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Abstract: Objective: To help improve radiologists’ efficacy of disease diagnosis in reading computed
tomography (CT) images, this study aims to investigate the feasibility of applying a modified deep
learning (DL) method as a new strategy to automatically segment disease-infected regions and predict
disease severity. Methods: We employed a public dataset acquired from 20 COVID-19 patients, which
includes manually annotated lung and infections masks, to train a new ensembled DL model that
combines five customized residual attention U-Net models to segment disease infected regions
followed by a Feature Pyramid Network model to predict disease severity stage. To test the potential
clinical utility of the new DL model, we conducted an observer comparison study. First, we collected
another set of CT images acquired from 80 COVID-19 patients and process images using the new
DL model. Second, we asked two chest radiologists to read images of each CT scan and report
the estimated percentage of the disease-infected lung volume and disease severity level. Third,
we also asked radiologists to rate acceptance of DL model-generated segmentation results using
a 5-scale rating method. Results: Data analysis results show that agreement of disease severity
classification between the DL model and radiologists is >90% in 45 testing cases. Furthermore,
>73% of cases received a high rating score (≥4) from two radiologists. Conclusion: This study
demonstrates the feasibility of developing a new DL model to automatically segment disease-infected
regions and quantitatively predict disease severity, which may help avoid tedious effort and inter-
reader variability in subjective assessment of disease severity in future clinical practice.

Keywords: infected lung segmentation; quantification of lung disease severity; comparison
between manual and automated image segmentation; deep neural network; COVID-19 detection;
COVID-19 severity assessment

1. Introduction

Computed tomography (CT) is the most popular medical imaging modality used in
clinical practice to detect lung diseases (i.e., lung cancer, chronic obstructive pulmonary
disease, interstitial lung diseases, pneumonia, and others). To more accurately assess
the severity of many lung diseases and predict patients’ prognosis, estimation of disease-
infected volume and/or its percentage to the total lung volume plays an important role.
However, subjective estimation of disease-infected regions or volume by radiologists is
quite difficult, tedious, and inaccurate (due to the large intra- and inter-reader variability),
which makes it often infeasible in busy clinical practice. Thus, to help solve this clinical
challenge, developing computer-aided detection (CAD) schemes or methods has been
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attracting broad research interest. For example, the CAD-generated lung density mask
has been well developed and tested to quantify percentages of emphysema-infected lung
volume [1] or degree of lung inflammation [2]. However, quantifying other lung diseases,
such as the pneumonia-infected lung volume, has not been well developed and evaluated.
Thus, we propose to investigate the feasibility of developing new CAD schemes that
can automatically segment pneumonia-infected regions depicted on CT image slices and
quantify the percentage of the diseased lung volume, which has the potential to assist
radiologists in more accurately and efficiently reading and interpreting chest CT images in
diagnosis of pneumonia-infected disease diagnosis and assessment of its severity.

In the last 3 years, SARS-CoV-2 virus named COVID-19 has infected millions of people
globally [3] and it produces pneumonia-type diseases. Chest X-ray radiography and CT
are two imaging modalities to assist diagnosis of COVID-19 induced pneumonia and/or
monitor its severity [4]. While chest X-ray images are easier and faster to take, with
lower cost, the CT scan is highly preferred mainly due to its three-dimensional nature and
additional information to improve diagnostic accuracy [5,6]. Due to the wide and rapid
spread of the COVID-19 virus, a large volume of chest X-ray images including CT images
have been acquired in clinical practice. Meanwhile, several research image datasets with
manual annotation masks have also become publicly available for researchers to develop
new CAD schemes aiming to assist radiologists in more accurately and efficiently reading
chest CT images to detect and diagnose COVID-19 induced pneumonia.

Recently, in developing CAD schemes of medical images, deep learning (DL) models
have been well recognized and widely used to perform the tasks of segmenting the
disease-infected regions of interest (ROIs) [7,8] and detecting or classifying diseases using
the automatically extracted image features [9,10]. In using COVID-19 image datasets to
develop CAD schemes, most of the previous studies focused on developing DL models
to detect COVID-19 cases or classify between the COVID-19 and normal or other types
of pneumonia cases [11–14]. Although many previous studies reported the extremely
high accuracy of using DL models to detect and/or classify the COVID-19 infected cases
(i.e., ranging from 90–100% accuracy [15]), no previous DL model is robust and clinically
acceptable due to training bias and a “black-box” type approach [16]. Thus, the motivation
of this study is to overcome disadvantages of previous DL models and investigate how
to optimally use DL models to assist radiologists through increasing their accuracy and
efficiency of disease diagnosis in future clinical practice. For these purposes, we propose a
hypothesis that, in the technology aspect, it is important to add an interactive graphic user
interface (GUI) to the DL model as a visual aid tool to increase the transparency of the DL
model and allow radiologists to visually inspect results of DL model-segmented infected
lesions or regions. In this application aspect, it is important to perform more observer
performance or preference studies using DL models, which can help researchers better
understand how to optimally develop and apply DL models to the future clinical practice to
assist radiologists.

The objective of this study is to test our hypothesis. The study includes three steps or
procedures. First, we build a novel ensembled DL model implemented with an interactive
GUI to segment pneumonia-infected disease regions. Second, we conduct an observer read-
ing and preference study that asks radiologists to estimate percentages of disease-infected
volumes, assess disease severity, and rate their acceptance level for DL-generated lesion
segmentation results. Third, we perform data analysis to compare agreement between the
DL model and radiologists in the disease-infected region segmentation and disease severity
assessment. The details of our study methods and results followed by discussions and
conclusions are reported in this article. Specifically, Section 2 describes study datasets and
the details of study methods to build a new DL model with a GUI tool and conduct the pro-
posed observer study and data comparison analysis. Section 3 reports and explains study
results. Section 4 discusses the unique characteristics or novelties and new observations or
contributions of this study, as well as the limitations. Second 5 concludes this study and
provides the take-home messages to the readers of this article.
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2. Materials and Methods
2.1. Datasets

In this study, three chest CT image datasets were used, which include two public
datasets, namely, “COVID-19 CT scans” and “COVID-19 CT segmentation dataset “https:
//www.kaggle.com/andrewmvd/covid19-ct-scans (accessed on 17 May 2021)”. The first
public dataset includes 20 CT scans of patients diagnosed with COVID-19 from two sources,
Coronacases “https://coronacases.org/ (accessed on 17 May 2021)” and Radiopedia “https:
//radiopaedia.org/ (accessed on 17 May 2021)”. Although numerous COVID-19 image
datasets are publicly available, one unique characteristic of the datasets selected in this
study is that all CT images have been annotated by experts providing three separate masks
for the left lung, right lung, and infection regions. The second public dataset contains 100
axial CT images acquired from more than 40 COVID-19 patients. A mask with three labels
is provided by a radiologist for each CT image indicating ground-glass opacity (GGO),
pleural effusion and consolidation regions. These two datasets were used to build and/or
train the DL model of segmenting and qualifying the disease infected regions or volumes.
Additionally, another independent testing dataset including 80 CT scans of COVID-19
patients acquired from “Hospital Regional III Hanorio Delgado” Arequipa, Peru, was also
assembled. This dataset is used to test and evaluate the trained DL models and conduct the
proposed observer reading and preference study.

2.2. Image Preprocessing

To achieve higher reliability or robustness of the DL model, several image preprocess-
ing techniques were employed to initially remove clinically unrelated images and normalize
the remaining images. First, the “COVID-19 CT scans” dataset includes whole CT images
of COVID-19 patients. However, some slices of each CT scan (i.e., in the beginning, and
near the end of scan) usually contain very little lung area, thus not providing helpful
information. Including these CT slices in the training data leads to a more unbalanced
dataset. Thus, we removed up to 10% of CT images at the beginning and near the end
of each CT scan. Generally, all lung infection datasets are unbalanced since the number
of infection mask pixels is significantly less than the pixels of the healthy lung and other
normal tissues presented in the image. To create a more balanced training dataset, we
removed all healthy CT slices with no infection mask.

Second, since image normalization or standardization has been considered as an im-
portant preprocessing step when training deep neural networks to achieve high robustness
or scientific rigor [17], we normalized all CT images by clipping the intensities outside
the range [–1024, 600] HU. Specifically, if x > max, x’ = max, if x < min, x’ = min, and
the remaining values are scaled between zero and one using a linear mapping equation:
x’ = (x-xmin)/(xmax-xmin).

Third, we applied the data augmentation technique to generalize and enlarge the
dataset and mitigate overfitting. The main augmentation method adopted in this study
is Elastic Transform [18] which is commonly applied in biomedical image analysis. The
python library Albumentations [19] was used to perform the Elastic Transform and other
affine transformations. Along with the elastic Transform, we also applied other common
methods of horizontal and vertical flipping and random rotation to increase the size
of training images. Figure 1 demonstrates the changes in a CT slice after applying an
augmentation method in this study.

Last, we applied another image preprocessing technique using several filters to further
enhance image features detected on the CT image. In this step, several filters have been
tested with various channel arrangements to enhance different textures and structures
and consequently achieve better discrimination between healthy and infected regions. For
example, contrast Limited Adaptive Histogram Equalization (CLAHE) is one of the filters
that has been applied as a channel to the CT images. CLAHE is a variant of adaptive
histogram equalization that limits contrast amplification to reduce noise amplification. This

https://www.kaggle.com/andrewmvd/covid19-ct-scans
https://www.kaggle.com/andrewmvd/covid19-ct-scans
https://coronacases.org/
https://radiopaedia.org/
https://radiopaedia.org/
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filter performs histogram equalization in small patches with high accuracy and contrast
limiting. Figure 2 illustrates the effect of applying a CLAHE filter on a CT image.
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Figure 2. (a) Before applying a CLAHE filter; (b) After applying a CLAHE filter.

2.3. Image Segmentation Models and Output

Several common deep neural network models were selected and used in this study,
including UNet [20], Feature Pyramid Network (FPN) [21], and Attention Residual UNet
(AR-UNet) [22]. The Segmentation Models library [23] available on GitHub was also
used to test various segmentation models with different backbones and parameters more
conveniently. For each model, many parameters have been tested and modified, including
loss functions, fixed and variable learning rates, encoders and decoders, and dropout rates.

2.3.1. Lung Segmentation

The first step is to segment the lung area depicted on each CT slide. For this purpose,
a publicly available model for lung parenchyma segmentation was used to create lung
masks and segment the lung area [24]. In brief, this model used the UNet, with the only
adaption being batch normalization after each layer. Figure 3 demonstrates an example of
the created lung mask and the lung segmentation result using this mask.
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2.3.2. Infection Area Segmentation

The next step is to segment the disease infected lung regions (from fuzzy ground glass
to consolidation patterns). For this purpose, various object detection and segmentation
models with different hyper-parameters have been tested and employed to achieve the
highest accuracy. First, the AR-UNet is selected to build the ensembled model in this
step. AR-UNet model is an end-to-end infection segmentation network, which embeds an
attention mechanism and residual block simultaneously into the UNet architecture. Hence,
this model efficiently balances the limited training data. In this model, the attention path
employs the attention mechanism to capture spatial feature details. The residual block
involves the semantic information flow through a 1 × 1 convolution [25].

Based on the literature search and our experiments, we recognize that among many
tested loss functions, the Binary cross-entropy loss and the Tversky loss [24] led to the best
predictions. Binary cross-entropy is calculated as the following Formula (1) [26].

LBCE = −
2

∑
i=1

ti log(pi) (1)

where ti is the truth value (either 0 or 1), and pi is the SoftMax probability for the ith class.
To compute the Tversky loss function, a SoftMax along each voxel is applied [24]. Let

P and t be the predicted and truth binary labels, respectively. The Dice similarity coefficient
(D) between two binary volumes is identified and computed using Formula (2):

D (P, t) = 2|Pt|/(|P| + |t|) (2)

Since, in most cases, non-lesion voxels outnumber the lesion voxels, one of the main
challenges in medical imaging is imbalanced data, especially in lesion segmentation. There-
fore, using the unbalanced data in training lead to predictions that are severely biased
towards low sensitivity (recall) and high precision, which is not desired, particularly in
medical applications where false-positive (FP) detections are much more tolerable than
false negatives (FNs). To achieve an optimum balance between sensitivity and precision
(FPs vs. FNs), we used a loss layer based on the Tversky index. This index allows us to put
emphasis on FNs and leads to high sensitivity. Using the formula (2) in a training loss layer,
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it equally weighs recall and precision, FN and FP, respectively [24]. To weigh FNs more
than FPs in the training of a network with highly imbalanced data where small lesions’
detection is essential, a loss layer based on the Tversky index is efficient. The Tversky index
is computed as the Formula (3) [24]:

Ti(P,t,α,β) = |Pt|/(|Pt| + β|P⁄t| + α|t⁄P|) (3)

where α and β control the magnitude of penalties for FNs and FPs, respectively. Hence, the
finally used Tversky loss function is defined as follows using Formula (4) [24]:

LT(α, β) =
∑N

i=1 p0iv0i

∑N
i=1 p0iv0i + β ∑N

i=1 p0iv1i + α ∑N
i=1 p1iv0i

(4)

In the above equation, p0i and p1i are the probability of voxel i lesion and non-lesion,
respectively. Additionally, v0i is 1 for a lesion and 0 for a non-lesion voxel and vice versa
for the v1i.

Since image segmentation accuracy and robustness depend on choosing and use
of DL models along with optimal training parameters, to more accurately and robustly
segment disease infection areas or blobs depicting on chest CT images, we developed,
tested, and compared five models based on AR-UNet with different training parameters,
as summarized in Table 1. Additionally, based on the hypothesis that if the five models
contain complementary prediction scores of pixels belonging to a disease infected area, the
fusion of the predictions of all five selected models can further improve image segmentation
results (i.e., prevent under-segmentation as much as possible). While involving several
models comes with a longer processing time, the more reliable and precise prediction is
worth the extra time. For each of these models, we have used Adam optimizer with a
learning rate of 0.01.

Table 1. The detail of the ensembled model for infection detection.

Loss Function Augmentation Dropout

Model 1 Binary Cross Entropy 5 times 0

Model 2 Tversky 10 times 0

Model 3 Tversky 10 times 0.10

Model 4 Binary Cross Entropy 10 times 0

Model 5 Binary Focal Loss 5 times 0.10

2.3.3. Segmentation of GGO and Consolidation Patches

Moreover, besides the overall infected region segmentation, it is of great importance
to distinguish between different stages of COVID-19-infected pneumonia developments
in the lung and provide better assistance to radiologists to assess disease severity levels.
The “COVID-19 CT segmentation dataset” provides manual annotations with 3 infection
types, the ground glass opacity (GGO), pleural effusion, and consolidation. Since the
pleural effusion type is not of great interest in this study, we only included the GGO and
consolidation labels in the training dataset.

Like the infection region segmentation model, we tested various neural network
architectures and hyperparameters aiming to achieve the best predictions. We applied a
FPN model to categorize different stages of the COVID-19 in the infected area. This model
has 23,915,590 trainable parameters. As depicted in Figure 4, the patch segmentation is
based on Residual-Network (ResNet) and FPN model. ResNet34 is the backbone, and FPN
is the feature extractor network. The loss function for this model is the categorical cross
entropy which computes the cross entropy between the labels and predictions. This loss
function is common when there are two or more label classes.
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Although the staging model tends to over-segment the GGO regions, the consolidation
segmentation is very accurate. To prevent the over-segmentation of the GGO area, the
infection segmentation model is used to constrain the staging model. This model classifies
each patch to three classes of normal tissue background, GGO, and consolidation.

2.3.4. Integrated Model and GUI

In summary, three common deep neural network architectures were trained and
employed in this study. For lung segmentation, we applied a publicly available model for
lung parenchyma segmentation based on the UNet model. Additionally, an ensembled
AR-UNet was developed for infection segmentation since the attention blocks have been
shown to be very beneficial in image segmentation [22]. Moreover, an FPN model was
applied to categorize the severity of the COVID-19 infected area. For each model, many
parameters were tested and modified, including loss functions, fixed and variable learning
rates, different encoders and decoders, and dropout rates. All models are written in Python,
and the TensorFlow library is used to train and test the models.

After extracting the lung and infected lesions by the two segmentation models, the
percentage of the infected lung volume is reported along with the average Hounsfield units
(HU) inside the infected region, which can indicate the density of the lesion of interest and
hence the severity of infection. This information is reported for the left and right lungs for
each CT slice as well as the whole CT.

Finally, to assist radiologists in the diagnosis of COVID-19 infected pneumonia using
the DL model generated quantitative results or predictive scores, we also designed a
stand-alone graphical user interface (GUI) as an interactive “visual-aid” tool, which can be
installed on any Windows-based computers without the need for any specific programing
language or library. Figure 5 illustrates the flow diagram of the developed DL model
method and GUI tool.
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2.4. Image Postprocessing and Correction

After observing the output of the lung segmentation model, it was noted that in several
cases with severe disease infection, a small percentage of the lung may be missing from the
segmentation as shown in Figure 6a, which typically represents the disease infection area.
To recover the missed lung area if the lung segmentation error is visually observed from
our GUI, the user (i.e., radiologist) can call a specially-designed image post-processing
function that applies a unique conventional image processing algorithm inspired by the
rolling ball algorithm [27] to automatically correct segmentation error. This algorithm starts
with extracting the lung contours followed by several steps and morphological filters such
as disk drawing, filling holes, median, and erosion operations. As shown in Figure 6, it can
convert a jagged and rough lung boundary, as shown in Figure 6a, to a smooth one that
covers the previously missed lung area, as shown in Figure 6b. While it might lead to a
small over-segmentation in some cases, the previously missed area contains very important
infected lesions that can significantly affect the assessment of severe cases.
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2.5. Evaluation

To evaluate new DL model performance, the model was first tested “as is” using an
independent testing dataset of 80 CT scans. Next, we asked two expert chest radiologists
to retrospectively read and review these 80 sets of CT images. Each radiologist read and
examined half of the CT scans (40 patients) and reported the patient infection spread in
percentage based on their judgment of the percentage of infected lung volume. These
subjectively assessed values were then collected and compared to the values generated by
the DL model. It is important to note that in this new testing image dataset of 80 clinical
cases, there are no manually annotated lung and disease infection area segmentation marks.
Thus, no Dice coefficients can be computed, and we only compared the agreement between
the radiologists and the DL model in predicting the percentage of disease infected lung area
(or volume) based on the predicted result of infection area ratio or spread scores between
radiologists’ assessment and DL models.

Moreover, in order to test radiologists’ confidence level to accept DL-generated in-
fection area segmentation results, we showed radiologists the DL segmentation results
displayed on the developed GUI and asked them to rate their acceptance level of the
infection area segmentation of each CT slice with a score of 1 (poor segmentation) to
5 (excellent segmentation).

Last, we asked the radiologists to assign each patient to the group of mild infection
cases that are dominated by GGO or the group of severe infection cases that have a signifi-
cant fraction of consolidation areas or blobs. We then compared the agreement between
the DL model generated case classification results and the radiologists’ classification re-
sults. A corresponding confusion matrix was generated for the comparison and diagnostic
accuracy computation.

3. Results

Figure 7 shows several image examples of DL-model generated lung and infection
segmentation results. The left column illustrates the raw CT images, while the second
and third columns illustrate the masks of the segmented lung and disease infection areas,
respectively. In addition, Figure 8 shows the patch segmentation results of GGO and
consolidation areas (or blobs), respectively. By using the commonly used evaluation
index in image segmentation namely, the intersection over union (IOU), the quantitative
data analysis results show that IOUs are 0.78 and 0.88 for the disease-infection region
segmentation model and for the patch model, respectively.

Figure 9 shows a snapshot of the GUI window used in this study to obtain the
subjective ratings from the radiologists. Using this GUI tool, radiologists can observe the
raw CT image and the predicted segmentation side by side for better comparison. The
radiologists can also rate the accuracy or acceptance level of the DL-generated disease
infection area segmentation on each slice using a rating scale from 1 to 5, as well as provide
their overall assessment of lung infection spread. Additionally, the lung segmentation is
also visualized to make sure that the predicted spread scores are reliable. If a significant
portion of the lung is missing, the radiologist can call and run the function to correct the
segmentation errors as described in the Methods section of this paper.

Figure 10 shows two diagrams that illustrate the distribution of our data analysis
results to compare the agreement between the DL-model and radiologists in segmentation
or estimation of disease-infected volumes, and acceptance level by radiologists of DL model
generated disease region segmentation results. From these two summary or comparison
diagrams, we observe the following study results.
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Figure 10. Part (a) illustrates the difference between the spread score of radiologists and the predicted
score by the model; part (b) presents the average ratings of radiologists on the test dataset.

(1) From Figure 10a, we observe that in 34% (27/80) of testing cases, the difference
between the DL model generated diseased region segmentation and radiologist’s
estimation is less than 5% (indicating the accuracy > 95%).

(2) In 55% (44/80) of testing cases, the difference between the DL model generated diseased
region segmentation and radiologist’s estimation is less than 10% (or accuracy > 90%).

(3) In 90% (72/80) of testing cases, the difference between the DL model generated diseased
region segmentation and radiologist’s estimation is less than 30% (or accuracy > 70%).
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(4) From Figure 10b, we observe that in 73% (58/80) of testing cases, radiologists rated
a score of 3 or higher indicating an acceptable lung and disease-infection region
segmentation results generated by the DL model.

Additionally, the ratings of the testing cases with high spread score accuracy have
been carefully analyzed to ensure that the high accuracy is not by chance. For example,
among the testing cases with more than 95% spread accuracy, the radiologists rated an
acceptance score higher than 3 in over 78% of cases, and among the testing cases with
>90% accuracy, 84% of cases received an acceptance rating higher than 3 indicating the DL
segmentation is acceptable, and the spread score is reliable.

Moreover, to evaluate the performance of our DL model in identifying different stages
of COVID-19, the radiologists also put a label on the infected regions. Then, the results
of our model and radiologists were compared together. Table 2 shows the confusion
matrix of the disease staging performance. When using radiologists’ rating or disease level
classification results as a reference (“ground-truth”), our DL model yields an 85% (68/80)
accuracy in predicting or classifying disease infection severity levels in this testing dataset.

Table 2. Confusion matrix illustrating the developed model’s stage detection. The cases dominated
with GGO and crazy paved pattern area are classified as “A” group, and “C” represents the cases
with significant consolidation area (blobs).

Radiologists\Model A C

A 61 2
C 10 7

4. Discussion

In the last three years, large number of studies have been reported in the literature to
develop DL-based models of detection and classification of COVID-19 infected pneumonia
using chest X-ray radiographs and/or CT images. However, as reported in a comprehensive
review study [16], no previous DL model was accepted in clinical practice to effectively
assist radiologists. To effectively address or solve this challenge and make the DL model
acceptable to radiologists, we conducted a unique model development and observer-
involved comparison study. This study has the following unique characteristics and/or
new observations.

First, we tested a new hypothesis to quantify percentages of COVID-19 infected
volume and demonstrated a potential application of a novel DL model in the segmentation
of the COVID-19 generated pneumonia infection in chest CT images. One of the innovations
of this study is that we developed a combined five AR-UNet models for the infected region
segmentation and a novel lung segmentation correcting algorithm based on conventional
image processing techniques to ensure all infected lesions are included in the prediction.
Furthermore, we applied an FPN model to identify different stages of the COVID-19
infected area.

Second, since physicians including radiologists have low confidence in accepting
results generated by current “black box” type artificial intelligence (AI) or DL models,
developing “explainable AI” tools [28] has been attracting broad research interest in the
medical imaging field. Thus, we designed and implemented a graphic user interface (GUI)
as an interactive “visual-aid” tool (Figure 9) that shows DL segmented disease infection
areas. This stand-alone GUI allows radiologists to easily navigate through all generated
outputs, rate each CT slice automatic segmentation, and submit their assessment of the
percentage of lung volume with COVID-19 infection. Additionally, the radiologist can also
call a supplementary image postprocessing algorithm to automatically correct the possibly
identified segmentation errors. Our experience and results of the observer reading and
preference study demonstrate that using this interactive GUI-based “visual-aid” supporting
tool can provide radiologists with the reasoning of DL model generated prediction results
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and thus increase their confidence to use the DL model in their decision-making process of
disease diagnosis.

Third, based on our interaction with the radiologists, we learned that radiologists
typically assign the patients into 3 classes of disease severity, namely, mild, moderate, and
severe diseases, based on the distribution or domination of GGO, pleural effusion, and
consolidation patterns. Thus, we believe that to increase its clinical utility, the DL model
should also have a function or capability to assign each testing case to one of these three
classes. Since in three image datasets used in this study, very few pleural effusion patterns
exist, we developed a patch segmentation-based model to identify GGO and consolidation
areas depicted on each CT image slice and then predict or classify the cases into either
mild/moderate (A) and severe (C) classes as shown in Table 2. In this way, we were able
to compare disease severity prediction results between the radiologists and DL model.
In future studies, we need to collect more study cases with more diversity. Thus, we
can apply the same DL concept to train the model that enables us to classify 3 classes of
disease severity.

Fourth, we conducted a unique observer reading and preference study involving
two chest radiologists and reported data comparison results. Thus, unlike many previous
studies in this field, which only reported Dice coefficients of agreement between DL model
generated image segmentation results and the manual segmentation results of one radiolo-
gist, which does not have a real clinical impact due to the large inter-reader variability in
manual image segmentation or annotation, we used a simple and more efficient or practi-
cal method to evaluate DL model segmentation results by asking radiologists to rate the
acceptance level of DL model segmentation using a 5 rating scale. This practical approach
has proved quite effective and higher clinically relevant in the medical imaging field [29].
Our study generates quite encouraging results or observations of the higher agreement be-
tween the DL-model generated segmentation and radiologists’ estimation of the COVID-19
infected region or volume, as well as the higher acceptance rate of radiologists to the DL
model-segmented results (Figure 10).

The above observations also demonstrate a new contribution of this study, which
provides the research community with new scientific data or evidence. (1) Our study
demonstrates a higher acceptance rate of radiologists to DL model generated results of
disease-infected region segmentation. This supports the feasibility of improving the efficacy
of radiologists in reading CT images to diagnose disease because the DL model can not only
replace the tedious and time-consuming process of subjectively estimating the percentages
of the pneumonia regions or volume, but also avoid or reduce the large inter-reader
variability. (2) Our study also supports the importance of future evaluation studies to better
investigate and find the optimal interaction between DL models and radiologists to reduce
the application gaps and facilitate the process to make DL models or technology clinically
useful or acceptable tools in future clinical practice. (3) Although this study only used
COVID-19 cases to segment and quantify pneumonia regions or volume, if successful, the
demonstrated new DL model and evaluation approach can be easily adapted to segment
and quantify other types of virus infection pneumonia or other interstitial lung diseases
(ILD) in future research studies.

Last, we also recognize the limitations of this study, including the small image datasets
and involving only two radiologists. Thus, this is a very preliminary study. The developed
DL model along with the GUI tool needs to be further optimized and validated using
large and diverse image cases. We also need to recruit more radiologists to evaluate model
performance and potential clinical utility in future studies. Despite the limitations, we
believe that this is a unique and valid study.

5. Conclusions

In this study, we developed a new ensembled DL model to automatically segment and
quantify the COVID-19 infected pneumonia region or volume and predict disease severity
level. To increase the model transparency and radiologists’ confidence in considering or
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accepting DL model generated results, we designed and integrated an interactive GUI as a
“visual aid” tool to the DL model. The most important novelty or contribution of this study
is that we conducted a unique observer reading and preference study. The data analysis and
comparison results demonstrate the higher agreement between DL model and radiologists
in disease region segmentation or estimation and disease severity level prediction. However,
this is a preliminary and concept-approval type study. More evaluation studies involving
more radiologists and more diverse image cases are needed in future research. If successful,
such DL-based disease quantification models with interactive visual-aid tools will have
promising potential to provide radiologists with useful decision-making supporting tools
to improve the accuracy of lung disease diagnosis in future clinical practice.
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