A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges
Abstract
:1. Introduction
Machine Learning Classification
2. Methodology
3. Speech Features
3.1. State of the Art (Speech)
3.2. Speech Features Description
3.3. Emotion Detection in Speech
4. EEG in Schizophrenia
4.1. EEG Features
4.2. Description of EEG Features
4.3. ERP Biomarkers in Schizophrenia
5. Discussion and Conclusions
5.1. Speech Features
5.2. EEG Biomarkers
5.3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
---|---|
AI | artificial intelligence |
AVHs | auditory verbal hallucinations |
BPRS | Brief Psychiatric Rating Scale |
CD | correlation dimension |
CHR | high clinical risk |
CNN | convolutional neural network |
COH | quadratic magnitude coherence |
COR | cross-correlation |
Cx | complexity |
DTF | directed transfer function |
EC | effective connectivity |
EEG | electroencephalography |
ERP | event-related potentials |
F0 | fundamental frequency |
F1, F2, F3 | frequency formants |
FC | functional connectivity |
fMRI | functional magnetic resonance imaging |
GC | Granger causality |
GNE | glottal noise excitation |
GRNN | generalized regression neural network |
HE | Hurst exponent |
HFD | Higuchi fractal dimension |
HNGD | Hilbert envelope of numerator group delay |
HNR | Harmonic-to-noise ratio |
I | intensity/loudness |
iCOH | imaginary part of quadratic magnitude coherence |
INCA | iterative neighborhood component analysis |
IQR | interquartile range |
KNN | k nearest neighbors |
LDA | linear discriminant analysis |
LIWC | Linguistic Inquiry and Word Count |
LLD | low-level descriptors |
LLE | largest Lyapunov exponent |
LPCC | linear prediction cepstral coefficients |
LSA | latent semantic analysis |
LSF | linear spectral features |
LSTM | long-short-term memory network |
Lya | Lyapunov exponents |
MCCA | multi-set canonical correlation analysis |
MFCC | Mel frequency cepstral coefficients |
MI | mutual information |
ML | machine learning |
MLP | multi-layer Perceptron |
MMN | mismatch negativity |
NHR | noise to harmonic ratio |
NNE | normalized noise energy |
NSA | Negative Symptom Assessment |
PANSS | Positive and Negative Syndrome Scale |
PDC | partial directed coherence |
PLI | phase-locked index |
PLP coefficients | perceptual linear lrediction |
PLV | phase-locked value |
PSD | phase space dynamics |
PSO | particle swarm optimization |
QEVA | quantification error and vector angle |
QOQ | quasi-open quotient |
RHO | p-index |
ROI | regions of interest |
SANS | Scale for the Assessment of Negative Symptoms |
SC | structural connectivity |
SD | duration of pauses and sentences |
SDHC | summation of distances between Heron’s circular |
SDVV | standard dynamic volume value |
SH45 | summation of the shortest distance from each point relative to the 45-degree line |
sMRI | structural magnetic resonance imaging |
SSDL | symmetric spectral difference level |
SVM | support vector machine |
TACR | summation of the area of the triangles making successive points and the coordinate centre |
TE | transfer entropy |
WoS | Web of Science |
ZTW | zero time windowing |
References
- Galderisi, S.; Heinz, A.; Kastrup, M.; Beezhold, J.; Sartorius, N. Propozycja nowej definicji zdrowia psychicznego. Psychiatr. Pol. 2017, 51, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Low, D.M.; Bentley, K.H.; Ghosh, S.S. Automated assessment of psychiatric disorders using speech: A systematic review. Laryngoscope Investig. Otolaryngol. 2020, 5, 96–116. [Google Scholar] [CrossRef]
- Manger, S. Lifestyle interventions for mental health. Aust. J. Gen. Pract. 2019, 48, 670–673. [Google Scholar] [CrossRef]
- Tahir, Y.; Yang, Z.; Chakraborty, D.; Thalmann, N.; Thalmann, D.; Maniam, Y.; Rashid, N.A.B.A.; Tan, B.-L.; Keong, J.L.C.; Dauwels, J.; et al. Non-verbal speech cues as objective measures for negative symptoms in patients with schizophrenia. PLoS ONE 2019, 14, e0214314. [Google Scholar] [CrossRef]
- Barbato, A. World Health Organization Schizophrenia and Public Health 1997. Schizophrenia and Public Health. World Health Organization. 1997. Available online: https://apps.who.int/iris/bitstream/handle/10665/63837/WHO_MSA_NAM_97.6.pdf?sequence=1 (accessed on 18 September 2022).
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef]
- American Psychiatric Association. Schizophrenia Spectrum and Other Psychotic Disorders; American Psychiatric Association Publishing: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Baygin, M.; Yaman, O.; Tuncer, T.; Dogan, S.; Barua, P.D.; Acharya, U.R. Automated accurate schizophrenia detection system using Collatz pattern technique with EEG signals. Biomed. Signal Process. Control 2021, 70, 102936. [Google Scholar] [CrossRef]
- Shmukler, A.B.; Kosytuk, G.P.; Latanov, A.V.; Sidorova, M.Y.; Anisimov, V.N.; Zakharova, N.V.; Karyakina, M.V.; Reznik, A.M.; Sokolov, A.V.; Spektor, V.A.; et al. Network analysis of cognitive, oculomotor and speech parameters in schizophrenia. Zhurnal Nevrol. Psikhiatrii Im. Korsakova 2020, 120, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, C.M.; Cecchi, G.A. Using Language Processing and Speech Analysis for the Identification of Psychosis and Other Disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 770–779. [Google Scholar] [CrossRef]
- Akcay, M.B.; Oguz, K.; Akçay, M.B.; Oğuz, K. Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers—ScienceDirect. Speech Commun. 2020, 116, 56–76. [Google Scholar] [CrossRef]
- Voleti, R.; Liss, J.M.; Berisha, V. A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders. IEEE J. Sel. Top. Signal Process. 2020, 14, 282–298. [Google Scholar] [CrossRef]
- Park, S.-C.; Kim, K.; Jang, O.-J.; Yoon, H.-J.; Jang, S.-H.; Kim, S.-W.; Lee, B.J.; Park, J.H.; Lee, K.U.; Choi, J. Network Analysis of Language Disorganization in Patients with Schizophrenia. Yonsei Med. J. 2020, 61, 726–730. [Google Scholar] [CrossRef]
- Peters, A.S.; Rémi, J.; Vollmar, C.; Gonzalez-Victores, J.A.; Cunha, J.P.S.; Noachtar, S. Dysprosody during epileptic seizures lateralizes to the nondominant hemisphere. Neurology 2011, 77, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Weickert, C.S.; Weickert, T.W.; Pillai, A.; Buckley, P.F. Biomarkers in schizophrenia: A brief conceptual consideration. Dis. Markers 2013, 35, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Kalanderian, H.; Nasrallah, A.H. Artificial intelligence in psychiatry. In Potential Uses of Machine Learning Include Predicting the Risk of Suicide, Psychosis; Jobson Medical Information LLC: New York, NY, USA, 2019. [Google Scholar]
- Xu, S.H.; Yang, Z.X.; Chakraborty, D.; Chua, Y.H.V.; Dauwels, J.; Thalmann, D.; Thalmann, N.M.M.; Tan, B.-L.L.; Chee Keong, J.L.; Chua, Y.H.V.; et al. Automated Verbal and Non-verbal Speech Analysis of Interviews of Individuals with Schizophrenia and Depression. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Singapore, 23–27 July 2019; pp. 225–228. [Google Scholar] [CrossRef]
- Garcia-Alvarez, L.; Garcia-Portilla, M.P.; Saiz, P.A.; Fonseca-Pedrero, E.; Bobes-Bascaran, M.T.; Gomar, J.; Muñiz, J.; Bobes, J. Spanish validation of the Negative Symptom Assessment-16 (NSA-16) in patients with schizophrenia. Rev. De Psiquiatr. Salud Ment. (Engl. Ed.) 2018, 11, 169–175. [Google Scholar] [CrossRef]
- Zarcone, V.P.; Benson, K.L. BPRS symptom factors and sleep variables in schizophrenia. Psychiatry Res. 1997, 66, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.E.; Ko, J.Y.; Kuhl, E.A.; van Reekum, R.; Salvador, R.; Marin, R.S. Are the available apathy measures reliable and valid? A review of the psychometric evidence. J. Psychosom. Res. 2011, 70, 73–97. [Google Scholar] [CrossRef] [PubMed]
- Depp, C.A.; Loughran, C.; Vahia, I.; Molinari, V. Assessing Psychosis in Acute and Chronic Mentally Ill Older Adults. In Handbook of Assessment in Clinical Gerontology; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 123–154. ISBN 9780123749611. [Google Scholar]
- Lopes, R.P.; Barroso, B.; Deusdado, L.; Novo, A.; Guimarães, M.; Teixeira, J.P.; Leitão, P. Digital technologies for innovative mental health rehabilitation. Electronics 2021, 10, 2260. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Teixeira, J.P. Classification of electroencephalogram signals using artificial neural networks. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, BMEI, Yantai, China, 16–18 October 2010; Volume 2, pp. 808–812. [Google Scholar] [CrossRef]
- Kliper, R.; Portuguese, S.; Weinshall, D. Prosodic Analysis of Speech and the Underlying Mental State; Springer: Berlin, Germany, 2016; Volume 604, ISBN 9783319322698. [Google Scholar]
- Espinola, C.W.; Gomes, J.C.; Pereira, J.M.S.; dos Santos, W.P. Vocal acoustic analysis and machine learning for the identification of schizophrenia. Res. Biomed. Eng. 2021, 37, 33–46. [Google Scholar] [CrossRef]
- Compton, M.T.; Lunden, A.; Cleary, S.D.; Pauselli, L.; Alolayan, Y.; Halpern, B.; Broussard, B.; Crisafio, A.; Capulong, L.; Balducci, P.M.; et al. The aprosody of schizophrenia: Computationally derived acoustic phonetic underpinnings of monotone speech. Schizophr. Res. 2018, 197, 392–399. [Google Scholar] [CrossRef]
- Bhatia, T.K. Language and thought disorder in multilingual schizophrenia. World Engl. 2019, 38, 18–29. [Google Scholar] [CrossRef]
- Chakraborty, D.; Yang, Z.; Tahir, Y.; Maszczyk, T.; Dauwels, J.; Thalmann, N.; Zheng, J.; Maniam, Y.; Amirah, N.; Tan, B.-L.; et al. Prediction of Negative Symptoms of Schizophrenia from Emotion Related Low-Level Speech Signals. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, Calgary, AB, Canada, 15–20 April 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 6024–6028. [Google Scholar] [CrossRef]
- Cohen, A.S.; Cox, C.R.; Le, T.P.; Cowan, T.; Masucci, M.D.; Strauss, G.P.; Kirkpatrick, B. Using machine learning of computerized vocal expression to measure blunted vocal affect and alogia. NPJ Schizophr. 2020, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Bègue, I.; Kaiser, S.; Kirschner, M. Pathophysiology of negative symptom dimensions of schizophrenia—Current developments and implications for treatment. Neurosci. Biobehav. Rev. 2020, 116, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Mota, N.B.; Carrillo, F.; Slezak, D.F.; Copelli, M.; Ribeiro, S. Characterization of the relationship between semantic and structural language features in psychiatric diagnosis. In Conference Record—Asilomar Conference on Signals, Systems and Computers, Proceedings of the No. 50th Asilomar Conference on Signals, Systems and Computers (ASILOMARSSC), Pacific Grove, CA, USA, 29 October 2017; Matthews, M.B., Ed.; IEEE: Natal, Brazil, 2017; pp. 836–838. [Google Scholar] [CrossRef]
- Just, S.A.; Haegert, E.; Kořánová, N.; Bröcker, A.L.; Nenchev, I.; Funcke, J.; Heinz, A.; Bermpohl, F.; Stede, M.; Montag, C. Modeling Incoherent Discourse in Non-Affective Psychosis. Front. Psychiatry 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- El Ayadi, M.; Kamel, M.S.; Karray, F. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognit. 2011, 44, 572–587. [Google Scholar] [CrossRef]
- Covington, M.A.; Lunden, S.L.A.; Cristofaro, S.L.; Wan, C.R.; Bailey, C.T.; Broussard, B.; Fogarty, R.; Johnson, S.; Zhang, S.; Compton, M.T. Phonetic measures of reduced tongue movement correlate with negative symptom severity in hospitalized patients with first-episode schizophrenia-spectrum disorders. Schizophr. Res. 2012, 142, 93–95. [Google Scholar] [CrossRef]
- Leentjens, A.F.G.; Wielaert, S.M.; Van Harskamp, F.; Wilmink, F.W. Disturbances of affective prosody in patients with schizophrenia; a cross sectional study. J. Neurol. Neurosurg. Psychiatry 1998, 64, 375–378. [Google Scholar] [CrossRef]
- Alpert, M.; Rosenberg, S.D.; Pouget, E.R.; Shaw, R.J. Prosody and lexical accuracy in flat affect schizophrenia. Psychiatry Res. 2000, 97, 107–118. [Google Scholar] [CrossRef]
- Dickey, C.C.; Vu, M.A.T.; Voglmaier, M.M.; Niznikiewicz, M.A.; McCarley, R.W.; Panych, L.P. Prosodic abnormalities in schizotypal personality disorder. Schizophr. Res. 2012, 142, 20–30. [Google Scholar] [CrossRef]
- Bedwell, J.S.; Cohen, A.S.; Trachik, B.J.; Deptula, A.E.; Mitchell, J.C. Speech prosody abnormalities and specific dimensional schizotypy features are relationships limited to male participants? J. Nerv. Ment. Dis. 2014, 202, 745–751. [Google Scholar] [CrossRef]
- Cannizzaro, M.S.; Cohen, H.; Rappard, F.; Snyder, P.J. Bradyphrenia and bradykinesia both contribute to altered speech in schizophrenia: A quantitative acoustic study. Cogn. Behav. Neurol. 2005, 18, 206–210. [Google Scholar] [CrossRef]
- Cohen, A.S.; Lee Hong, S. Understanding Constricted affect in schizotypy through computerized prosodic analysis. J. Pers. Disord. 2011, 25, 478–491. [Google Scholar] [CrossRef]
- Cohen, A.S.; Kim, Y.; Najolia, G.M. Psychiatric symptom versus neurocognitive correlates of diminished expressivity in schizophrenia and mood disorders. Schizophr. Res. 2013, 146, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, F.; Muela-Martínez, J.A.; Cortés-Soto, P.; Meilán, J.J.O.G.; Ferrándiz, J.A.N.V.; Caparrós, A.E.; Valverde, I.M.P. Can the Acoustic Analysis of Expressive Prosody Discriminate Schizophrenia? Span. J. Psychol. 2015, 18, E86. [Google Scholar] [CrossRef] [PubMed]
- Gosztolya, G.; Bagi, A.; Szalóki, S.; Szendi, I.; Hoffmann, I. Identifying schizophrenia based on temporal parameters in spontaneous speech. Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH 2018, 2018-Septe, 3408–3412. [Google Scholar] [CrossRef]
- Mota, N.B.; Copelli, M.; Ribeiro, S. Thought disorder measured as random speech structure classifies negative symptoms and schizophrenia diagnosis 6 months in advance. NPJ Schizophr. 2017, 3, 18. [Google Scholar] [CrossRef]
- Agurto, C.; Pietrowicz, M.; Norel, R.; Eyigoz, E.K.; Stanislawski, E.; Cecchi, G.; Corcoran, C. Analyzing acoustic and prosodic fluctuations in free speech to predict psychosis onset in high-risk youths. In Proceedings of the No. 42nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 5575–5579. [Google Scholar] [CrossRef]
- Tahir, Y.; Chakraborty, D.; Dauwels, J.; Thalmann, N.; Thalmann, D.; Lee, J. Non-verbal speech analysis of interviews with schizophrenic patients. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 5810–5814. [Google Scholar]
- Rapcan, V.; D’Arcy, S.; Yeap, S.; Afzal, N.; Thakore, J.; Reilly, R.B. Acoustic and temporal analysis of speech: A potential biomarker for schizophrenia. Med. Eng. Phys. 2010, 32, 1074–1079. [Google Scholar] [CrossRef]
- He, F.; Fu, J.; He, L.; Li, Y.; Xiong, X. Automatic Detection of Negative Symptoms in Schizophrenia via Acoustically Measured Features Associated with Affective Flattening. IEEE Trans. Autom. Sci. Eng. 2021, 18, 586–602. [Google Scholar] [CrossRef]
- Parola, A.; Simonsen, A.; Bliksted, V.; Fusaroli, R. Voice patterns in schizophrenia: A systematic review and Bayesian meta-analysis. Schizophr. Res. 2020, 216, 24–40. [Google Scholar] [CrossRef]
- Bedi, G.; Carrillo, F.; Cecchi, G.A.; Slezak, D.F.; Sigman, M.; Mota, N.B.; Ribeiro, S.; Javitt, D.C.; Copelli, M.; Corcoran, C.M. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr. 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed]
- Tovar, A.; Fuentes-Claramonte, P.; Soler-Vidal, J.; Ramiro-Sousa, N.; Rodriguez-Martinez, A.; Sarri-Closa, C.; Sarró, S.; Larrubia, J.; Andrés-Bergareche, H.; Miguel-Cesma, M.C.; et al. The linguistic signature of hallucinated voice talk in schizophrenia. Schizophr. Res. 2019, 206, 111–117. [Google Scholar] [CrossRef]
- Xu, S.H.; Yang, Z.X.; Chakraborty, D.; Tahir, Y.; Maszczyk, T.; Chua, V.Y.H.; Dauwels, J.; Thalmann, D.; Magnenat, N.; Tan, T.B.L.; et al. Automatic Verbal Analysis of Interviews with Schizophrenic Patients. In International Conference on Digital Signal Processing, DSP, Proceedings of the no. 23rd IEEE International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; Institute of Electrical and Electronics Engineers Inc.: Singapore, 2019. [Google Scholar] [CrossRef]
- Argolo, F.; Magnavita, G.; Mota, N.B.B.; Ziebold, C.; Mabunda, D.; Pan, P.M.M.; Zugman, A.; Gadelha, A.; Corcoran, C.; Bressan, R.A.A. Lowering costs for large-scale screening in psychosis: A systematic review and meta-analysis of performance and value of information for speech-based psychiatric evaluation. Brazilian J. Psychiatry 2020, 42, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Bandela, S.R.; Kumar, T.K. Speech emotion recognition using unsupervised feature selection algorithms. Radioengineering 2020, 29, 353–364. [Google Scholar] [CrossRef]
- Chakraborty, D.; Xu, S.H.; Yang, Z.X.; Chua, Y.H.V.; Tahir, Y.; Dauwels, J.; Thalmann, N.M.; Tan, B.-L.L.; Lee, J. Prediction of negative symptoms of schizophrenia from objective linguistic, acoustic and non-verbal conversational cues. In Proceedings—2018 International Conference on Cyberworlds, CW 2018, Proceedings of the No. 17th International Conference on Cyberworlds (CW), Kyoto, Japan, 3–5 October 2018; Sourin, A., Sourina, O., Rosenberger, C., Erdt, M., Eds.; Institute of Electrical and Electronics Engineers Inc.: Singapore, 2018; pp. 280–283. [Google Scholar] [CrossRef]
- Park, Y.C.; Lee, M.S.; Si, T.M.; Chiu, H.F.K.; Kanba, S.; Chong, M.Y.; Tripathi, A.; Udomratn, P.; Chee, K.Y.; Tanra, A.J.; et al. Psychotropic drug-prescribing correlates of disorganized speech in Asians with schizophrenia: The REAP-AP study. Saudi Pharm. J. 2019, 27, 246–253. [Google Scholar] [CrossRef]
- Espinola, C.W.; Gomes, J.C.; Mônica, J.; Pereira, S.; Pinheiro, W.; Santos, D. Detection of major depressive disorder using vocal acoustic analysis and machine learning-an exploratory study. Res. Biomed. Eng. 2020, 37, 53–64. [Google Scholar] [CrossRef]
- Polzin, T.S.; Waibel, A.H. Detecting Emotions in Speech. Proc. Coop. Multimodal Commun. 1998. Available online: https://www.ri.cmu.edu/pub_files/pub1/polzin_thomas_1998_1/polzin_thomas_1998_1.pdf (accessed on 18 September 2022).
- Cordeiro, H.T. Reconhecimento de Patologias da Voz Usando Técnicas de Processamento da Fala. 2016. Available online: https://run.unl.pt/bitstream/10362/19915/1/Cordeiro_2016.pdf (accessed on 18 September 2022).
- Fernandes, J.; Silva, L.; Teixeira, F.; Guedes, V.; Santos, J.; Teixeira, J.P. Parameters for Vocal Acoustic Analysis—Cured Database. Procedia Comput. Sci. 2019, 164, 654–661. [Google Scholar] [CrossRef]
- Teixeira, J.P.; Fernandes, P.O. Acoustic Analysis of Vocal Dysphonia. Procedia Comput. Sci. 2015, 64, 466–473. [Google Scholar] [CrossRef]
- Galvão, F.; Alarcão, S.M.; Fonseca, M.J. Predicting exact valence and arousal values from EEG. Sensors 2021, 21, 3414. [Google Scholar] [CrossRef]
- Teixeira, F.L.; Teixeira, J.P.; Soares, S.F.P.; Abreu, J.L.P. F0, LPC, and MFCC Analysis for Emotion Recognition Based on Speech. In Optimization, Learning Algorithms and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 389–404. [Google Scholar] [CrossRef]
- Souto, M.T.S. Reconhecimento Emocional de Faces em Pessoas Com Esquizofrenia: Proposta de um Programa Com Recurso à Realidade Virtual; Universidade do Porto: Porto, Portugal, 2013. [Google Scholar]
- Davletcharova, A.; Sugathan, S.; Abraham, B.; James, A.P. Detection and Analysis of Emotion from Speech Signals. Procedia Comput. Sci. 2015, 58, 91–96. [Google Scholar] [CrossRef]
- Fahad, M.S.; Ranjan, A.; Yadav, J.; Deepak, A. A survey of speech emotion recognition in natural environment. Digit. Signal Process. A Rev. J. 2021, 110, 102951. [Google Scholar] [CrossRef]
- Teixeira, J.P.; Fernandes, J.; Teixeira, F.; Fernandes, P.O. Acoustic analysis of chronic laryngitis statistical analysis of sustained speech parameters. In BIOSIGNALS 2018—11th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC, Funchal, Portugal, 19–21 January 2018; SciTePress: Setúbal, Portugal, 2018; Volume 4. [Google Scholar] [CrossRef]
- Ververidis, D.; Kotropoulos, C. Emotional speech recognition: Resources, features, and methods. Speech Commun. 2006, 48, 1162–1181. [Google Scholar] [CrossRef]
- Pribil, J.; Pribilova, A.; Matousek, J. Comparison of formant features of male and female emotional speech in czech and slovak. Elektron. Elektrotechnika 2013, 19, 83–88. [Google Scholar] [CrossRef]
- Nunes, A.; Coimbra, R.L.; Teixeira, A. Voice quality of European Portuguese emotional speech. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2010, 6001 LNAI, 142–151. [Google Scholar] [CrossRef]
- Papakostas, M.; Siantikos, G.; Giannakopoulos, T.; Spyrou, E.; Sgouropoulos, D. Recognizing Emotional States Using Speech Information. Adv. Exp. Med. Biol. 2017, 989, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.; Fahad, M.S.; Rao, K.S. Epoch detection from emotional speech signal using zero time windowing. Speech Commun. 2018, 96, 142–149. [Google Scholar] [CrossRef]
- Vittala, A.; Murphy, N.; Maheshwari, A.; Krishnan, V. Understanding Cortical Dysfunction in Schizophrenia with TMS/EEG. Front. Neurosci. 2020, 14, 1–7. [Google Scholar] [CrossRef]
- Shiina, A.; Shirayama, Y.; Niitsu, T.; Hashimoto, T.; Yoshida, T.; Hasegawa, T.; Haraguchi, T.; Kanahara, N.; Shiraishi, T.; Fujisaki, M.; et al. A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann. Gen. Psychiatry 2010, 9, 27. [Google Scholar] [CrossRef]
- Randeniya, R.; Oestreich, L.K.L.; Garrido, M.I. Sensory prediction errors in the continuum of psychosis. Schizophr. Res. 2018, 191, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.L.; Chou, T.L.; Lai, W.S.; Hsieh, M.H.; Liu, C.C.; Liu, C.M.; Hwu, H.G. P50, N100, and P200 Auditory Sensory Gating Deficits in Schizophrenia Patients. Front. Psychiatry 2020, 11, 868. [Google Scholar] [CrossRef]
- Parlikar, R.; Bose, A.; Venkatasubramanian, G. Schizophrenia and corollary discharge: A neuroscientific overview and translational implications. Clin. Psychopharmacol. Neurosci. 2019, 17, 170–182. [Google Scholar] [CrossRef]
- Van Der Stelt, O.; Frye, J.; Lieberman, J.A.; Belger, A. Impaired P3 Generation Reflects High-Level and Progressive Neurocognitive Dysfunction in Schizophrenia. Arch. Gen. Psychiatry 2004, 61, 237–248. [Google Scholar] [CrossRef]
- Sur, S.; Sinha, V. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70. [Google Scholar] [CrossRef]
- Shim, M.; Hwang, H.J.; Kim, D.W.; Lee, S.H.; Im, C.H. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr. Res. 2016, 176, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Knyazeva, M.G. EEG-based functional networks in schizophrenia. Comput. Biol. Med. 2011, 41, 1178–1186. [Google Scholar] [CrossRef]
- Sharma, M.; Acharya, U.R. Automated detection of schizophrenia using optimal wavelet-based l1 norm features extracted from single-channel EEG. Cogn. Neurodyn. 2021, 15, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Lett, T.A.; Voineskos, A.N.; Kennedy, J.L.; Levine, B.; Daskalakis, Z.J. Treating working memory deficits in schizophrenia: A review of the neurobiology. Biol. Psychiatry 2014, 75, 361–370. [Google Scholar] [CrossRef]
- Kim, K.; Duc, N.T.; Choi, M.; Lee, B. EEG microstate features for schizophrenia classification. PLoS ONE 2021, 16, 1–21. [Google Scholar] [CrossRef]
- Sui, J.; Castro, E.; He, H.; Bridwell, D.; Du, Y.; Pearlson, G.D.; Jiang, T.; Calhoun, V.D. Combination of FMRI-SMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature selection. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2014, Chicago, IL, USA, 26–30 August 2014; pp. 3889–3892. [Google Scholar] [CrossRef]
- Costa, M.R.E.; Teixeira, F.L.; Teixeira, J.P.; Rocha e Costa, M.; Teixeira, F.L.; Teixeira, J.P. Analysis of the Middle and Long Latency ERP Components in Schizophrenia; Pereira, A.I., Fernandes, F.P., Coelho, J.P., Teixeira, J.P., Pacheco, M.F., Alves, P., Lopes, R.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1488 CCIS, ISBN 9783030918842. [Google Scholar]
- Bougou, V.; Mporas, I.; Schirmer, P.; Ganchev, T. Evaluation of eeg connectivity network measures based features in schizophrenia classification. In Proceedings of the International Conference on Biomedical Innovations and Applications, BIA 2019, Varna, Bulgaria, 8–9 November 2019; pp. 2019–2022. [Google Scholar] [CrossRef]
- Akbari, H.; Ghofrani, S.; Zakalvand, P.; Sadiq, M.T. Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomed. Signal Process. Control 2021, 69, 102917. [Google Scholar] [CrossRef]
- Howells, F.M.; Temmingh, H.S.; Hsieh, J.H.; Van Dijen, A.V.; Baldwin, D.S.; Stein, D.J. Electroencephalographic delta/alpha frequency activity differentiates psychotic disorders: A study of schizophrenia, bipolar disorder and methamphetamine-induced psychotic disorder. Transl. Psychiatry 2018, 8, 75. [Google Scholar] [CrossRef]
- Kappenman, E.S.; Luck, S.J. The Oxford Handbook of Event-Related Potential Components; Oxford University Press: Cambridge, UK, 2012; ISBN 9780199940356. [Google Scholar]
- Goshvarpour, A.; Goshvarpour, A. Schizophrenia diagnosis using innovative EEG feature-level fusion schemes. Australas. Phys. Eng. Sci. Med. 2020, 43, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. EEG signals feature extraction and artificial neural networks classification for the diagnosis of schizophrenia. In Proceedings of the 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Beijing, China, 26–28 September 2020; pp. 68–75. [Google Scholar] [CrossRef]
- Harms, L.; Michie, P.T.; Näätänen, R. Criteria for determining whether mismatch responses exist in animal models: Focus on rodents. Biol. Psychol. 2016, 116, 28–35. [Google Scholar] [CrossRef]
- Ford, J.M.; Mathalon, D.H.; Heinks, T.; Kalba, S.; Faustman, W.O.; Roth, W.T. Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. Am. J. Psychiatry 2001, 158, 2069–2071. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.M.; Mathalon, D.H.; Kalba, S.; Whitfield, S.; Faustman, W.O.; Roth, W.T. Cortical responsiveness during inner speech in schizophrenia: An event-related potential study. Am. J. Psychiatry 2001, 158, 1914–1916. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.K.; Bajaj, V.; Siuly, S.; Sinha, G.R. Classification of Schizophrenia Patients through Empirical Wavelet Transformation Using Electroencephalogram Signals; IOP Publishing: Bristol, UK, 2020; ISBN 9780750332798. [Google Scholar]
- Bramon, E.; McDonald, C.; Croft, R.J.; Landau, S.; Filbey, F.; Gruzelier, J.H.; Sham, P.C.; Frangou, S.; Murray, R.M. Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. Neuroimage 2005, 27, 960–968. [Google Scholar] [CrossRef]
- Moran, Z.D.; Williams, T.J.; Bachman, P.; Nuechterlein, K.H.; Subotnik, K.L.; Yee, C.M. Spectral decomposition of P50 suppression in schizophrenia during concurrent visual processing. Schizophr. Res. 2012, 140, 237–242. [Google Scholar] [CrossRef]
- Sánchez-morla, E.M.; Luis, J.; Aparicio, A.; García-jiménez, M.Á.; Soria, C.; Arango, C. Neuropsychological correlates of P50 sensory gating in patients with schizophrenia. Schizophr. Res. 2013, 143, 102–106. [Google Scholar] [CrossRef]
- Toyomaki, A.; Hashimoto, N.; Kako, Y.; Tomimatsu, Y.; Koyama, T.; Kusumi, I. Different P50 sensory gating measures reflect different cognitive dysfunctions in schizophrenia. Schizophr. Res. Cogn. 2015, 2, 166–169. [Google Scholar] [CrossRef]
- Brockhaus-Dumke, A.; Schultze-Lutter, F.; Mueller, R.; Tendolkar, I.; Bechdolf, A.; Pukrop, R.; Klosterkoetter, J.; Ruhrmann, S. Sensory Gating in Schizophrenia: P50 and N100 Gating in Antipsychotic-Free Subjects at Risk, First-Episode, and Chronic Patients. Biol. Psychiatry 2008, 64, 376–384. [Google Scholar] [CrossRef]
- Bramon, E.; Rabe-Hesketh, S.; Sham, P.; Murray, R.M.; Frangou, S. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr. Res. 2004, 70, 315–329. [Google Scholar] [CrossRef]
- Neuhaus, A.H.; Hahn, E.; Hahn, C.; Ta, T.M.T.; Opgen-Rhein, C.; Urbanek, C.; Dettling, M. Visual P3 amplitude modulation deficit in schizophrenia is independent of duration of illness. Schizophr. Res. 2011, 130, 210–215. [Google Scholar] [CrossRef]
- Umbricht, D.; Krljesb, S. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr. Res. 2005, 76, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Avissar, M.; Xie, S.; Vail, B.; Lopez-Calderon, J.; Wang, Y.; Javitt, D.C. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr. Res. 2018, 191, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.C.; Pinheiro, A.P. Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls. Artif. Intell. Med. 2021, 114, 102039. [Google Scholar] [CrossRef]
- Yang, D.; Shin, Y., II; Hong, K.S. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front. Neurosci. 2021, 15, 629323. [Google Scholar] [CrossRef]
- Turetsky, B.I.; Greenwood, T.A.; Olincy, A.; Radant, A.D.; Braff, D.L.; Cadenhead, K.S.; Dobie, D.J.; Freedman, R.; Green, M.F.; Gur, R.E.; et al. Abnormal Auditory N100 Amplitude: A Heritable Endophenotype in First-Degree Relatives of Schizophrenia Probands. Biol. Psychiatry 2008, 64, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Pierson, A.; Jouvent, R.; Quintin, P.; Perez-Diaz, F.; Leboyer, M. Information processing deficits in relatives of manic depressive patients. Psychol. Med. 2000, 30, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Pfefferbaum, A.; Wenegrat, B.G.; Ford, J.M.; Roth, W.T.; Kopell, B.S. Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials 1984, 59, 104–124. [Google Scholar] [CrossRef] [PubMed]
Category of Feature | Feature | Work |
---|---|---|
Prosodic Characteristics | F0/Pitch | [4,12,17,26,28,34,42,47,55,56] |
Intensity/Loudness/Amplitude | [4,12,17,25,26,28,45,47,56] | |
Jitter Shimmer | [12,24,45] | |
HNR | [42] | |
NHR | [45] | |
Quantization Error and Vector Angle (QEVA); Standard Dynamic Volume Value (SDVV) | [48] | |
Articulation rate | [39,52] | |
Peak slope | [2] | |
Spectral Characteristics | MFCCs | [4,12,17,28,45] |
F1 F2 | [4,12,17,26,34,45,56] | |
F3 | [4,12,17,25,45,56] | |
Line Spectral Frequencies (LSF); | [55] | |
Linear Predictive Coefficients (LPC) | [2] | |
Symmetric Spectral Difference Level (SSDL) | [48] | |
Temporal Characteristics | Zero-crossing rate | [24,27] |
Duration of pauses | [2,12,42,43,47,49,57] | |
Utterance duration | [4,17,24,40,43,44,47,49,58] | |
Number of pauses | [43,45,47] | |
Gap duration | [25,43] | |
The proportion of silence | [12,49] | |
Total recording time | [47] | |
Voiced/unvoiced percentages; voiced/unvoiced ratio; velocity of Speech | [45] | |
Statistical Measures | Quasi-open Quotient (QOQ) | [2] |
Number of words; verbosity (use of excessive words) | [31,44,57] | |
Speaking turns, interruptions, and interjections | [12,46] | |
Probability of voicing | [55] | |
IQR (interquartile range) of MFCCs and F0 variation | [45] | |
Skewness and kurtosis (of log Mel freq. band); mean value (of waveform Correlation, jitter, and shimmer), slope sign changes | [24,57] | |
Third, fourth, and fifth moments; Hjorth parameter activity; mobility and complexity; waveform length | [56] | |
Minimum semantic distance for first-order coherence; mean semantic distance for first-order coherence | [50] | |
Pitch range; standard deviation of pitch; power standard deviation; mean waveform correlation | [24] |
Number of Used Categories | Categories | Ref. | Accuracy (%) |
---|---|---|---|
1 | Prosodic | [39] | To evaluate the relative contributions of motor and cognitive symptoms on speech output in persons with schizophrenia |
Temporal | [27] | Language and thought disorder in multilingual schizophrenia | |
[40] | Understanding constricted affect in schizotypal via computerized prosodic analysis, | ||
[43] | 80 | ||
[49] | They identified weak untypicalities in pitch variability related to flat affect and stronger untypicalities in proportion of spoken time, speech rate, and pauses related to alogia and flat affect. | ||
[58] | 93.8% (emotion detection) | ||
Statistical | [31] | They characterized the relationship between structural and semantic features, which explained 54% of negative symptoms variance. | |
[46] | 93 | ||
[50] | 100 (psychotic outbreaks in young people at CHR). | ||
[57] | 87.56 | ||
2 | Prosodic and Spectral | [26] | The authors used such methods to understand the underpinnings of aprosody. |
[28] | 79.49 | ||
[34] | F2 was statistically significantly correlated with the severity of negative symptoms. | ||
[48] | 98.2 | ||
Temporal and Statistical | [44] | 85 | |
Prosodic and Temporal | [42] | 93.8 | |
[47] | 79.4 | ||
Acoustic and Text Features | [52,53] | 76.2 | |
3 | Prosodic, Spectral, and Temporal | [4] | 81.3 |
[17] | 90.5 | ||
[25] | 91.79 | ||
Prosodic, Spectral, and Statistical | [55] | 82 | |
[56] | The association between disorganized speech and adjunctive use of mood stabilizers could perhaps be understood in the context of a relationship with impulsiveness/aggressiveness or in terms of deconstructing the Kraepelinian dualism. | ||
Prosodic, Temporal, and Statistical | [24] | 87.5 | |
4 | Prosodic, Spectral, Temporal, and Statistical | [2] | The authors provide an online database with their search results and synthesize how acoustic features appear in each disorder. |
[12] | 90 | ||
[45] | 90 |
Prosodic Characteristics |
|
Spectral Characteristics |
|
Temporal Characteristics |
|
Ref. | Accuracy (%) | Features |
---|---|---|
[85] | 100 | Combination of FMRI-SMRI-EEG |
[80] | 78.24 | Combined sensor-level and source-level EEG features |
[87] | 82.36 | Connectivity measures |
[91] | 100 | Nonlinear features: complexity (Cx), Higuchi fractal dimension (HFD), and Lyapunov exponents (Lya) |
[88] | 94.8 | Phase space dynamic (PSD) |
[8] | 99.47 | Collatz pattern technique |
[92] | 74.07 | Features extracted from event-related potential (ERP). |
[84] | 75.64 | Microstate features (duration, occurrence, and coverage), conventional EEG features (statistical, frequency, and temporal characteristics) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, F.L.; Costa, M.R.e.; Abreu, J.P.; Cabral, M.; Soares, S.P.; Teixeira, J.P. A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges. Bioengineering 2023, 10, 493. https://doi.org/10.3390/bioengineering10040493
Teixeira FL, Costa MRe, Abreu JP, Cabral M, Soares SP, Teixeira JP. A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges. Bioengineering. 2023; 10(4):493. https://doi.org/10.3390/bioengineering10040493
Chicago/Turabian StyleTeixeira, Felipe Lage, Miguel Rocha e Costa, José Pio Abreu, Manuel Cabral, Salviano Pinto Soares, and João Paulo Teixeira. 2023. "A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges" Bioengineering 10, no. 4: 493. https://doi.org/10.3390/bioengineering10040493
APA StyleTeixeira, F. L., Costa, M. R. e., Abreu, J. P., Cabral, M., Soares, S. P., & Teixeira, J. P. (2023). A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges. Bioengineering, 10(4), 493. https://doi.org/10.3390/bioengineering10040493