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Abstract: This study aimed to evaluate the loss of mineral content in the enamel surface in early
artificial lesions and to assess the remineralizing potential of different agents by means of SEM coupled
with energy-dispersive X-ray analysis (EDX). The analysis was performed on the enamel of 36 molars
divided into six equal groups, in which the experimental ones (3–6) were treated using remineralizing
agents for a 28-day pH cycling protocol as follows: Group 1, sound enamel; Group 2, artificially
demineralized enamel; Group 3, CPP-ACP treatment; Group 4, Zn-hydroxyapatite treatment; Group
5, NaF 5% treatment; and Group 6, F-ACP treatment. Surface morphologies and alterations in Ca/P
ratio were evaluated using SEM-EDX and data underwent statistical analysis (p < 0.05). Compared
with the sound enamel of Group 1, the SEM images of Group 2 clearly showed loss of integrity,
minerals, and interprismatic substances. Groups 3–6 showed a structural reorganization of enamel
prisms, interestingly comprising almost the entire enamel surface. Group 2 revealed highly significant
differences of Ca/P ratios compared with other groups, while Groups 3–6 showed no differences
with Group 1. In conclusion, all tested materials demonstrated a biomimetic ability in remineralizing
lesions after 28 days of treatment.

Keywords: enamel remineralization; demineralization; early enamel lesion; SEM-EDX; CPP-ACP;
nano-hydroxyapatite; F-ACP; NaF; biomaterials

1. Introduction

Remineralization is an enamel repair mechanism that can be useful for non-cavitated
caries and non-carious lesions. This mechanism involves the replacement of minerals lost
during the early stages of demineralization, such as calcium (Ca2+) and phosphate (PO4

3−)
ions, to restore the enamel structure and create a new surface on the rest of the existing
crystals that persists after demineralization [1,2].

The first goal for dental caries prevention is to stop the ongoing demineralization
process or to strengthen the remineralization process [3]. To understand the mechanism of
action of remineralizing agents (RA), it is essential to comprehend the enamel’s crystalline
structure and how it breaks down during the demineralization process.

Enamel hydroxyapatite (HA) crystals are highly organized units, forming compact
rods that are surrounded by interrod, which extend from the dento-enamel junction to
the outer surface of the tooth [4]. This extremely organized three-dimensional structure
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contributes to the enamel’s ability to withstand occlusal forces and counteract microbial
attacks. The structure of HA crystals is under the influence of a natural cycle between
demineralization and remineralization and the disruption of this balance leads to the
deterioration of tooth structure [5].

The application of RA has been considered as a feasible way to prevent early enamel
lesions by means of the remineralization potential exerted by the release of various ions [6].
Indeed, several functional materials have been reported to guide the deposition of minerals
on the damaged enamel, thus being capable of restoring the structure and hardness of
dental enamel [7].

A number of studies suggest that fluoride (F) remains the best established agent to
promote remineralization [8,9]. This is attributed both to the fluoride-enhanced precipi-
tation into the tooth enamel of Ca2+/PO4

3− and to the formation of fluorohydroxyapatite
(F-HA) [10]. Indeed, for every two F-, ten Ca2+ and six PO4

3− are required to form one unit
cell of F-HA (Ca10(PO4)6F2). Hence, with topical application of F, the availability of Ca2+

and PO4
3− in the oral environment can be a critical factor for the enamel remineralization

process, being further intensified by xerostomic conditions [11]. F-HA is less soluble in
acid solution than HA, which in turn is less soluble than carbonated apatite [12]. Therefore,
original relatively acid-soluble HA is converted into relatively acid-stable F-HA. In addition,
a covering CaF2 layer is formed on the tooth surface, which can serve as a “protective layer”
during acid attacks [13].

Other non-fluoridated RA are also capable of promoting the remineralization of
enamel as well as Casein Phosphopeptide–Amorphous Calcium Phosphate (CPP-ACP)
and synthetic nano-hydroxyapatite (n-HA) [14]. In particular, CPPs are phosphorylated
casein-derived peptides formed as the result of tryptic digestion of casein [15]; ACP is a
highly reactive, non-crystalline material that rapidly converts to HA. Together, CPP-ACP
nanocomplexes decrease demineralization and promote remineralization by localizing ACP
in dental plaque, maintaining a state of supersaturation of Ca2+ and PO4

3− on the enamel
surface [16,17]. In addition, the ACP can be functionalized with F, carbonate and citrate,
forming the F-ACP complex, in order to efficiently remineralize damaged calcified tissues
in their native structure [18,19].

In addition, n-HA has been utilized as an alternative agent for enamel remineralization
for its high biocompatibility and bioactivity. Numerous studies have reported that n-
HA and apatite enamel crystals possess similar properties, morphology, structure, and
crystallinity [14,20,21]. Therefore, demineralized enamel could be biomimetically repaired,
substituting the damaged enamel crystals with n-HA [22–24]. The nanosized particles can
directly fill up any microporosity on the demineralized enamel surface and act as a scaffold
for the precipitation of Ca2+ and PO4

3− from saliva in order to form a new apatite layer [25].
As a result, there is a decrease in defects and cavities of the enamel surface and an increase
in hardness of its surface.

One of the main techniques for measuring the tooth’s mineral content is represented
by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray analysis
(EDX) [26]. SEM allows obtaining qualitative information on the micromorphology of the
samples because of its ability to create high-resolution images of hard surfaces; moreover,
EDX represents a micro analytical technique employed to quantitatively estimate the
amounts of mineral in a tooth sample [27,28].

Our previous study evaluated short-term RA effects, over a period of 7 days, demon-
strating that a complete remineralization of the enamel surface was not achieved [29].
Therefore, as a continuation of this work, the aim of the present study was to evaluate for
the first time the remineralizing performance of four different RA, containing CPP-ACP,
n-HA, NaF, and F-ACP, respectively, on early artificial enamel lesions after a 28-day pH-
cycling protocol using SEM-EDX analysis. The proposed null hypotheses were that (1)
there would be no differences between the sound enamel and the enamel treated with RA
in morphological features and Ca/P ratio; and (2) there would be no differences among the
RA after 28 days of treatment in morphological features and Ca/P ratio.
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2. Materials and Methods
2.1. Sample Preparation

The study was conducted at the Department of Clinical Sciences and Stomatology
of Università Politecnica delle Marche (Ancona, Italy). Thirty-six human third molars
extracted for orthodontic and periodontal reasons were collected [29]. All patients were
informed in advance that their extracted teeth would be used for scientific purposes, and
written consent was obtained before the experiment. For the selection, the following
inclusion criteria were applied: integrity of the buccal and lingual surfaces, absence of
enamel wear, traumatic lesions, and absence of volume, shape, and structural anomalies.
In the selected teeth, remaining soft tissues, debris, and stains were removed with hand-
scaling instruments and were stored in 0.5% w/w chloramine solution (NH2Cl) at room
temperature. One single operator performed all procedures to avoid operator bias.

The teeth were randomly divided into six groups as follows (n = 6):
Group 1. Sound enamel without any treatment stored in artificial saliva (Biotene

Oralbalance Gel, GSK C.Health Srl, Verona, Italy);
Group 2. Demineralized enamel as explained below in Section 2.2 and then stored in

artificial saliva (Biotene Oralbalance Gel, GSK C. Health Srl, Verona, Italy);
Group 3. Artificial enamel lesion treated with a mousse containing CPP-ACP (GC

Tooth Mousse, Recaldent GC, Milano, Italy);
Group 4. Artificial enamel lesion treated with a gel containing zinc-hydroxyapatite

(Biorepair Desensitizing Enamel-Repair Shock Treatment, Coswell oral care professional
Spa, Bologna, Italy);

Group 5. Artificial enamel lesion treated with a varnish containing sodium fluoride
(NaF) 5% (Duraphat, Colgate-Palmolive, New York, NY, USA);

Group 6. Artificial enamel lesion treated with a mousse containing F-ACP (Biosmalto
caries, abrasion & erosion-impact action mousse professional, Curasept Spa, Varese, Italy).

All the agents were applied once a day on the enamel surface for 120 s in a thin layer
using a microbrush according to the manufacturer’s instructions.

2.2. Artificial Incipient Caries Like-Lesion Formation

The model for inducing artificial initial lesions on the enamel surface was used by
immersing the buccal surfaces of the samples in 0.1 M lactic acid adjusted to pH 4.4 for
72 h [30]. After lesion formation, samples were thoroughly washed with deionized water, air
dried, and stored in artificial saliva (Biotene Oralbalance Gel, GSK C.Health Srl, Verona, Italy).

2.3. 28-Day pH Cycling Protocol

The pH cycling procedure consisted of cycling in the demineralizing solution at a pH
of 4.4 (0.1 M lactic acid) for 6 h (30 mL for each sample) [30–33], treating with assigned
RA for 120 s, and then keeping in artificial saliva for 18 h. Between the demineralization
and remineralization cycles, the teeth were washed with deionized water to eliminate the
possible leftovers. The demineralizing solution was replaced every 2 days. The tested RA
pH levels were as follows: Group 3 (pH 6.7), Group 4 (pH 8.0), Group 5 (pH 5.7), and Group
6 (pH 7.1). This cycle was repeated once a day for 28 days [34]. After 28 days of treatment,
the teeth were carefully cleaned and dehydrated for SEM-EDX analyses.

2.4. SEM-EDX Analysis

Specimens were air dried, mounted on aluminum stubs, and then observed by a
TESCAN VEGA 3 LMU SEM (Centre for Electron Microscopy-(CISMIN) Department of
SIMAU, Università Politecnica delle Marche, Ancona, Italy). SEM images were acquired
to investigate the morphology of enamel and to search for surface damage at different
magnifications: 500× and 1000×.

The chemical surface characterization was performed by means of EDX using EDAX
Element Microanalysis (AMETEK Gmbh, EDAX Business Unit, Weiterstadt, Germany).
EDX analysis was carried out on 3 sample areas with the following operating parameters:
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working distance of 15 mm, acceleration voltage of 25 kV, and 500× magnification. The
degree of remineralization was assessed by measuring the amount of phosphorus (P) and
calcium (Ca) and calculating their ratio (Ca/P) in the treated specimens. Results were
reported as mean value and standard deviation.

2.5. Statistical Analysis

The EDX results were analyzed using descriptive statistics, and statistical inferences
between experimental groups were determined by one-way ANOVA (analysis of vari-
ance) followed by Tukey’s test, using the statistical software Prism8 (GraphPad Software,
CA, USA). The group size was set to n = 6 for all experimental groups and significance
was p < 0.05. The power of experiment was calculated by the G-Power software package
(α = 0.05) based on preliminary evaluations of the Ca/P ratio difference between the sound
enamel and the enamel treated with the four tested RA to assure that the sample size was
large enough for the purpose of the test.

3. Results

Figures 1 and 2 show scanning electron micrographs of each group (1–6), which
display different enamel surface morphologies.

Scanning electron micrographs of Group 1, sound enamel without any treatment, showed
the typical aspect of the intact enamel crystalline organization (Figure 1). Differently, Group
2, the demineralized untreated enamel, presented extensive surface alterations with a large
dissolution of interprismatic area due to the demineralization process (Figure 2).

Unlike the previously described groups, after 28 days of treatment, enamel crystals
recovery occurred in all experimental groups (Groups 3–6), even if in different ways
(Figures 3–6). The scanning electron micrographs of Group 3 displayed an almost complete
surface morphology reorganization with the presence of material deposits on the surface
and a slight loss of surface integrity (Figure 3). Group 4 showed enamel prisms with
partially intact crystals with small areas of crystalline dissolution (Figure 4).

The SEM images of Group 5 and Group 6 highlighted the normal appearance of the
remineralized enamel surface with reconstitution of the structure (Figures 5 and 6).
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Figure 1. Scanning electron micrographs of the Group 1 displayed (a) at 500× magnification, showing
the typical morphology of sound enamel with emphasized perikymatas; and (b) at 1000× magnifica-
tion, showing slight erosion of the enamel surface.
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Figure 2. Scanning electron micrographs of Group 2 highlighted (a) at 500× magnification, showing
the enamel surface with many exposed enamel prisms, the destruction of interprismatic spaces,
and the loss of the interprismatic substance; and (b) at 1000× magnification, showing a honeycomb
structure and a typical demineralized morphology of the enamel with the loss of the core of prisms.
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Figure 3. Scanning electron micrographs of Group 3 (a) at 500× magnification, showing an almost
complete surface morphology reorganization with some material residues (red asterisks); and (b) at
1000× magnification, showing the presence of slightly dissoluted areas (white arrows).

The results of the statistical analysis of Ca, P, and Ca/P ratio assessed using SEM-EDX
are shown in Table 1 and Figure 7. One-way ANOVA analysis showed that the Ca/P
ratio of Group 2 was statistically different from all other groups, while there were no
differences between Group 1 and all tested groups (Groups 3–6). Furthermore, there were
no statistically significant differences among Groups 3–6.
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Figure 4. Scanning electron micrographs of Group 4 (a) at 500× magnification, showing the presence
of a homogeneous enamel surface with an apparent structural reconstitution; and (b) at 1000×
magnification, showing enamel prisms with partially intact crystals.
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Figure 5. Scanning electron micrographs of Group 5 (a) at 500× magnification, showing the presence
of a slight irregular enamel surface; and (b) at 1000× magnification, showing partial crystal recovery
with remineralization within the prismatic structure.

Table 1. Descriptive statistic values of the data obtained from EDX measurements of all groups in
atomic % expressed as mean ± standard deviation of the Ca, P, and Ca/P ratio: Group 1 (Sound
enamel), Group 2 (Demineralized enamel), Group 3 (CPP-ACP); Group 4 (n-HA), Group 5 (NaF), and
Group 6 (F-ACP), respectively.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Ca 63.5 ± 0.5 a 66.7 ± 0.7 b 64 ± 2 a 63.5 ± 0.8 a 64.7 ± 0.4 a 63.5 ± 0.3 a

P 36.5 ± 0.5 a 33.4 ± 0.7 a 36 ± 2 a 36.5 ± 0.8 a 35.3 ± 0.4 a 36.6 ± 0.3 a

Ca/P 1.74 ± 0.04 a 2.00 ± 0.07 b 1.80 ± 0.02 a 1.74 ± 0.06 a 1.83 ± 0.03 a 1.73 ± 0.02 a

a,b Different superscript letters indicate statistically significant differences.
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Figure 6. Scanning electron micrographs of Group 6 (a) at 500× magnification, showing a residual
material covering the enamel surface; and (b) at 1000× magnification, showing an apparently intact
interprismatic enamel structure leading to surface re-establishment.
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Figure 7. Ca/P ratio results determined using the EDX of all groups in atomic % expressed as
mean and standard deviation. One-way ANOVA with Tukey’s multiple comparison test; p < 0.05
is significant. The following levels of statistical significance were considered: p < 0.05 *, p < 0.01 **;
p < 0.001 ***. Comparisons between groups that are not statistically significant are not reported in the
graph: Group 1 (Sound enamel), Group 2 (Demineralized enamel), Group 3 (CPP-ACP), Group 4
(n-HA), Group 5 (NaF), and Group 6 (F-ACP), respectively.
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4. Discussion

In recent years, the focus of preventive dentistry has been directed toward the non-
invasive management of non-cavitated caries lesions, using RA to prevent disease pro-
gression and promote remineralization of mineral-deficient tooth structures [35]. Despite
saliva representing an important source of ions for remineralization, it has a relatively low
potential to remineralize early enamel lesions [36].

In recent decades, there have been efforts to develop novel biomaterials that can
provide the best clinical results in this field [23,24].

Numerous techniques have been employed for the assessment of enamel remineraliza-
tion [37–39]. Indeed, in this study, four commercially available RA were evaluated using
SEM-EDX in terms of qualitative and quantitative points of view [40]. In the scientific
literature, EDX is considered the gold standard for the evaluation of mineral loss or gain,
measuring Ca and P elemental content in atomic percentage of sound, demineralized,
and remineralized enamel surfaces. The relationship between these elements is an essen-
tial indicator of the remineralization process; thus, the Ca/P ratios for each group were
calculated [41].

SEM results of Group 1, which was not treated, depict healthy enamel, homogeneously
exhibiting HA crystals integrity with organized rods (Figure 1). On the contrary, Group 2
confirmed that the demineralization process led to enamel alterations with many exposed
enamel prisms, depressions, and irregularities, the destruction of interprismatic spaces,
and the loss of interprismatic substances, typical of enamel’s demineralization morphology
(Figure 2). However, these morphological changes of the tooth surface, at the early stage, are
reversible and can be repaired by the application of RA. The rationale supporting the use of
these RA is their efficacy in the remineralization of early carious lesions, advocating a mini-
invasive and preventive approach rather than the traditional invasive clinical ones. Indeed,
the EDX results of the treated enamel of Groups 3–6 showed an increase in remineralization
compared with Group 2 (p < 0.05). However, since Group 3 highlighted a quite high
variability in results, these data should be interpreted with caution.

In general, SEM images demonstrated slight qualitative differences in enamel reorga-
nization, peculiar to each type of tested RA. Indeed, Group 3 exhibited different surface
structures compared to other groups, with some material residues and slight dissolu-
tion zones, as shown in Figure 3. This morphological non-homogeneity may imply the
distribution of Ca and P elements, responsible for the higher standard deviation.

Moreover, our data from multiple comparisons revealed that there were no differences
in the remineralizing effect between fluoridated RA (NaF and F-ACP) and non-fluoridated
RA (CPP-ACP; n-HA). The effectiveness of F on enamel remineralization was confirmed in
several studies [32,42]. This study agrees with the previous ones, as the NaF and F-ACP
complex showed a good remineralizing efficacy (Figures 4 and 6). F varnishes contain 5%
NaF (approximately 20 times the F concentration of traditional toothpastes), which aids in
the formation of long-lasting intraoral fluoride reservoirs [43]. The prolonged release of
remineralizing ions over time from the RA is required to optimize the probability of caries
prevention, particularly in individuals at a high risk of caries [25].

In addition, Shetty et al. claimed that NaF showed better performance than CPP-
ACP in enamel remineralization, although the comparison between these two RA was
statistically insignificant [34].

Furthermore, according to our results, an in vitro study showed that the n-HA and F
remineralization was similar and inhibited caries development, thus suggesting that n-HA
can be an effective alternative to F [44].

Based on our results, the proposed first null hypothesis, i.e., that there would be no
differences between the sound enamel and the enamel treated with RA in morphological
features and Ca/P ratio, was partially accepted because the morphological features ap-
peared different, while in the quantitative analysis of Ca/P ratio no statistical differences
were found. Additionally, the second null hypothesis, i.e., that there would be no differ-
ences among the RA after 28 days of treatment in morphological features and Ca/P ratio,
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was partially accepted because there were different morphological aspects of remineralized
enamel among tested groups, while in the quantitative analysis of Ca/P ratio no statistical
differences were found.

In this study, pH cycling was used to mimic the dynamics of mineral loss and gain
occurring in the oral cavity, which are involved in the process of caries formation [28].
The pH cycling protocol adopted for this study was based on the model described by
Featherstone et al. [45]. Various studies have performed the pH cycling process at different
lengths of time ranging from 7 to 14 days [46–48]. In this study, a 28-day pH cycling
protocol was chosen because it is believed that this was a long enough period to evaluate
the potential efficacy of the RA. Indeed, Balakrishnan et al. evaluated the remineralization
potential of various toothpastes over a period of 30 days and concluded that the extent of
remineralization achieved was dose-dependent and increased with increasing the time of
exposure and duration of the study [49]. In fact, our previous study, which evaluated the
efficacy of these RA, showed that, after 7 days of treatment, a complete remineralization
was not obtained; instead, only an initial reorganization of the enamel structure was
observed [29].

Regarding the potential side effects, no significant differences were found between
the CPP-ACP, n-HA, and fluoridated systems (NaF, F-ACP) with respect to the incidence
of adverse events, including increment of dental calculus formation, allergies, and other
serious side effects [50]. Conversely, the potential applications of these RA have been
observed, as demonstrated by the scientific literature [6,13], to prevent and avoid damage
to dental tissues. Indeed, CPP-ACP can provide effective remineralization against erosion
caused by orange juice [51], increasing the hardness and density of the erosive surface of
the tooth [52] and reducing the depth of lesions [53]. Furthermore, the CPP-ACP-containing
mousse tested in our study may be more effective in erosion lesions due to its very low
pH, in agreement with other reports [54,55]. Since F-ACP and NaF varnish are used for
the prevention of enamel loss due to tooth erosion in primary teeth, parents can turn
to CPP-ACP mousse or NaF-containing varnish for their children, instead of opting for
less-effective fluoride-containing toothpastes. Equally valid are the applications of n-HA
to remineralize and improve the physical properties of the enamel and strengthen its
weakened substructure in a non-invasive way, and recover, for example, the color of white
spot lesions. In fact, by releasing Ca and P ions to promote remineralization and repair
demineralized areas, some studies have associated n-HA with low-concentration whitening
agents, obtaining promising results for the treatment of these lesions [1,28]

Finally, the antibacterial efficacy of these RA found interesting application also in
other fields of dentistry, such as in implantology, in particular against mucositis and peri-
implantitis [51,56].

In the field of dental biomaterials, in vitro studies are useful for researchers to develop
new materials and evaluate certain clinically relevant properties that may be difficult to
evaluate otherwise. This work is the first study that qualitatively and quantitatively evalu-
ated and compared four different RA, including CPP-ACP, n-HA, NaF, and F-ACP, with
sound and demineralized enamel, for a long experimental period, i.e., 28 days. Therefore,
this work can contribute to provide greater knowledge on these materials that present
an increasing clinical applicability. Nevertheless, it is imperative to note that remineral-
ization in vitro may be quite variable when compared with changes occurring in the oral
cavity. Indeed, one of the study’s limitations is that an in vitro protocol and the pH cycling
model are unable to completely simulate the complex intraoral conditions leading to caries
development, where the pH fluctuates frequently. The oral pH levels depend upon the
individual’s eating habits, oral hygiene practices, fluoride usage, and the composition and
the quality of saliva and plaque [43]. For this reason, further in vitro studies and especially
clinical trials are needed to validate the promising outcome of this research and clinically
evaluate the remineralization efficacy of RA [57–59].
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5. Conclusions

Despite the limitations of the study, according to the results obtained, it can be con-
cluded that all tested materials had biomimetic remineralization ability on enamel subsur-
face lesions after 28 days of treatment. CPP-ACP, n-HA, NaF, and F-ACP highlighted good
performance in terms of remineralization efficacy on early caries lesions in comparison
with Group 2 (untreated demineralized enamel), even though we noted a variability in the
behavior of Group 3 (CPP-ACP). Finally, all tested RA were efficient in terms of achieving
good recovery of the enamel structure.
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