Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Motor Task
2.3. Measurements
2.4. Signal Processing
2.5. Neuromusculoskeletal Modelling
2.6. Anterior Cruciate Ligament Force Modelling
2.7. Statical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lie, M.M.; Risberg, M.A.; Storheim, K.; Engebretsen, L.; Oiestad, B.E. What’s the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. Br. J. Sport. Med. 2019, 53, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Zbrojkiewicz, D.; Vertullo, C.; Grayson, J.E. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med. J. Aust. 2018, 208, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Nasseri, A.; Lloyd, D.G.; Minahan, C.; Sayer, T.A.; Paterson, K.; Vertullo, C.J.; Bryant, A.L.; Saxby, D.J. Effects of Pubertal Maturation on ACL Forces During a Landing Task in Females. Am. J. Sport. Med. 2021, 49, 3322–3334. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, A.; Lloyd, D.G.; Bryant, A.L.; Headrick, J.; Sayer, T.A.; Saxby, D.J. Mechanism of Anterior Cruciate Ligament Loading during Dynamic Motor Tasks. Med. Sci. Sport. Exerc. 2021, 53, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrek, M.; Rhodin, H.; Fua, P.; Müller, E.; Spörri, J. Are Existing Monocular Computer Vision-Based 3D Motion Capture Approaches Ready for Deployment? A Methodological Study on the Example of Alpine Skiing. Sensors 2019, 19, 4323. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tan, S.; Zhen, X.; Xu, S.; Zheng, F.; He, Z.; Shao, L. Deep 3D human pose estimation: A review. Comput. Vis. Image Underst. 2021, 210, 103225. [Google Scholar] [CrossRef]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sport. Med.—Open 2018, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.R.; Mian, A.; Robinson, M.A.; Verheul, J.; Lloyd, D.G.; Alderson, J.A. Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations via Deep Learning. IEEE Trans. Biomed. Eng. 2021, 68, 289–297. [Google Scholar] [CrossRef]
- Ripic, Z.; Kuenze, C.; Andersen, M.S.; Theodorakos, I.; Signorile, J.; Eltoukhy, M. Ground reaction force and joint moment estimation during gait using an Azure Kinect-driven musculoskeletal modeling approach. Gait Posture 2022, 95, 49–55. [Google Scholar] [CrossRef]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; de Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture. Sensors 2016, 17, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorschky, E.; Camomilla, V.; Davis, J.; Federolf, P.; Reenalda, J.; Koelewijn, A.D. Perspective on “in the wild” movement analysis using machine learning. Hum. Mov. Sci. 2023, 87, 103042. [Google Scholar] [CrossRef]
- Sharma, D.; Davidson, P.; Müller, P.; Piché, R. Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning. Sensors 2021, 21, 1553. [Google Scholar] [CrossRef]
- Jiang, X.; Napier, C.; Hannigan, B.; Eng, J.J.; Menon, C. Estimating Vertical Ground Reaction Force during Walking Using a Single Inertial Sensor. Sensors 2020, 20, 4345. [Google Scholar] [CrossRef]
- Logan, S.; Hunter, I.; Hopkins, J.T.; Feland, J.B.; Parcell, A.C. Ground reaction force differences between running shoes, racing flats, and distance spikes in runners. J. Sport. Sci. Med. 2010, 9, 147. [Google Scholar]
- Williams, L.R.; Standifird, T.W.; Creer, A.; Fong, H.B.; Powell, D.W. Ground reaction force profiles during inclined running at iso-efficiency speeds. J. Biomech. 2020, 113, 110107. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.P.; Hickok, M.; Cohen, J.A.; Virgile, A.; Connolly, D.A.J. Is there a biomechanically efficient vertical ground reaction force profile for countermovement jumps? Transl. Sport. Med. 2021, 4, 138–146. [Google Scholar] [CrossRef]
- Kluitenberg, B.; Bredeweg, S.W.; Zijlstra, S.; Zijlstra, W.; Buist, I. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskelet. Disord. 2012, 13, 235. [Google Scholar] [CrossRef] [Green Version]
- Pizzolato, C.; Lloyd, D.G.; Sartori, M.; Ceseracciu, E.; Besier, T.F.; Fregly, B.J.; Reggiani, M. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. 2015, 48, 3929–3936. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Diamond, L.E.; Carty, C.P.; Lloyd, D.G.; Davico, G.; Pizzolato, C. A muscle synergy-based method to estimate muscle activation patterns of children with cerebral palsy using data collected from typically developing children. Sci. Rep. 2022, 12, 3599. [Google Scholar] [CrossRef]
- Pedotti, A.; Krishnan, V.V.; Stark, L. Optimization of muscle-force sequencing in human locomotion. Math. Biosci. 1978, 38, 57–76. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 2001, 34, 153–161. [Google Scholar] [CrossRef]
- Michaud, F.; Lamas, M.; Lugrís, U.; Cuadrado, J. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. J. Neuroeng. Rehabil. 2021, 18, 17. [Google Scholar] [CrossRef]
- Michaud, B.; Begon, M. Two efficient static optimization algorithms that account for muscle-tendon equilibrium: Approaching the constraint Jacobian via a constant or a cubic spline function. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Prilutsky, B.I.; Zatsiorsky, V.M. Optimization-based models of muscle coordination. Exerc. Sport Sci. Rev. 2002, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedotti, A. A study of motor coordination and neuromuscular activities in human locomotion. Biol. Cybern. 1977, 26, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.R.; An, K.-N.; Litchy, W.; Chao, E. Physiological prediction of muscle forces—I. Theoretical formulation. Neuroscience 1991, 40, 781–792. [Google Scholar] [CrossRef]
- Crowninshield, R.D.; Brand, R.A. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 1981, 14, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.S.; Lloyd, D.G. Muscle activity is different for humans performing static tasks which require force control and position control. Neurosci. Lett. 1995, 194, 61–64. [Google Scholar] [CrossRef]
- Tax, A.A.; Denier van der Gon, J.J.; Erkelens, C.J. Differences in coordination of elbow flexor muscles in force tasks and in movement tasks. Exp. Brain Res. 1990, 81, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Menegaldo, L.L.; Oliveira, L.F. An EMG-driven model to evaluate quadriceps strengthening after an isokinetic training. Procedia Iutam 2011, 2, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Besier, T.F.; Fredericson, M.; Gold, G.E.; Beaupre, G.S.; Delp, S.L. Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J. Biomech. 2009, 42, 898–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davico, G.; Lloyd, D.G.; Carty, C.P.; Killen, B.A.; Devaprakash, D.; Pizzolato, C. Multi-level personalization of neuromusculoskeletal models to estimate physiologically plausible knee joint contact forces in children. Biomech. Model. Mechanobiol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Akhundov, R.; Bryant, A.L.; Sayer, T.; Paterson, K.; Saxby, D.J.; Nasseri, A. Effects of Footwear on Anterior Cruciate Ligament Forces during Landing in Young Adult Females. Life 2022, 12, 1119. [Google Scholar] [CrossRef]
- Sayer, T.A.; Hinman, R.S.; Paterson, K.L.; Bennell, K.L.; Fortin, K.; Timmi, A.; Pivonka, P.; Bryant, A.L. Differences in Hip and Knee Landing Moments across Female Pubertal Development. Med. Sci. Sport. Exerc. 2019, 51, 123–131. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Mantoan, A.; Pizzolato, C.; Sartori, M.; Sawacha, Z.; Cobelli, C.; Reggiani, M. MOtoNMS: A MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation. Source Code Biol. Med. 2015, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Besier, T.F.; Lloyd, D.G.; Ackland, T.R. Muscle activation strategies at the knee during running and cutting maneuvers. Med. Sci. Sport. Exerc. 2003, 35, 119–127. [Google Scholar] [CrossRef]
- Akhundov, R.; Saxby, D.J.; Edwards, S.; Snodgrass, S.; Clausen, P.; Diamond, L.E. Development of a deep neural network for automated electromyographic pattern classification. J. Exp. Biol. 2019, 222, jeb198101. [Google Scholar] [CrossRef] [Green Version]
- Nasseri, A.; Khataee, H.; Bryant, A.L.; Lloyd, D.G.; Saxby, D.J. Modelling the loading mechanics of anterior cruciate ligament. Comput. Methods Programs Biomed. 2020, 184, 105098. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Saxby, D.J.; Modenese, L.; Bryant, A.L.; Gerus, P.; Killen, B.; Fortin, K.; Wrigley, T.V.; Bennell, K.L.; Cicuttini, F.M.; Lloyd, D.G. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture 2016, 49, 78–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modenese, L.; Ceseracciu, E.; Reggiani, M.; Lloyd, D.G. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. J. Biomech. 2016, 49, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handsfield, G.G.; Meyer, C.H.; Hart, J.M.; Abel, M.F.; Blemker, S.S. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J. Biomech. 2014, 47, 631–638. [Google Scholar] [CrossRef]
- van Arkel, R.J.; Modenese, L.; Phillips, A.T.; Jeffers, J.R. Hip abduction can prevent posterior edge loading of hip replacements. J. Orthop. Res. 2013, 31, 1172–1179. [Google Scholar] [CrossRef] [Green Version]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Region-of-interest analyses of one-dimensional biomechanical trajectories: Bridging 0D and 1D theory, augmenting statistical power. PeerJ 2016, 4, e2652. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.; Gibbons, J.D. Rank Correlation Methods. A Division of Hodder & Stoughton, A Charles Griffin Title, London, 5th ed.; Oxford University Press: Oxford, UK, 1990; pp. 29–50. [Google Scholar]
- Johnson, W.R.; Mian, A.; Donnelly, C.J.; Lloyd, D.; Alderson, J. Predicting athlete ground reaction forces and moments from motion capture. Med. Biol. Eng. Comput. 2018, 56, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Ngoh, K.J.-H.; Gouwanda, D.; Gopalai, A.A.; Chong, Y.Z. Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. J. Biomech. 2018, 76, 269–273. [Google Scholar] [CrossRef]
- Nagahara, R.; Morin, J.-B. Sensor insole for measuring temporal variables and vertical force during sprinting. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2018, 232, 369–374. [Google Scholar] [CrossRef]
- Sands, W.A.; Bogdanis, G.C.; Penitente, G.; Donti, O.; McNeal, J.R.; Butterfield, C.C.; Poehling, R.A.; Barker, L.A. Reliability and validity of a low-cost portable force platform. Isokinet. Exerc. Sci. 2020, 28, 247–253. [Google Scholar] [CrossRef]
- van den Bogert, A.J.; McLean, S.G. Comment: Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am. J. Sports Med. 2006, 34, 312–315; author reply 313–315. [Google Scholar] [CrossRef]
- Bennett, K.J.; Pizzolato, C.; Martelli, S.; Bahl, J.S.; Sivakumar, A.; Atkins, G.J.; Solomon, L.B.; Thewlis, D. EMG-Informed Neuromusculoskeletal Models Accurately Predict Knee Loading Measured Using Instrumented Implants. IEEE Trans. Biomed. Eng. 2022, 69, 2268–2275. [Google Scholar] [CrossRef]
- Andriacchi, T.P. Dynamics of knee malalignment. Orthop. Clin. N. Am. 1994, 25, 395–403. [Google Scholar] [CrossRef]
- Pflum, M.A.; Shelburne, K.B.; Torry, M.R.; Decker, M.J.; Pandy, M.G. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 2004, 36, 1949–1958. [Google Scholar] [CrossRef]
- Binding, P.; Jinha, A.; Herzog, W. Analytic analysis of the force sharing among synergistic muscles in one- and two-degree-of-freedom models. J. Biomech. 2000, 33, 1423–1432. [Google Scholar] [CrossRef]
- Herzog, W.; Binding, P. Predictions of antagonistic muscular activity using nonlinear optimization. Math. Biosci. 1992, 111, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Herzog, W.; Binding, P. Cocontraction of pairs of antagonistic muscles: Analytical solution for planar static nonlinear optimization approaches. Math. Biosci. 1993, 118, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Millard, M.; Uchida, T.; Seth, A.; Delp, S.L. Flexing computational muscle: Modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 2013, 135, 021005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherpereel, K.L.; Bolus, N.B.; Jeong, H.K.; Inan, O.T.; Young, A.J. Estimating Knee Joint Load Using Acoustic Emissions During Ambulation. Ann. Biomed. Eng. 2021, 49, 1000–1011. [Google Scholar] [CrossRef]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
EMG-Informed 3D GRF | SO vGRF | EMG-Informed 3D GRF | SO 3D GRF | EMG-Informed 3D GRF | EMG-Informed vGRF |
---|---|---|---|---|---|
2 | 18 | 2 | 11 | 2 | 18 |
23 | 5 | 23 | 14 | 23 | 22 |
11 | 22 | 11 | 17 | 11 | 11 |
19 | 11 | 19 | 2 | 19 | 5 |
12 | 6 | 12 | 8 | 12 | 6 |
3 | 7 | 3 | 4 | 3 | 20 |
14 | 20 | 14 | 23 | 14 | 7 |
17 | 23 | 17 | 16 | 17 | 23 |
13 | 14 | 13 | 6 | 13 | 14 |
1 | 8 | 1 | 9 | 1 | 21 |
8 | 4 | 8 | 3 | 8 | 8 |
9 | 21 | 9 | 15 | 9 | 4 |
22 | 15 | 22 | 13 | 22 | 15 |
6 | 10 | 6 | 5 | 6 | 2 |
18 | 3 | 18 | 12 | 18 | 13 |
15 | 13 | 15 | 22 | 15 | 10 |
16 | 12 | 16 | 1 | 16 | 17 |
20 | 16 | 20 | 7 | 20 | 9 |
21 | 2 | 21 | 10 | 21 | 16 |
5 | 9 | 5 | 19 | 5 | 12 |
4 | 19 | 4 | 18 | 4 | 19 |
10 | 17 | 10 | 21 | 10 | 3 |
7 | 1 | 7 | 20 | 7 | 1 |
0× | =Identical Rank | 0× | =Identical Rank | 2× | =Identical Rank |
3× | =Rank ± 1 | 0× | =Rank ± 1 | 0× | =Rank ± 1 |
SO + vGRF | SO + 3D GRF | EMG-Inf + vGRF | |
---|---|---|---|
Correlation: | −0.028 | −0.012 | 0.067 |
p-value: | 0.876 | 0.958 | 0.676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasseri, A.; Akhundov, R.; Bryant, A.L.; Lloyd, D.G.; Saxby, D.J. Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces. Bioengineering 2023, 10, 369. https://doi.org/10.3390/bioengineering10030369
Nasseri A, Akhundov R, Bryant AL, Lloyd DG, Saxby DJ. Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces. Bioengineering. 2023; 10(3):369. https://doi.org/10.3390/bioengineering10030369
Chicago/Turabian StyleNasseri, Azadeh, Riad Akhundov, Adam L. Bryant, David G. Lloyd, and David J. Saxby. 2023. "Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces" Bioengineering 10, no. 3: 369. https://doi.org/10.3390/bioengineering10030369
APA StyleNasseri, A., Akhundov, R., Bryant, A. L., Lloyd, D. G., & Saxby, D. J. (2023). Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces. Bioengineering, 10(3), 369. https://doi.org/10.3390/bioengineering10030369