Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review
Abstract
:1. Introduction
2. The Application of PBMT in Endodontics
2.1. PBMT-Induced Anesthesia
2.2. Laser-Assisted Diagnostics of Initial Caries Lesions and Pulp Status
2.3. Laser-Based Prevention and Preparation of Enamel Caries
2.4. PBMT-Assisted Direct Pulp Capping
2.5. Decontamination of a Root Canal System
2.6. Postoperative Pain after Endodontic Treatment
2.7. PBMT Used in Endodontic Surgery
2.8. Tooth/Dentinal Hypersensitivity (DH)
2.9. Tooth Bleaching
3. PBMT on Regenerative Endodontic Procedures
3.1. Biological Responses of hDPSCs to PBMT
3.2. The Favorable Effect of PBMT on Vascularity and Fibroblast Proliferation
3.3. The Beneficial Effect of PBMT on Dentin Formation
3.4. Current Limitations of PBMT in REPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eramo, S.; Natali, A.; Pinna, R.; Milia, E. Dental pulp regeneration via cell homing. Int. Endod. J. 2018, 51, 405–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dammaschke, T.; Steven, D.; Kaup, M.; Ott, K.H. Long-term survival of root-canal-treated teeth: A retrospective study over 10 years. J. Endod. 2003, 29, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Nageh, M.; Ahmed, G.M.; El-Baz, A.A. Assessment of Regaining Pulp Sensibility in Mature Necrotic Teeth Using a Modified Revascularization Technique with Platelet-rich Fibrin: A Clinical Study. J. Endod. 2018, 44, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.N.; Moon, J.W.; Chang, H.S.; Hwang, I.N.; Oh, W.M.; Hwang, Y.C. A review of the regenerative endodontic treatment procedure. Restor. Dent. Endod. 2015, 40, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Iwaya, S.I.; Ikawa, M.; Kubota, M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent. Traumatol. 2001, 17, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Rafter, M. Apexification: A review. Dent. Traumatol. 2005, 21, 1–8. [Google Scholar] [CrossRef]
- Huang, G.T. Apexification: The beginning of its end. Int. Endod. J. 2009, 42, 855–866. [Google Scholar] [CrossRef]
- Moreno-Hidalgo, M.C.; Caleza-Jimenez, C.; Mendoza-Mendoza, A.; Iglesias-Linares, A. Revascularization of immature permanent teeth with apical periodontitis. Int. Endod. J. 2014, 47, 321–331. [Google Scholar] [CrossRef]
- Banchs, F.; Trope, M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J. Endod. 2004, 30, 196–200. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lozano, F.J.; Bueno, C.; Insausti, C.L.; Meseguer, L.; Ramirez, M.C.; Blanquer, M.; Marin, N.; Martinez, S.; Moraleda, J.M. Mesenchymal stem cells derived from dental tissues. Int. Endod. J. 2011, 44, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, S.; Niwa, T.; Karakida, T.; Kobayashi, K.; Yamamoto, R.; Chiba, R.; Yamakoshi, Y.; Hosoya, N. Effects of Er:YAG and Diode Laser Irradiation on Dental Pulp Cells and Tissues. Int. J. Mol. Sci. 2018, 19, 2429. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.S.; Diniz, I.M.; Rodrigues, M.F.; de Carvalho, R.A.; de Almeida Carrer, F.C.; Neves, I.I.; Gavini, G.; Marques, M.M. In vivo experimental model of orthotopic dental pulp regeneration under the influence of photobiomodulation therapy. J. Photochem. Photobiol. B 2017, 166, 180–186. [Google Scholar] [CrossRef]
- Marques, M.M.; Diniz, I.M.; de Cara, S.P.; Pedroni, A.C.; Abe, G.L.; D’Almeida-Couto, R.S.; Lima, P.L.; Tedesco, T.K.; Moreira, M.S. Photobiomodulation of Dental Derived Mesenchymal Stem Cells: A Systematic Review. Photomed. Laser Surg. 2016, 34, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Lipovsky, A.; Oron, U.; Gedanken, A.; Lubart, R. Low-level visible light (LLVL) irradiation promotes proliferation of mesenchymal stem cells. Lasers Med. Sci. 2013, 28, 1113–1117. [Google Scholar] [CrossRef]
- Amaroli, A.; Ravera, S.; Parker, S.; Panfoli, I.; Benedicenti, A.; Benedicenti, S. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa). Photochem. Photobiol. 2015, 91, 1150–1155. [Google Scholar] [CrossRef]
- Amaroli, A.; Ravera, S.; Parker, S.; Panfoli, I.; Benedicenti, A.; Benedicenti, S. 808-nm laser therapy with a flat-top handpiece photobiomodulates mitochondria activities of Paramecium primaurelia (Protozoa). Lasers Med. Sci. 2016, 31, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.M.; Ginani, F.; Henriques, A.G.; Barboza, C.A. Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med. Sci. 2015, 30, 1171–1174. [Google Scholar] [CrossRef]
- Parker, S.; Cronshaw, M.; Anagnostaki, E.; Bordin-Aykroyd, S.R.; Lynch, E. Systematic Review of Delivery Parameters Used in Dental Photobiomodulation Therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 784–797. [Google Scholar] [CrossRef]
- Staffoli, S.; Romeo, U.; Amorim, R.N.S.; Migliau, G.; Palaia, G.; Resende, L.; Polimeni, A. The effects of low level laser irradiation on proliferation of human dental pulp: A narrative review. Clin. Ter. 2017, 168, e320–e326. [Google Scholar] [PubMed]
- Moreira, M.S.; Sarra, G.; Carvalho, G.L.; Goncalves, F.; Caballero-Flores, H.V.; Pedroni, A.C.F.; Lascala, C.A.; Catalani, L.H.; Marques, M.M. Physical and Biological Properties of a Chitosan Hydrogel Scaffold Associated to Photobiomodulation Therapy for Dental Pulp Regeneration: An In Vitro and In Vivo Study. Biomed. Res. Int. 2021, 2021, 6684667. [Google Scholar] [CrossRef] [PubMed]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Lesniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Kalhori, K.A.M.; Vahdatinia, F.; Jamalpour, M.R.; Vescovi, P.; Fornaini, C.; Merigo, E.; Fekrazad, R. Photobiomodulation in Oral Medicine. Photobiomodul. Photomed. Laser Surg. 2019, 37, 837–861. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Tunér, J. Low-level laser therapy in dentistry. Dent. Clin. North Am. 2004, 48, 1061–1076. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, K.; Hosseinzadeh, R.; Abrahamse, H.; Fekrazad, R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr. Stem. Cell Res. Ther. 2020, 15, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Metin, R.; Tatli, U.; Evlice, B. Effects of low-level laser therapy on soft and hard tissue healing after endodontic surgery. Lasers Med. Sci. 2018, 33, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.A.; El Shenawy, H.M.; Harhsh, T.A.; Shalash, M.; Awad, N.M. Can Low Level Laser Therapy Benefit Bone Regeneration in Localized Maxillary Cystic Defects?-A Prospective Randomized Control Trial. Open Access Maced. J. Med. Sci. 2016, 4, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Ansari, G.; Safi Aghdam, H.; Taheri, P.; Ghazizadeh Ahsaie, M. Laser pulpotomy-an effective alternative to conventional techniques-a systematic review of literature and meta-analysis. Lasers Med. Sci. 2018, 33, 1621–1629. [Google Scholar] [CrossRef]
- Vahdatinia, F.; Gholami, L.; Karkehabadi, H.; Fekrazad, R. Photobiomodulation in Endodontic, Restorative, and Prosthetic Dentistry: A Review of the Literature. Photobiomodul. Photomed. Laser Surg. 2019, 37, 869–886. [Google Scholar] [CrossRef]
- Paolone, G.; Mazzitelli, C.; Formiga, S.; Kaitsas, F.; Breschi, L.; Mazzoni, A.; Tete, G.; Polizzi, E.; Gherlone, E.; Cantatore, G. One-year impact of COVID-19 pandemic on Italian dental professionals: A cross-sectional survey. Minerva Dent. Oral Sci. 2022, 71, 212–222. [Google Scholar] [CrossRef]
- Tanboga, I.; Eren, F.; Altinok, B.; Peker, S.; Ertugral, F. The effect of low level laser therapy on pain during dental tooth-cavity preparation in children. Eur. Arch. Paediatr. Dent. 2011, 12, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Efthymiou, A.; Marques, M.M.; Franzen, R.; Moreira, M.S.; Gutknecht, N. Acceptance and efficiency of anesthesia by photobiomodulation therapy during conventional cavity preparation in permanent teeth: A pilot randomized crossover clinical study. Lasers Dent. Sci. 2017, 1, 65–71. [Google Scholar] [CrossRef]
- Lussi, A.; Hibst, R.; Paulus, R. DIAGNOdent: An optical method for caries detection. J. Dent. Res. 2004, 83, C80–C83. [Google Scholar] [CrossRef]
- Heinrich-Weltzien, R.; Kuhnisch, J.; van der Veen, M.; de Josselin de Jong, E.; Stosser, L. Quantitative light-induced fluorescence (QLF)—A potential method for the dental practitioner. Quintessence Int. 2003, 34, 181–188. [Google Scholar] [PubMed]
- Ross, G.; Ross, A.W. Photobiomodulation: An Invaluable Tool for All Dental Specialties, 2009.
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Laser-assisted prevention of enamel caries: A 10-year review of the literature. Lasers Med. Sci. 2020, 35, 13–30. [Google Scholar] [CrossRef]
- de Sant’anna, G.R.; dos Santos, E.A.; Soares, L.E.; do Espirito Santo, A.M.; Martin, A.A.; Duarte, D.A.; Pacheco-Soares, C.; Brugnera, A., Jr. Dental enamel irradiated with infrared diode laser and photoabsorbing cream: Part 1-FT-Raman Study. Photomed. Laser Surg. 2009, 27, 499–507. [Google Scholar] [CrossRef] [Green Version]
- de Sant’Anna, G.R.; dos Santos, E.A.; Soares, L.E.; do Espirito Santo, A.M.; Martin, A.A.; Duarte, D.A.; Pacheco-Soares, C.; Brugnera, A., Jr. Dental enamel irradiated with infrared diode laser and photo-absorbing cream: Part 2-EDX study. Photomed. Laser Surg. 2009, 27, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, A.S.; Hanashiro, F.S.; de Sant’Anna, G.R.; Steagall Junior, W.; Barbosa, P.S.; de Souza-Zaroni, W.C. Effects of near infrared laser radiation associated with photoabsorbing cream in preventing white spot lesions around orthodontic brackets: An in vitro study. Photomed. Laser Surg. 2014, 32, 686–693. [Google Scholar] [CrossRef]
- da Silva Barbosa, P.; da Ana, P.A.; Poiate, I.A.; Zezell, D.M.; de Sant’ Anna, G.R. Dental enamel irradiated with a low-intensity infrared laser and photoabsorbing cream: A study of microhardness, surface, and pulp temperature. Photomed. Laser Surg. 2013, 31, 439–446. [Google Scholar] [CrossRef]
- Delme, K.; Meire, M.; De Bruyne, M.; Nammour, S.; De Moor, R. Cavity preparation using an Er:YAG laser in the adult dentition. Rev. Belge Med. Dent. 2009, 64, 71–80. [Google Scholar]
- Javed, F.; Kellesarian, S.V.; Abduljabbar, T.; Gholamiazizi, E.; Feng, C.; Aldosary, K.; Vohra, F.; Romanos, G.E. Role of laser irradiation in direct pulp capping procedures: A systematic review and meta-analysis. Lasers Med. Sci. 2017, 32, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhu, X.; Zheng, D.; Yan, P.; Jiang, H. Laser use in direct pulp capping: A meta-analysis. J. Am. Dent. Assoc. 2016, 147, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Bidar, M.; Moushekhian, S.; Gharechahi, M.; Talati, A.; Ahrari, F.; Bojarpour, M. The Effect of Low Level Laser Therapy on Direct Pulp Capping in Dogs. J. Lasers Med. Sci. 2016, 7, 177–183. [Google Scholar] [CrossRef]
- Jayawardena, J.A.; Kato, J.; Moriya, K.; Takagi, Y. Pulpal response to exposure with Er:YAG laser. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Marques, J.A.; Diogo, P.; Messias, A.; Sousa, V.; Sequeira, D.; Palma, P.J. Influence of Preoperative Pulp Inflammation in the Outcome of Full Pulpotomy Using a Dog Model. J. Endod. 2021, 47, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Alsofi, L.; Khalil, W.; Binmadi, N.O.; Al-Habib, M.A.; Alharbi, H. Pulpal and periapical tissue response after direct pulp capping with endosequence root repair material and low-level laser application. BMC Oral Health 2022, 22, 57. [Google Scholar] [CrossRef]
- Shigetani, Y.; Sasa, N.; Suzuki, H.; Okiji, T.; Ohshima, H. GaAlAs laser irradiation induces active tertiary dentin formation after pulpal apoptosis and cell proliferation in rat molars. J. Endod. 2011, 37, 1086–1091. [Google Scholar] [CrossRef]
- Ferriello, V.; Faria, M.R.; Cavalcanti, B.N. The effects of low-level diode laser treatment and dental pulp-capping materials on the proliferation of L-929 fibroblasts. J. Oral Sci. 2010, 52, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Di Spirito, F.; Pisano, M.; Caggiano, M.; Bhasin, P.; Lo Giudice, R.; Abdellatif, D. Root Canal Cleaning after Different Irrigation Techniques: An Ex Vivo Analysis. Medicina 2022, 58, 193. [Google Scholar] [CrossRef]
- Lo Giudice, G.; Lizio, A.; Giudice, R.L.; Centofanti, A.; Rizzo, G.; Runci, M.; Alibrandi, A.; Cicciu, M. The Effect of Different Cleaning Protocols on Post Space: A SEM Study. Int. J. Dent. 2016, 2016, 1907124. [Google Scholar] [CrossRef] [Green Version]
- Sato, I.; Ando-Kurihara, N.; Kota, K.; Iwaku, M.; Hoshino, E. Sterilization of infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline in situ. Int. Endod. J. 1996, 29, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Asnaashari, M.; Safavi, N. Disinfection of Contaminated Canals by Different Laser Wavelengths, while Performing Root Canal Therapy. J. Lasers Med. Sci. 2013, 4, 8–16. [Google Scholar]
- Takeda, F.H.; Harashima, T.; Kimura, Y.; Matsumoto, K. A comparative study of the removal of smear layer by three endodontic irrigants and two types of laser. Int. Endod. J. 1999, 32, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Stabholz, A.; Khayat, A.; Ravanshad, S.H.; McCarthy, D.W.; Neev, J.; Torabinejad, M. Effects of Nd:YAG laser on apical seal of teeth after apicoectomy and retrofill. J. Endod. 1992, 18, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Goya, C.; Yamazaki, R.; Tomita, Y.; Kimura, Y.; Matsumoto, K. Effects of pulsed Nd:YAG laser irradiation on smear layer at the apical stop and apical leakage after obturation. Int. Endod. J. 2000, 33, 266–271. [Google Scholar] [CrossRef]
- Harashima, T.; Takeda, F.H.; Kimura, Y.; Matsumoto, K. Effect of Nd:YAG laser irradiation for removal of intracanal debris and smear layer in extracted human teeth. J. Clin. Laser Med. Surg. 1997, 15, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Altundasar, E.; Ozcelik, B.; Cehreli, Z.C.; Matsumoto, K. Ultramorphological and histochemical changes after ER,CR:YSGG laser irradiation and two different irrigation regimes. J. Endod. 2006, 32, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Takeda, F.H.; Harashima, T.; Eto, J.N.; Kimura, Y.; Matsumoto, K. Effect of Er:YAG laser treatment on the root canal walls of human teeth: An SEM study. Endod. Dent. Traumatol. 1998, 14, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Moritz, A.; Schoop, U.; Goharkhay, K.; Jakolitsch, S.; Kluger, W.; Wernisch, J.; Sperr, W. The bactericidal effect of Nd:YAG, Ho:YAG, and Er:YAG laser irradiation in the root canal: An in vitro comparison. J. Clin. Laser Med. Surg. 1999, 17, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Schoop, U.; Kluger, W.; Moritz, A.; Nedjelik, N.; Georgopoulos, A.; Sperr, W. Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg. Med. 2004, 35, 111–116. [Google Scholar] [CrossRef]
- Alves-Silva, E.G.; Arruda-Vasconcelos, R.; Louzada, L.M.; de-Jesus-Soares, A.; Ferraz, C.C.R.; Almeida, J.F.A.; Marciano, M.A.; Steiner-Oliveira, C.; Santos, J.M.M.; Gomes, B.P. Effect of antimicrobial photodynamic therapy on the reduction of bacteria and virulence factors in teeth with primary endodontic infection. Photodiagn. Photodyn. Ther. 2023, 41, 103292. [Google Scholar] [CrossRef]
- Garcez, A.S.; Nunez, S.C.; Hamblin, M.R.; Ribeiro, M.S. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J. Endod. 2008, 34, 138–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foschi, F.; Fontana, C.R.; Ruggiero, K.; Riahi, R.; Vera, A.; Doukas, A.G.; Pagonis, T.C.; Kent, R.; Stashenko, P.P.; Soukos, N.S. Photodynamic inactivation of Enterococcus faecalis in dental root canals in vitro. Lasers Surg. Med. 2007, 39, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.B.; Junior, P.O.; Pallota, R.C.; Filho, H.F.; Denardin, O.V.; Rapoport, A.; Dedivitis, R.A.; Veronezi, J.F.; Genovese, W.J.; Ricardo, A.L. Photodynamic therapy for root canals infected with Enterococcus faecalis. Photomed. Laser Surg. 2008, 26, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diogo, P.; Goncalves, T.; Palma, P.; Santos, J.M. Photodynamic Antimicrobial Chemotherapy for Root Canal System Asepsis: A Narrative Literature Review. Int. J. Dent. 2015, 2015, 269205. [Google Scholar] [CrossRef] [Green Version]
- Fimple, J.L.; Fontana, C.R.; Foschi, F.; Ruggiero, K.; Song, X.; Pagonis, T.C.; Tanner, A.C.; Kent, R.; Doukas, A.G.; Stashenko, P.P.; et al. Photodynamic treatment of endodontic polymicrobial infection in vitro. J. Endod. 2008, 34, 728–734. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, A.L.; Bossini, P.S.; Parizotto, N.A. Use of low level laser therapy to control neuropathic pain: A systematic review. J. Photochem. Photobiol. B 2016, 164, 36–42. [Google Scholar] [CrossRef]
- Ramalho, K.M.; de Souza, L.M.; Tortamano, I.P.; Adde, C.A.; Rocha, R.G.; de Paula Eduardo, C. A randomized placebo-blind study of the effect of low power laser on pain caused by irreversible pulpitis. Lasers Med. Sci. 2016, 31, 1899–1905. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Shon, W.J.; Baek, S.H.; Kang, M.K.; Kim, H.C.; Lee, W. Effect of 1440-nanometer neodymium:yttrium-aluminum-garnet laser irradiation on pain and neuropeptide reduction: A randomized prospective clinical trial. J. Endod. 2014, 40, 28–32. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.L.; Zou, X.L.; Chen, S.Z.; Zou, J.; Wang, Y. Efficacy of low-level laser therapy in pain management after root canal treatment or retreatment: A systematic review. Lasers Med. Sci. 2019, 34, 1305–1316. [Google Scholar] [CrossRef]
- Trope, M. Flare-up rate of single-visit endodontics. Int. Endod. J. 1991, 24, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Femiano, F.; Femiano, R.; Femiano, L.; Aresu, G.; Festa, V.M.; Rullo, R.; Perillo, L. Effectiveness of low-level diode laser therapy on pain during cavity preparation on permanent teeth. Am. J. Dent. 2018, 31, 267–271. [Google Scholar] [PubMed]
- Payer, M.; Jakse, N.; Pertl, C.; Truschnegg, A.; Lechner, E.; Eskici, A. The clinical effect of LLLT in endodontic surgery: A prospective study on 72 cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Moraschini, V.; da Costa, L.S.; Dos Santos, G.O. Effectiveness for dentin hypersensitivity treatment of non-carious cervical lesions: A meta-analysis. Clin. Oral Investig. 2018, 22, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Gholami, G.A.; Fekrazad, R.; Esmaiel-Nejad, A.; Kalhori, K.A. An evaluation of the occluding effects of Er;Cr:YSGG, Nd:YAG, CO₂ and diode lasers on dentinal tubules: A scanning electron microscope in vitro study. Photomed. Laser Surg. 2011, 29, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Aranha, A.C.; Eduardo Cde, P. Effects of Er:YAG and Er,Cr:YSGG lasers on dentine hypersensitivity. Short-term clinical evaluation. Lasers Med. Sci. 2012, 27, 813–818. [Google Scholar] [CrossRef]
- Roderjan, D.A.; Stanislawczuk, R.; Hebling, J.; Costa, C.A.; Reis, A.; Loguercio, A.D. Response of human pulps to different in-office bleaching techniques: Preliminary findings. Braz. Dent. J. 2015, 26, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Bortolatto, J.F.; Pretel, H.; Floros, M.C.; Luizzi, A.C.; Dantas, A.A.; Fernandez, E.; Moncada, G.; de Oliveira, O.B., Jr. Low Concentration H(2)O(2)/TiO_N in Office Bleaching: A Randomized Clinical Trial. J. Dent. Res. 2014, 93 (Suppl. 7), 66s–71s. [Google Scholar] [CrossRef] [Green Version]
- Loguercio, A.D.; Tay, L.Y.; Herrera, D.R.; Bauer, J.; Reis, A. Effectiveness of nano-calcium phosphate paste on sensitivity during and after bleaching: A randomized clinical trial. Braz. Oral Res. 2015, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cartagena, A.F.; Parreiras, S.O.; Loguercio, A.D.; Reis, A.; Campanha, N.H. In-office bleaching effects on the pulp flow and tooth sensitivity-case series. Braz. Oral Res. 2015, 29. [Google Scholar] [CrossRef] [Green Version]
- AlGhamdi, K.M.; Kumar, A.; Moussa, N.A. Low-level laser therapy: A useful technique for enhancing the proliferation of various cultured cells. Lasers Med. Sci. 2012, 27, 237–249. [Google Scholar] [CrossRef]
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-level light/laser therapy versus photobiomodulation therapy. Photomed. Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borzabadi-Farahani, A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J. Photochem. Photobiol. B 2016, 162, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Arany, P.R.; Cho, A.; Hunt, T.D.; Sidhu, G.; Shin, K.; Hahm, E.; Huang, G.X.; Weaver, J.; Chen, A.C.; Padwa, B.L.; et al. Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med. 2014, 6, 238ra69. [Google Scholar] [CrossRef] [Green Version]
- El-Kateb, N.M.; El-Backly, R.N.; Amin, W.M.; Abdalla, A.M. Quantitative Assessment of Intracanal Regenerated Tissues after Regenerative Endodontic Procedures in Mature Teeth Using Magnetic Resonance Imaging: A Randomized Controlled Clinical Trial. J. Endod. 2020, 46, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.J.; Martins, J.; Diogo, P.; Sequeira, D.; Ramos, J.C.; Diogenes, A.; Santos, J.M. Does Apical Papilla Survive and Develop in Apical Periodontitis Presence after Regenerative Endodontic Procedures? Appl. Sci. 2019, 9, 3942. [Google Scholar] [CrossRef] [Green Version]
- Daigo, Y.; Daigo, E.; Fukuoka, H.; Fukuoka, N.; Ishikawa, M.; Takahashi, K. Wound Healing and Cell Dynamics Including Mesenchymal and Dental Pulp Stem Cells Induced by Photobiomodulation Therapy: An Example of Socket-Preserving Effects after Tooth Extraction in Rats and a Literature Review. Int. J. Mol. Sci. 2020, 21, 6850. [Google Scholar] [CrossRef]
- Garrido, P.R.; Pedroni, A.C.F.; Cury, D.P.; Moreira, M.S.; Rosin, F.; Sarra, G.; Marques, M.M. Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets. J. Photochem. Photobiol. B 2019, 194, 149–157. [Google Scholar] [CrossRef]
- Lovelace, T.W.; Henry, M.A.; Hargreaves, K.M.; Diogenes, A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J. Endod. 2011, 37, 133–138. [Google Scholar] [CrossRef]
- Asghari Sana, F.; Capkin Yurtsever, M.; Kaynak Bayrak, G.; Tuncay, E.O.; Kiremitci, A.S.; Gumusderelioglu, M. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 2017, 69, 617–630. [Google Scholar] [CrossRef]
- Grando Mattuella, L.; Westphalen Bento, L.; de Figueiredo, J.A.; Nor, J.E.; de Araujo, F.B.; Fossati, A.C. Vascular endothelial growth factor and its relationship with the dental pulp. J. Endod. 2007, 33, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Zaccara, I.M.; Mestieri, L.B.; Pilar, E.F.S.; Moreira, M.S.; Grecca, F.S.; Martins, M.D.; Kopper, P.M.P. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med. Sci. 2020, 35, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Eduardo Fde, P.; Bueno, D.F.; de Freitas, P.M.; Marques, M.M.; Passos-Bueno, M.R.; Eduardo Cde, P.; Zatz, M. Stem cell proliferation under low intensity laser irradiation: A preliminary study. Lasers Surg. Med. 2008, 40, 433–438. [Google Scholar] [CrossRef]
- Holder, M.J.; Milward, M.R.; Palin, W.M.; Hadis, M.A.; Cooper, P.R. Effects of red light-emitting diode irradiation on dental pulp cells. J. Dent. Res. 2012, 91, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Zaccara, I.M.; Ginani, F.; Mota-Filho, H.G.; Henriques, A.C.; Barboza, C.A. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med. Sci. 2015, 30, 2259–2264. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Diniz, I.M.A.; Maranduba, C.M.S.; Miyagi, S.P.H.; Rodrigues, M.; Moura-Netto, C.; Marques, M.M. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med. Sci. 2019, 34, 659–666. [Google Scholar] [CrossRef]
- Matsui, S.; Tsujimoto, Y.; Matsushima, K. Stimulatory effects of hydroxyl radical generation by Ga-Al-As laser irradiation on mineralization ability of human dental pulp cells. Biol. Pharm. Bull. 2007, 30, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Matsui, S.; Takeuchi, H.; Tsujimoto, Y.; Matsushima, K. Effects of Smads and BMPs induced by Ga-Al-As laser irradiation on calcification ability of human dental pulp cells. J. Oral Sci. 2008, 50, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Ohbayashi, E.; Matsushima, K.; Hosoya, S.; Abiko, Y.; Yamazaki, M. Stimulatory effect of laser irradiation on calcified nodule formation in human dental pulp fibroblasts. J. Endod. 1999, 25, 30–33. [Google Scholar] [CrossRef]
- Pereira, L.O.; Longo, J.P.; Azevedo, R.B. Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch. Oral Biol. 2012, 57, 1079–1085. [Google Scholar] [CrossRef]
- Theocharidou, A.; Bakopoulou, A.; Kontonasaki, E.; Papachristou, E.; Hadjichristou, C.; Bousnaki, M.; Theodorou, G.; Papadopoulou, L.; Kantiranis, N.; Paraskevopoulos, K.; et al. Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med. Sci. 2017, 32, 201–210. [Google Scholar] [CrossRef]
- Moura-Netto, C.; Ferreira, L.S.; Maranduba, C.M.; Mello-Moura, A.C.V.; Marques, M.M. Low-intensity laser phototherapy enhances the proliferation of dental pulp stem cells under nutritional deficiency. Braz. Oral Res. 2016, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, N.C.T.; Neto, N.L.; Prado, M.T.O.; Vitor, L.L.R.; Oliveira, R.C.; Sakai, V.T.; Santos, C.F.; Machado, M.; Oliveira, T.M. Effects of PBM in different energy densities and irradiance on maintaining cell viability and proliferation of pulp fibroblasts from human primary teeth. Lasers Med. Sci. 2017, 32, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Fekrazad, R.; Seraj, B.; Ghadimi, S.; Tamiz, P.; Mottahary, P.; Dehghan, M.M. The effect of low-level laser therapy (810 nm) on root development of immature permanent teeth in dogs. Lasers Med. Sci. 2015, 30, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
1 | PBMT-Induced Anesthesia |
2 | Laser-assisted Diagnostics of Initial Caries Lesions and Pulp Status |
3 | Laser-based Prevention and Preparation of Enamel Caries |
4 | PBMT-assisted Direct Pulp Capping |
5 | Decontamination of Root Canal System |
6 | Postoperative Pain after Endodontic Treatment |
7 | PBMT used in Endodontic Surgery |
8 | Tooth/Dentinal Hypersensitivity |
9 | Tooth Bleaching |
10 | Regenerative Endodontic Procedures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, J.; Gröger, S.; Wu, Z.; Ruf, S.; Ye, Y.; Chen, X. Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review. Bioengineering 2023, 10, 371. https://doi.org/10.3390/bioengineering10030371
Yong J, Gröger S, Wu Z, Ruf S, Ye Y, Chen X. Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review. Bioengineering. 2023; 10(3):371. https://doi.org/10.3390/bioengineering10030371
Chicago/Turabian StyleYong, Jiawen, Sabine Gröger, Zuping Wu, Sabine Ruf, Yuer Ye, and Xiaoyan Chen. 2023. "Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review" Bioengineering 10, no. 3: 371. https://doi.org/10.3390/bioengineering10030371
APA StyleYong, J., Gröger, S., Wu, Z., Ruf, S., Ye, Y., & Chen, X. (2023). Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review. Bioengineering, 10(3), 371. https://doi.org/10.3390/bioengineering10030371