROS Generation (%) Hydrogen Peroxide Concentration (n/mol)

Control 100 ± 00 1.0 ± 0.9
20 µg/mL 115 ± 0.1 1.5 ± 0.3
40 µg/mL 129 ± 0.7 2.3 ± 0.6
60 µg/mL 134 ± 0.5 3.4 ± 0.7
80 µg/mL 143 ± 0.7 4.5 ± 0.2

100 µg/mL 156 ± 0.5 5.6 ± 0.4
120 µg/mL 161 ± 1.8 6.1 ± 0.9

3.7.2. Measurement of Lipid Peroxidation

Lipid peroxidation is applied to understand oxidative stress-related necrosis due to the
impediment of membrane stability. Lipid peroxidation is calculated via the concentration
of hydrogen peroxide-induced elimination. Table 3 reveals that the synthesized MgO
NP-exposed A375 human melanoma cancer cell lines depicted no notable ratio of lipid
peroxidation at 20 µg/mL, whereas an increased ratio of 120 µg/mL reveals 6.1 ± 0.9 lipid
peroxidation in 24 h [52–54]. The increased concentration of synthesized MgO NPs alters
the electron-hole pair that enhances ROS genes, which leads to the formation of free
radicals connect with biomolecule breakage of proteins and lipids to develop instability of
membrane stability [55–60].

3.8. Antimicrobial Activity

The obtained results are depicted in Figure 12 and Table 4. The A. precatorius-mediated
synthesized MgO NPs demonstrated the antimicrobial properties of synthesized nanoparti-
cles by observing the inhibition towards Gram-positive and Gram-negative bacteria. In
this study, the zone of inhibition formation was noted towards Gram-positive bacteria like
S. epidermidis MTCC 2639 (20 ± 0.26 mm) and B. subtilis MTCC 1133 (31 ± 0.25 mm) and
against Gram-negative bacteria like P. aeruginosa MTCC 2582 (22 ± 0.50 mm) and E. coli
MTCC 1692 (30 ± 0.10 mm) (Figure 11). Differentiating from all the samples, the maximum
ratio of zone inhibition is noted at B. subtilis MTCC 1133 (31 ± 0.25 mm) and E. coli MTCC
1692 (30 ± 0.10 mm). Hence, this assay concludes with a better zone of inhibition [61,62].

Previous research found that metal oxide nanoparticles broke the cell membrane and
ruptured the cell inside. It was concluded that the removal of H2O2 is an alternative
substitution for antimicrobial activity [63–65]. This hypothesis also needs experimental
proof because of the low ratio of synthesized MgO NPs, which do not efficiently develop
H2O2. A low concentration of synthesized MgO NPs does not generate a toxic effect in the
human system. The day-to-day intake of magnesium via food was essential for metabolic
pathways. The synthetic MgO was known for its ability to form a barrier against E. coli
intestinal tract breakage. When magnesium reacts with acid and generates Mg2+ ions, the
pH in the stomach rises from 2 to 5. For these activities, a few enzymes are essential, such
as carboxyl peptidase, carbonic anhydrase, and alcohol dehydrogenase, which are essential
for alcohol digestion and carbohydrate digestion, respectively. The cell mortality pathway
of synthesized MgO NPs is (1) the genesis of ROS and (2) stimulation of cell mortality,
resulting in the rupture of cellular compounds like proteins, lipids, and DNA. Furthermore,
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the synthesized MgO NPs induce toxic properties against bacterial cells, which result in
cellular mortality [66].
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Table 4. Antibacterial activity of MgO NPs studied towards various pathogens.

Microorganisms
Zone of Inhibition (Mean ± SD (mm))

DMSO Leaf Extract MgO NPs Standard Antibiotics

S. epidermidis MTCC 2639 – 10 ± 0.12 20 ± 0.26 20 ± 0.06
B. subtilis MTCC 1133 – 16 ± 0.30 31 ± 0.25 28 ± 0.99

P. aeruginosa MTCC 2582 – 12 ± 0.49 22 ± 0.50 21 ± 0.90
E. coli MTCC 1692 – 15 ± 0.01 30 ± 0.10 29 ± 0.89

4. Conclusions

The purpose of this study was to examine the long-term applications of obtained
magnesium oxide nanoparticles (NPs) as an effective anticancer drug. MgO NPs are
synthesized by using A. precatorius bark extract. X-ray diffraction analysis determined
that MgO NPs have a polycrystalline wurtzite structure. The functional components of
the synthesized nanoparticles are determined through FTIR analysis. The SEM and TEM
results concluded that the obtained nanoparticles are spherical in shape. The synthesized
MgO NPs reveal higher photocatalytic activity and antioxidant activity. The MgO NPs
safety nature was confirmed by zebrafish viability, and the result concluded the particles are
effectively used as a potential drug for the human system. The cytotoxicity of synthesized
MgO NPs was investigated in order to determine the cell-mortality cycle by using the
A375 human melanoma cancer cell line. The MTT, XTT, and NRU assays depend on the
mitochondrial and lysosomal cytotoxic assay, which confirmed that the cytotoxicity activity
of synthesized MgO NPs is a time- and dose-mediated activity. The LDH assay was used to
determine the integrity of the cell membrane. The NRU assay showed an increase in lactase
dehydrogenase excretion at a higher ratio. The comet assay depicts the synthesized MgO
NPs-mediated ROS formation that can induce DNA damage, which results in apoptosis in
the human melanoma cancer cell line (A375). In conclusion, this study confirmed that the
green-mediated obtained MgO NPs could be a potential anticancer drug, and this research
not only aimed to obtain MgO NPs via phytochemical components of A. precatorius bark
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extract but also to perceive a substitutive method for the genesis of an efficient anticancer
drug for potential biomedical applications.
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