Technologies for Vitrification Based Cryopreservation
Abstract
:1. Introduction
2. Physical Chemistry Aspects of Vitrification
2.1. Vitrification
2.2. High Hydrostatic Pressure
2.3. Warming
3. Biological Aspects of Cryopreservation
3.1. Cryopreservation of Isolated Cells and Tissue Slices by the Method of Vitrification
3.2. Effect of Hydrostatic Pressure on Biological Samples
3.3. Cytotoxicity of Cryoprotectants in Vitrification
4. Bioengineering Aspects of Vitrification
4.1. Necessity of Ultra-Rapid Cooling
4.2. Methods and Devices of Vitrification
4.2.1. Conventional Rapid Freezing
4.2.2. Ultra-Rapid Freezing
Plunge Freezing
Spray Freezing
Jet Freezing
Metal Block Freezing
4.2.3. High-Pressure Freezing
5. Summary
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muraca, M.; Gerunda, G.; Neri, D.; Vilei, M.T.; Granato, A.; Feltracco, P.; Meroni, M.; Giron, G.; Burlina, A.B. Hepatocyte Transplantation as a Treatment for Glycogen Storage Disease Type 1a. Lancet 2002, 359, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Najimi, M.; Sokal, E. Update on Liver Cell Transplantation. J. Pediatric Gastroenterol. Nutr. 2004, 39, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sokal, E.M.; Smets, F.; Bourgois, A.; Maldergem, V.; Buts, J.-P.; Reding, R.; Bernard Otte, J.; Evrard, V.; Latinne, D.; Vincent, M.F. Transplantation in a 4-Year-Old Girl with Peroxisomal Biogenesis Disease: Technique, Safety, and Metabolic Follow-Up1. Transplantation 2003, 76, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Strom, S.C.; Fisher, R.A.; Thompson, M.T.; Sanyal, A.J.; Cole, P.E.; Ham, J.M.; Posner, M.P. Hepatocyte Transplantation as a Bridge to Orthotopic Liver Transplantation in Terminal Liver Failure. Transplantation 1997, 63, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Stéphenne, X.; Najimi, M.; Sokal, E.M. Hepatocyte Cryopreservation: Is It Time to Change the Strategy? World J. Gastroenterol. 2010, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tas, R.P.; Sampaio-Pinto, V.; Wennekes, T.; van Laake, L.W.; Voets, I.K. From the Freezer to the Clinic. Embo Rep. 2021, 22, e52162. [Google Scholar] [CrossRef]
- Shi, Q.; Xie, Y.; Wang, Y.; Li, S. Vitrification versus Slow Freezing for Human Ovarian Tissue Cryopreservation: A Systematic Review and Meta-Anlaysis. Sci. Rep. 2017, 7, 8538. [Google Scholar] [CrossRef]
- Tokuda, K.; Ikemoto, T.; Saito, Y.; Miyazaki, K.; Yamashita, S.; Yamada, S.; Imura, S.; Morine, Y.; Shimada, M. The Fragility of Cryopreserved Insulin-Producing Cells Differentiated from Adipose-Tissue-Derived Stem Cells. Cell Transpl. 2020, 29. [Google Scholar] [CrossRef]
- O’Brien, E.; Esteso, M.C.; Castaño, C.; Toledano-Díaz, A.; Bóveda, P.; Martínez-Fresneda, L.; López-Sebastián, A.; Martínez-Nevado, E.; Guerra, R.; López Fernández, M. Effectiveness of Ultra-Rapid Cryopreservation of Sperm from Endangered Species, Examined by Morphometric Means. Theriogenology 2019, 129, 160–167. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Funnekotter, B.; Turner, S.R.; Bunn, E.; Bryant, G.; Hunt, T.E.; Mancera, R.L. Development of Cryopreservation for Loxocarya Cinerea-an Endemic Australian Plant Species Important for Post-Mining Restoration. Cryo Lett. 2013, 34, 508–519. [Google Scholar]
- Edesi, J.; Tolonen, J.; Ruotsalainen, A.L.; Aspi, J.; Häggman, H. Cryopreservation Enables Long-Term Conservation of Critically Endangered Species Rubus Humulifolius. Biodivers. Conserv. 2020, 29, 303–314. [Google Scholar] [CrossRef]
- Decelle, J.; Veronesi, G.; Gallet, B.; Stryhanyuk, H.; Benettoni, P.; Schmidt, M.; Tucoulou, R.; Passarelli, M.; Bohic, S.; Clode, P.; et al. Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol. 2020, 30, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Penninckx, F.; Poelmans, S.; Kerremans, R.; De Loecker, W. Erythrocyte Swelling after Rapid Dilution of Cryoprotectants and Its Prevention. Cryobiology 1984, 21, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.O.M.; Cravalho, E.G.; Toner, M. A Model of Diffusion-limited Ice Growth inside Biological Cells during Freezing. J. Appl. Phys. 1998, 75, 4442. [Google Scholar] [CrossRef]
- Pan, J.; Shu, Z.; Zhao, G.; Ding, W.; Ren, S.; Sekar, P.K.; Peng, J.; Chen, M.; Gao, D. Towards Uniform and Fast Rewarming for Cryopreservation with Electromagnetic Resonance Cavity: Numerical Simulation and Experimental Investigation. Appl. Therm. Eng. 2018, 140, 787–798. [Google Scholar] [CrossRef]
- Benson, J. Ultra-Rapid Tissue Cryopreservation Method and Apparatus. U.S. Patent 9,936,690 B2, 20 November 2018. [Google Scholar]
- Wolfe, J.; Bryant, G. Cellular Cryobiology: Thermodynamic Amd Mechanical Effects. Int. J. Refrig. 2001, 24, 438–450. [Google Scholar] [CrossRef]
- Gao, D.; Liu, J.; Liu, C.; McGann, L.; Watson, P.; Kleinhans, F.; Mazur, P.; Critser, E.; Critser, J. Andrology: Prevention of Osmotic Injury to Human Spermatozoa during Addition and Removal of Glycerol. Hum. Reprod. 1995, 10, 1109–1122. [Google Scholar] [CrossRef]
- Sherman, J.K. Synopsis of the Use of Frozen Human Semen since 1964: State of the Art of Human Semen Banking. Fertil. Steril. 1973, 24, 397–412. [Google Scholar] [CrossRef]
- Schneider, U.; Mazur, P. Osmotic Consequences of Cryoprotectant Permeability and Its Relation to the Survival of Frozen-Thawed Embryos. Theriogenology 1984, 21, 68–79. [Google Scholar] [CrossRef]
- Mazur, P.; Schneider, U. Osmotic Responses of Preimplantation Mouse and Bovine Embryos and Their Cryobiological Implications. Cell Biophys. 1986, 8, 259–285. [Google Scholar] [CrossRef]
- Leibo, S.P. Cryobiology: Preservation of Mammalian Embryos. In Genetic Engineering of Animals; Springer: Boston, MA, USA, 1986; pp. 251–272. [Google Scholar] [CrossRef]
- Critser, J.; Huse-Benda, A.; Aaker, D.; Arneson, B.; Ball, D. Cryopreservation of Human Spermatozoa. III. The Effect of Cryoprotectants on Motility. Fertil. Steril. 1988, 50, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Wowk, B. Thermodynamic Aspects of Vitrification. Cryobiology 2010, 60, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Uhlmann, D.R. A Kinetic Treatment of Glass Formation. J. Non-Cryst. Solids 1972, 7, 337–348. [Google Scholar] [CrossRef]
- Akiyama, Y.; Shinose, M.; Watanabe, H. Cryoprotectant-Free Cryopreservation of Mammalian Cells by Superflash Freezing. Proc. Natl. Acad. Sci. USA 2019, 116, 7738–7743. [Google Scholar] [CrossRef] [PubMed]
- Huebinger, J.; Han, H.M.; Hofnagel, O.; Vetter, I.R.; Bastiaens, P.I.H.; Grabenbauer, M. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization. Biophys. J. 2016, 110, 840–849. [Google Scholar] [CrossRef]
- Gilkey, J.C.; Staehelin, L.A. Advances in Ultrarapid Freezing for the Preservation of Cellular Ultrastructure. J. Electron Microsc. Tech. 1986, 3, 177–210. [Google Scholar] [CrossRef]
- Katkov, I.I.; Bolyukh, V.F.; Sukhikh, G.T. KrioBlast TM as a New Technology of Hyper-Fast Cryopreservation of Cells and Tissues. Part, I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine. Bull. Exp. Biol. Med. 2018, 164, 530–535. [Google Scholar] [CrossRef]
- Miyata, K.; Hayakawa, S.; Kajiwara, K.; Kanno, H. Supercooling and Vitrification of Aqueous Glycerol Solutions at Normal and High Pressures. Cryobiology 2012, 65, 113–116. [Google Scholar] [CrossRef]
- Richter, K. High-Density Morphologies of Ice in High-Pressure Frozen Biological Specimens. Ultramicroscopy 1994, 53, 237–249. [Google Scholar] [CrossRef]
- Preciado, J.; Rubinsky, B. Isochoric Preservation: A Novel Characterization Method. Cryobiology 2010, 60, 23–29. [Google Scholar] [CrossRef]
- Ukpai, G.; Năstase, G.; Şerban, A.; Rubinsky, B. Pressure in Isochoric Systems Containing Aqueous Solutions at Subzero Centigrade Temperatures. PLoS ONE 2017, 12, e0183353. [Google Scholar] [CrossRef] [PubMed]
- Brüggeller, P.; Mayer, E. Complete Vitrification in Pure Liquid Water and Dilute Aqueous Solutions. nature 1980, 288, 569–571. [Google Scholar] [CrossRef]
- Grout, B.W.W.; Morris, G.J. Contaminated Liquid Nitrogen Vapour as a Risk Factor in Pathogen Transfer. Theriogenology 2009, 71, 1079–1082. [Google Scholar] [CrossRef]
- Severs, N.J.; Newman, T.M.; Shotton, D.M. A Practical Introduction to Rapid Freezing Techniques. In Rapid Freezing, Freeze Fracture and Deep Etching; Severs, N., Shotton, D., Eds.; Wiley-Liss: New York, NY, USA, 1995; pp. 31–49. [Google Scholar]
- Ickes, L.; Welti, A.; Hoose, C.; Chemical, U.L. Classical Nucleation Theory of Homogeneous Freezing of Water: Thermodynamic and Kinetic Parameters. Phys. Chem. Chem. Phys. 2015, 17, 5514–5537. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.; Willard, J. On the Equilibrium of Heterogeneous Substances. Trans. Conn. Acad. Arts Sci. 1879, 3, 108–248. [Google Scholar]
- Koop, T.; Murray, B.J. A Physically Constrained Classical Description of the Homogeneous Nucleation of Ice in Water. J. Chem. Phys. 2016, 145, 211915. [Google Scholar] [CrossRef]
- Kauzmann, W. The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. Chem. Rev. 1948, 43, 219–256. [Google Scholar] [CrossRef]
- Jung, S.; Tiwari, M.; Doan, N.; Poulikakos, D. Mechanism of Supercooled Droplet Freezing on Surfaces. Nat. Commun. 2012, 3, 615. [Google Scholar] [CrossRef]
- MacKenzie, A.P. Non-Equilibrium Freezing Behaviour of Aqueous Systems. Philos. Trans. R. Soc. London. B Biol. Sci. 1977, 278, 167–189. [Google Scholar] [CrossRef]
- Rasmussen, D.H. Ice Formation in Aqueous Systems. J. Microsc. 1982, 128, 167–174. [Google Scholar] [CrossRef]
- Clark, G.L. Applied X-rays, 3rd ed.; The McGraw-Hill Book Company, Inc.: New York, NY, USA, 1940. [Google Scholar]
- Randall, J.T. Diffraction of X-rays and Electrons by Amorphous Solids, Liquids and Gases; John Wiley and Sons, Inc.: New York, NY, USA, 1934. [Google Scholar]
- Boutron, P.; Kaufmann, A. Stability of the Amorphous State in the System Water-Glycerol-Dimethylsulfoxide. Cryobiology 1978, 15, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Boutron, P.; Kaufmann, A. Stability of the Amorphous State in the System Water—1,2-Propanediol. Cryobiology 1979, 16, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Boutron, P.; Kaufmann, A. Stability of the Amorphous State in the System Water-Glycerol-Ethylene Glycol. Cryobiology 1979, 16, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Boutron, P.; Kaufmann, A.; Van Dang, N. Maximum in the Stability of the Amorphous State in the System Water-Glycerol-Ethanol. Cryobiology 1979, 16, 372–389. [Google Scholar] [CrossRef]
- Baudot, A.; Alger, L.; Boutron, P. Glass-Forming Tendency in the System Water-Dimethyl Sulfoxide. Cryobiology 2000, 40, 151–158. [Google Scholar] [CrossRef]
- Baudot, A.; Cacela, C.; Duarte, M.; Cryobiology, R.F. Thermal Study of Simple Amino-Alcohol Solutions. Cryobiology 2002, 44, 150–160. [Google Scholar] [CrossRef]
- Baudot, A.; Cryobiology, V.O. Thermal Properties of Ethylene Glycol Aqueous Solutions. Cryobiology 2004, 48, 283–294. [Google Scholar] [CrossRef]
- Wowk, B.; Darwin, M.; Harris, S.B.; Russell, S.R.; Rasch, C.M. Effects of Solute Methoxylation on Glass-Forming Ability and Stability of Vitrification Solutions. Cryobiology 1999, 39, 215–227. [Google Scholar] [CrossRef]
- Persidsky, M.D. Cryopreservation under High Hydrostatic Pressure. Cryobiology 1971, 8, 380. [Google Scholar] [CrossRef]
- Dahl, R.; Staehelin, L.A. Highpressure Freezing for the Preservation of Biological Structure: Theory and Practice. J. Electron Microsc. Tech. 1989, 13, 165–174. [Google Scholar] [CrossRef]
- Erk, I.; Nicolas, G.; Caroff, A.; Lepault, J. Electron Microscopy of Frozen Biological Objects: A Study Using Cryosectioning and Cryosubstitution. J. Microsc. 1998, 189, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Ugraitskaya, S.V.; Shishova, N.V.; Valeeva, E.R.; Kaurova, S.A.; Shvirst, N.E.; Fesenko, E.E. Cryopreservation of HeLa Cells at a High Hydrostatic Pressure of 1.0–1.5 Kbar. Biophys. (Russ. Fed.) 2021, 66, 98–106. [Google Scholar] [CrossRef]
- Greer, N. Freezing under Pressure: A New Method for Cryopreservation. Cryobiology 2015, 70, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Mickelson, D.M.; Attig, J.W. Glacial Processes Past and Present, 1st ed.; Special Paper: Madison, WI, USA, 1999. [Google Scholar]
- Sartori, N.; Richter, K.; Dubochet, J. Vitrification Depth Can Be Increased More than 10-fold by High-pressure Freezing. J. Microsc. 1993, 172, 55–61. [Google Scholar] [CrossRef]
- Wowk, B.; Fahy, G. 21. Ice Nucleation and Growth in Concentrated Vitrification Solutions. Cryobiology 2007, 55, 330. [Google Scholar] [CrossRef]
- Hey, J.M.; Macfarlane, D.R. Crystallization of Ice in Aqueous Solutions of Glycerol and Dimethyl Sulfoxide: 1. A Comparison of Mechanisms. Cryobiology 1996, 33, 205–216. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, A.P. Death of Yeast in the Course of Slow Warming. In The Frozen Cell; Wolstenholme, C.A., O’Connor, M., Eds.; Churchill: London, UK, 1970; pp. 89–96. [Google Scholar]
- Mazur, P. The Role of Intracellular Freezing in the Death of Cells Cooled at Supraoptimal Rates. Cryobiology 1977, 14, 251–272. [Google Scholar] [CrossRef]
- Zieger, M.A.J.; Tredget, E.E.; McGann, L.E. Mechanisms of Cryoinjury and Cryoprotection in Split-Thickness Skin. Cryobiology 1996, 33, 376–389. [Google Scholar] [CrossRef]
- Acker, J. Cell–Cell Contact Affects Membrane Integrity after Intracellular Freezing. Cryobiology 2000, 40, 54–63. [Google Scholar] [CrossRef]
- Mazur, P.; Leibo, S. A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-Culture Cells. Exp. Cell Res. 1972, 71, 345–355. [Google Scholar] [CrossRef]
- De Graaf, I.A.M.; Koster, H.J. Cryopreservation of Precision-Cut Tissue Slices for Application in Drug Metabolism Research. Toxicol. Vitr. 2003, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Benson, J.D. Investigation of Cryoprotectant Thermophysical Properties in the Fast Cooling Cryopreservation by DSC Technique. Cryobiology 2022, 109, 34. [Google Scholar] [CrossRef]
- Angell, C.A. Supercooled Water. In Water-A Comprehensive Treatise; Franks, F., Ed.; Plenum Press: New York, NY, USA, 1982; pp. 1–81. [Google Scholar]
- Bank, H. Visualization of Freezing Damage. II. Structural Alterations during Warming. Cryobiology 1973, 10, 157–170. [Google Scholar] [CrossRef]
- Rall, W.F.; Reid, D.S.; Polge, C. Analysis of Slow-Warming Injury of Mouse Embryos by Cryomicroscopical and Physiochemical Methods. Cryobiology 1984, 21, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Nei, T. Growth of Ice Crystals in Frozen Specimens. J. Microsc. 1973, 99, 227–233. [Google Scholar] [CrossRef]
- Mazur, P. Freezing of Living Cells: Mechanisms and Implications. Am. J. Physiol.-Cell Physiol. 1984, 247, C125–C142. [Google Scholar] [CrossRef]
- Li, A.P.; Gorycki, P.D.; Hengstler, J.G.; Kedderis, G.L.; Koebe, H.G.; Rahmani, R.; De Sousas, G.; Silva, J.M.; Skett, P. Present Status of the Application of Cryopreserved Hepatocytes in the Evaluation of Xenobiotics: Consensus of an International Expert Panel. Chem.-Biol. Interact. 1999, 121, 117–123. [Google Scholar] [CrossRef]
- Rijntjes, P.J.M.; Moshage, H.J.; Van Gemert, P.J.L.; De Waal, R.; Yap, S.H. Cryopreservation of Adult Human Hepatocytes. J. Hepatol. 1986, 3, 7–18. [Google Scholar] [CrossRef]
- De Sousa, G.; Langouët, S.; Nicolas, F.; Lorenzon, G.; Placidi, M.; Rahmani, R.; Guillouzo, A. Increase of Cytochrome P-450 1A and Glutathione Transferase Transcripts in Cultured Hepatocytes from Dogs, Monkeys, and Humans after Cryopreservation. Cell Biol. Toxicol. 1996, 12, 351–358. [Google Scholar] [CrossRef]
- Ostrowska, A.; Bode, C.D.; Pruss, J.; Bilir, B.; Smith, G.D.; Zeisloft, S. Investigation of Functional and Morphological Integrity of Freshly Isolated and Cryopreserved Human Hepatocytes. Cell Tissue Bank. 2000, 1, 55–68. [Google Scholar] [CrossRef]
- Luyet, B. The Vitrification of Organic Colloids and of Protoplasme; Biodynamica: Whitefish, MT, USA, 1937. [Google Scholar]
- Bunge, R.G.; Sherman, J.K. Fertilizing Capacity of Frozen Human Spermatozoa. Nature 1953, 172, 767–768. [Google Scholar] [CrossRef] [PubMed]
- Wishnies, S.M.; Parrish, A.R.; Sipes, I.G.; Gandolfi, A.J.; Putnam, C.W.; Krumdieck, C.L.; Brendel, K. Biotransformation Activity in Vitrified Human Liver Slices. Cryobiology 1991, 28, 216–226. [Google Scholar] [CrossRef] [PubMed]
- De Kanter, R.; Koster, H.J. Cryopreservation of Rat and Monkey Liver Slices. Altern. Lab. Anim. 1995, 23, 653–665. [Google Scholar] [CrossRef]
- De Kanter, R.; Olinga, P.; De Jager, M.H.; Merema, M.T.; Meijer, D.K.F.; Groothius, G.M.M. Organ Slices as an in Vitro Test System for Drug Metabolism in Human Liver, Lung and Kidney. Toxicol. Vitr. 1999, 13, 737–744. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, I.A.M.; van der Voort, D.; Brits, J.H.F.G.; Koster, H.J. Increased Post-Thaw Viability and Phase I and II Biotransformation Activity in Cryopreserved Rat Liver Slices after Improvement of a Fast-Freezing Method. Drug Metab. Dispos. 2000, 28, 1100–1106. [Google Scholar]
- Day, S.H.; Nicoll-Griffith, D.A.; Silva, J.M. Cryopreservation of Rat and Human Liver Slices by Rapid Freezing. Cryobiology 1999, 38, 154–159. [Google Scholar] [CrossRef]
- Powis, G.; Santone, K.S.; Melder, D.C.; Thomas, L.; Moore, D.J.; Wilke, T.J. Cryopreservation of Rat and Dog Hepatocytes for Studies of Xenobiotic Metabolism and Activation. Drug Metab. Dispos. 1987, 15, 826–832. [Google Scholar]
- Coundouris, J.A.; Grant, M.H.; Simpson, J.G.; Hawksworth, G.M. Drug Metabolism and Viability Studies in Cryopreserved Rat Hepatocytes. Cryobiology 1990, 27, 288–300. [Google Scholar] [CrossRef]
- Diener, B.; Utesch, D.; Beer, N.; Dürk, H.; Oesch, F. A Method for the Cryopreservation of Liver Parenchymal Cells for Studies of Xenobiotics. Cryobiology 1993, 30, 116–127. [Google Scholar] [CrossRef]
- Maas, W.J.M.; De Graaf, I.A.M.; Schoen, E.D.; Koster, H.J.; Van De Sandt, J.J.M.; Groten, J.P. Assessment of Some Critical Factors in the Freezing Technique for the Cryopreservation of Precision-Cut Rat Liver Slices. Cryobiology 2000, 40, 250–263. [Google Scholar] [CrossRef]
- Pegg, D.E. Ice Crystals in Tissues and Organs. In The Biophysics of Organ Cryopreservation; Springer: Boston, MA, USA, 1987. [Google Scholar] [CrossRef]
- Bischof, J.C.; Ryan, C.M.; Tompkins, R.G.; Yarmush, M.L.; Toner, M. Ice Formation in Isolated Human Hepatocytes and Human Liver Tissue. Asaio, J. 1997, 43, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Rapatz, G.; Luyet, B. Microscopic Observations on the Development of the Ice Phase in the Freezing of Blood. Biodynamica 1960, 8, 195–239. [Google Scholar]
- Takahashi, T.; Hirsh, A. Calorimetric Studies of the State of Water in Deeply Frozen Human Monocytes. Biophys. J. 1985, 47, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Yamane, H.; Ohshima, H.; Kondod, T. Freezing Behaviour of Microencapsulated Water. J. Microencapsul. 1992, 9, 279–286. [Google Scholar] [CrossRef]
- Peyridieu, J.F.; Baudot, A.; Boutron, P.; Mazuer, J.; Odin, J.; Ray, A.; Chapelier, E.; Payen, E.; Descotes, J.L. Critical Cooling and Warming Rates to Avoid Ice Crystallization in Small Pieces of Mammalian Organs Permeated with Cryoprotective Agents. Cryobiology 1996, 33, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Kliesch, S.; Kamischke, A.; Cooper, T.G.; Nieschlag, E. Cryopreservation of Human Spermatozoa. In Andrology: Male Reproductive Health and Dysfunction; Springer: Berlin/Heidelberg, Germany, 2010; Volume 12, pp. 505–520. [Google Scholar] [CrossRef]
- Endo, Y.; Fujii, Y.; Shintani, K.; Seo, M.; Motoyama, H.; Funahashi, H. Simple Vitrification for Small Numbers of Human Spermatozoa. Reprod. Biomed. Online 2012, 24, 301–307. [Google Scholar] [CrossRef]
- Herrler, A.; Eisner, S.; Bach, V.; Weissenborn, U.; Beier, H.M. Cryopreservation of Spermatozoa in Alginic Acid Capsules. Fertil. Steril. 2006, 85, 208–213. [Google Scholar] [CrossRef]
- Shufaro, Y.; Stein, A.; Shufaro, Y.; Hadar, S.; Fisch, B.; Pinkas, H. Successful Use of the Cryolock Device for Cryopreservation of Scarce Human Ejaculate and Testicular Spermatozoa. Wiley Online Libr. 2015, 3, 220–224. [Google Scholar] [CrossRef]
- Liu, F.; Zou, S.S.; Zhu, Y.; Sun, C.; Liu, Y.F.; Wang, S.S.; Shi, W.B.; Zhu, J.J.; Huang, Y.H.; Li, Z. A Novel Micro-Straw for Cryopreservation of Small Number of Human Spermatozoon. Asian J. Androl. 2016, 19, 326–329. [Google Scholar] [CrossRef]
- Berkovitz, A.; Miller, N.; Silberman, M.; Belenky, M.; Itsykson, P. A Novel Solution for Freezing Small Numbers of Spermatozoa Using a Sperm Vitrification Device. Hum. Reprod. 2018, 33, 1975–1983. [Google Scholar] [CrossRef]
- Paffoni, A.; Palini, S. There Is Another New Method for Cryopreserving Small Numbers of Human Sperm Cells. Ann. Transl. Med. 2019, 7, S17. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Xu, Y.; Yang, T. Study on Leidenfrost Effect of Cryoprotectant Droplets on Liquid Nitrogen with IR Imaging Technology and Non-Isothermal Crystallization Kinetics Model. Int. J. Heat Mass Transf. 2018, 127, 413–421. [Google Scholar] [CrossRef]
- XU, Y.; WANG, T.; DENG, X.; YANG, T.; WANG, C.; CAO, J.; FANG, L. Analysis on the Leidenfrost Effect of Cryoprotectant Microdroplets on the Liquid Nitrogen Surface. Sci. Sin. Technol. 2017, 47, 190–196. [Google Scholar] [CrossRef]
- Isachenko, V.; Isachenko, E.; Katkov, I.I.; Montag, M.; Dessole, S.; Nawroth, F.; Van Der Ven, H. Cryoprotectant-Free Cryopreservation of Human Spermatozoa by Vitrification and Freezing in Vapor: Effect on Motility, DNA Integrity, and Fertilization Ability. Biol. Reprod. 2004, 71, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Bielanski, A. A Review of the Risk of Contamination of Semen and Embryos during Cryopreservation and Measures to Limit Cross-Contamination during Banking to Prevent Disease Transmission in ET Practices. Theriogenology 2012, 77, 467–482. [Google Scholar] [CrossRef]
- HARRISON, A.P. Survival of Bacteria upon Repeated Freezing and Thawing. J. Bacteriol. 1955, 70, 711–715. [Google Scholar] [CrossRef]
- Piasecka-Serafin, M. The Effect of the Sediment Accumulated in Containers under Experimental Conditions on the Infection of Semen Stored Directly in Liquid Nitrogen (-196 Degree C). Bull. De L”Acad. Pol. Des Sciences. Ser. Des Sci. Biol. 1972, 20, 263–267. [Google Scholar]
- Schafer, T.; Everett, J.; Silver, G.; Came, P.E. Biohazard: Virus-Contaminated Liquid Nitrogen. Science 1976, 191, 24–26. [Google Scholar] [CrossRef]
- Tedder, R.S.; Zuckerman, M.A.; Brink, N.S.; Goldstone, A.H.; Fielding, A.; Blair, S.; Patterson, K.G.; Hawkins, A.E.; Gormon, A.M.; Heptonstall, J. Hepatitis B Transmission from Contaminated Cryopreservation Tank. Lancet 1995, 346, 137–140. [Google Scholar] [CrossRef]
- Cobo, A.; Bellver, J.; De Los Santos, M.J.; Remohí, J. Viral Screening of Spent Culture Media and Liquid Nitrogen Samples of Oocytes and Embryos from Hepatitis B, Hepatitis C, and Human Immunodeficiency Virus Chronically Infected Women Undergoing in Vitro Fertilization Cycles. Fertil. Steril. 2012, 97, 74–78. [Google Scholar] [CrossRef]
- Molina, I.; Mari, M.; Martínez, J.V.; Novella-Maestre, E.; Pellicer, N.; Pemán, J. Bacterial and Fungal Contamination Risks in Human Oocyte and Embryo Cryopreservation: Open versus Closed Vitrification Systems. Fertil. Steril. 2016, 106, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Deen, G.F.; Broutet, N.; Xu, W.; Knust, B.; Sesay, F.R.; McDonald, S.L.R.; Ervin, E.; Marrinan, J.E.; Gaillard, P.; Habib, N. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors—Final Report. N. Engl. J. Med. 2017, 377, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Nicastri, E.; Castilletti, C.; Liuzzi, G.; Iannetta, M.; Capobianchi, M.R.; Ippolito, G. Persistent Detection of Zika Virus RNA in Semen for Six Months after Symptom Onset in a Traveller Returning from Haiti to Italy, February 2016. Eurosurveillance 2016, 21, 30314. [Google Scholar] [CrossRef]
- Bielanski, A. Biosafety in Embryos and Semen Cryopreservation, Storage, Management and Transport; Springer: New York, NY, USA, 2014; pp. 429–465. [Google Scholar] [CrossRef]
- Bielanski, A.; Nadin-Davis, S.; Sapp, T.; Lutze-Wallace, C. Viral Contamination of Embryos Cryopreserved in Liquid Nitrogen. Cryobiology 2000, 40, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.J. The Origin, Ultrastructure, and Microbiology of the Sediment Accumulating in Liquid Nitrogen Storage Vessels. Cryobiology 2005, 50, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, D.C.; Borges, E.D.; Viana, I.G.R.; Navarro, P.A.; Vireque, A.A. Risk of Contamination of Gametes and Embryos during Cryopreservation and Measures to Prevent Cross-Contamination. BioMed Res. Int. 2017, 2017, 1840417. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Neto, P.C.; Vilariño, M.; Barrera, N.; Cuadro, F.; Crispo, M.; Menchaca, A. Cryotolerance of Day 2 or Day 6 in Vitro Produced Ovine Embryos after Vitrification by Cryotop or Spatula Methods. Cryobiology 2015, 70, 17–22. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Feuchard, V.L.d.S.; de Freitas, C.; Rosa, P.M.d.S.; Camargo, A.J.d.R.; Saraiva, N.Z. In-Straw Warming Protocol Improves Survival of Vitrified Embryos and Allows Direct Transfer in Cattle. Cryobiology 2020, 97, 222–225. [Google Scholar] [CrossRef]
- Bottrel, M.; Mogas, T.; Pereira, B.; Ortiz, I.; Díaz-Jiménez, M.; Consuegra, C.; Hidalgo, M.; Morató, R.; Dorado, J. The Cryoprotective Effect of Ficoll 70 on the Post-Warming Survival and Quality of Cryotop-Vitrified Donkey Embryos: Vitrifying Donkey Embryos with Ficoll. Theriogenology 2020, 148, 180–185. [Google Scholar] [CrossRef]
- Somfai, T.; Hirao, Y. Vitrification of Immature Bovine Oocytes in Protein-Free Media: The Impact of the Cryoprotectant Treatment Protocol, Base Medium, and Ovary Storage. Theriogenology 2021, 172, 47–54. [Google Scholar] [CrossRef]
- Seki, S.; Basaki, K.; Komatsu, Y.; Fukuda, Y.; Yano, M.; Matsuo, Y.; Obata, T.; Matsuda, Y.; Nishijima, K. Vitrification of One-Cell Mouse Embryos in Cryotubes. Cryobiology 2018, 81, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.A.; David, A.; Van Langendonckt, A.; Dolmans, M.M.; Donnez, J. Vitrification of Human Ovarian Tissue: Effect of Different Solutions and Procedures. Fertil. Steril. 2011, 95, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- El-Sharawy, M.E.; Almadaly, E.A.; El-Domany, W.B.; Essawy, M.M.; Shamiah, S.M.; El-Shamaa, I.S.; Zaghloul, H.K. Ultrastructural Changes in Immature Ovine Cumulus-Oocyte Complexes Vitrified in Conventional and Open Pulled Straws. Small Rumin. Res. 2021, 199, 106367. [Google Scholar] [CrossRef]
- Kornienko, E.V.; Romanova, A.B.; Ikonopistseva, M.V.; Malenko, G.P. Optimization of Triacetate Cellulose Hollow Fiber Vitrification (HFV) Method for Cryopreservation of in Vitro Matured Bovine Oocytes. Cryobiology 2020, 97, 66–70. [Google Scholar] [CrossRef]
- Sugiyama, R.; Nakagawa, K.; Shirai, A.; Sugiyama, R.; Nishi, Y.; Kuribayashi, Y.; Inoue, M. Clinical Outcomes Resulting from the Transfer of Vitrified Human Embryos Using a New Device for Cryopreservation (Plastic Blade). J. Assist. Reprod. Genet. 2010, 27, 161–167. [Google Scholar] [CrossRef]
- Nakayama, K.; Chinen, S.; Teshima, J.; Tamada, Y.; Hirabayashi, M.; Hochi, S. Silk Fibroin Sheet Multilayer Suitable for Vitrification of in Vitro-Matured Bovine Oocytes. Theriogenology 2020, 145, 109–114. [Google Scholar] [CrossRef]
- Hayashi, A.; Maehara, M.; Uchikura, A.; Matsunari, H.; Matsumura, K.; Hyon, S.H.; Sato, M.; Nagashima, H. Development of an Efficient Vitrification Method for Chondrocyte Sheets for Clinical Application. Regen. Ther. 2020, 14, 215–221. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Y.; Li, L.; Luo, S.; Li, S.W. Needle Immersed Vitrification Can Lower the Concentration of Cryoprotectant in Human Ovarian Tissue Cryopreservation. Fertil. Steril. 2010, 94, 2323–2328. [Google Scholar] [CrossRef]
- Zhou, X.H.; Wu, Y.J.; Shi, J.; Xia, Y.; Zheng, S. Sen. Cryopreservation of Human Ovarian Tissue: Comparison of Novel Direct Cover Vitrification and Conventional Vitrification. Cryobiology 2010, 60, 101–105. [Google Scholar] [CrossRef]
- Bebbere, D.; Pinna, S.; Nieddu, S.; Natan, D.; Arav, A.; Ledda, S. Gene Expression Analysis of Ovine Prepubertal Testicular Tissue Vitrified with a Novel Cryodevice (E.Vit). J. Assist. Reprod. Genet. 2019, 36, 2145–2154. [Google Scholar] [CrossRef]
- Rahimi, G.; Isachenko, V.; Kreienberg, R.; Sauer, H.; Todorov, P.; Tawadros, S.; Mallmann, P.; Nawroth, F.; Isachenko, E. Re-Vascularisation in Human Ovarian Tissue after Conventional Freezing or Vitrification and Xenotransplantation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 149, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.B.C.; Da Silva, L.D.M.; Comizzoli, P. Influence of Warming and Reanimation Conditions on Seminiferous Tubule Morphology, Mitochondrial Activity, and Cell Composition of Vitrified Testicular Tissues in the Domestic Cat Model. PLoS ONE 2018, 13, e0207317. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Salehnia, M.; Jafarabadi, M. Vitrification and in Vitro Culture Had No Adverse Effect on the Follicular Development and Gene Expression of Stimulated Human Ovarian Tissue. J. Obstet. Gynaecol. Res. 2018, 44, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Yamini, N.; Pourmand, G.; Amidi, F.; Salehnia, M.; Nejad, N.A.; Mougahi, S.M.H.N. Developmental Potential of Vitrified Mouse Testicular Tissue after Ectopic Transplantation. Cell J. 2016, 18, 74–82. [Google Scholar] [CrossRef]
- Fujihara, M.; Kaneko, T.; Inoue-Murayama, M. Vitrification of Canine Ovarian Tissues with Polyvinylpyrrolidone Preserves the Survival and Developmental Capacity of Primordial Follicles. Sci. Rep. 2019, 9, 3970. [Google Scholar] [CrossRef]
- Benvenutti, L.; Salvador, R.A.; Til, D.; Senn, A.P.; Tames, D.R.; Amaral, N.L.L.; Amaral, V.L.L. Wistar Rats Immature Testicular Tissue Vitrification and Heterotopigrafting. J. Bras. De Reprod. Assist. 2018, 22, 167–173. [Google Scholar] [CrossRef]
- Xu, H.; Shi, H.; Zang, W.-F.; Lu, D. An Experimental Research on Cryopreserving Rabbit Trachea by Vitrification. Cryobiology 2009, 58, 225–231. [Google Scholar] [CrossRef]
- de Graaf, I.A.M.; Draaisma, A.L.; Schoeman, O.; Fahy, G.M.; Groothuis, G.M.M.; Koster, H.J. Cryopreservation of Rat Precision-Cut Liver and Kidney Slices by Rapid Freezing and Vitrification. Cryobiology 2007, 54, 1–12. [Google Scholar] [CrossRef]
- Jomha, N.M.; Elliott, J.A.W.; Law, G.K.; Maghdoori, B.; Fraser Forbes, J.; Abazari, A.; Adesida, A.B.; Laouar, L.; Zhou, X.; McGann, L.E. Vitrification of Intact Human Articular Cartilage. Biomaterials 2012, 33, 6061–6068. [Google Scholar] [CrossRef]
- Wu, K.; Shardt, N.; Laouar, L.; Chen, Z.; Prasad, V.; Elliott, J.A.W.; Jomha, N.M. Comparison of Three Multi-Cryoprotectant Loading Protocols for Vitrification of Porcine Articular Cartilage. Cryobiology 2020, 92, 151–160. [Google Scholar] [CrossRef]
- Aertsen, A.; Meersman, F.; Hendrickx, M.E.G.; Vogel, R.F.; Michiels, C.W. Biotechnology under High Pressure: Applications and Implications. Trends Biotechnol. 2009, 27, 434–441. [Google Scholar] [CrossRef] [PubMed]
- De Heer, J. The Principle of Le Châtelier and Braun. J. Chem. Educ. 1957, 34, 375–380. [Google Scholar] [CrossRef]
- Meersman, F.; Dobson, C.M.; Heremans, K. Protein Unfolding, Amyloid Fibril Formation and Configurational Energy Landscapes under High Pressure Conditions. Chem. Soc. Rev. 2006, 35, 908–917. [Google Scholar] [CrossRef]
- Silva, J.L.; Foguel, D.; Royer, C.A. Pressure Provides New Insights into Protein Folding, Dynamics and Structure. Trends Biochem. Sci. 2001, 26, 612–618. [Google Scholar] [CrossRef]
- Shung, K.K.; Krisko, B.A.; Ballard, J.O. Acoustic Measurement of Erythrocyte Compressibility. J. Acoust. Soc. Am. 1982, 72, 1364–1367. [Google Scholar] [CrossRef]
- Hall, A.C.; Pickles, D.M.; Macdonald, A.G. Advances in Comparative and Enviromental Physiology. In Advances in Comparative and Enviromental Physiology; Macdonald, A.G., Ed.; Springer: Berlin, Germany, 1993; p. 17. [Google Scholar]
- Lammi, M.J.; Hakkinen, T.P.; Parkkinen, J.J.; Hyttinen, M.M.; Jortikka, M.; Helminen, H.J.; Tammi, M.I. Adaptation of Canine Femoral Head Articular Cartilage to Long Distance Running Exercise in Young Beagles. Ann. Rheum. Dis. 1993, 52, 369–377. [Google Scholar] [CrossRef]
- Marsland, D. Cells at High Pressure. Sci. Am. 1958, 199, 36–43. [Google Scholar] [CrossRef]
- Zimmerman, A.M.; Marsland, D. Cell Division: Effects of Pressure on the Mitotic Mechanisms of Marine Eggs (Arbacia Punctulata). Exp. Cell Res. 1964, 35, 293–302. [Google Scholar] [CrossRef]
- Forer, A.; Zimmerman, A.M. Spindle Birefringence of Isolated Mitotic Apparatus Analysed by Treatments with Cold, Pressure, and Diluted Isolation Medium. J. Cell Sci. 1976, 20, 329–339. [Google Scholar] [CrossRef]
- Bourns, B.; Franklin, S.; Cassimeris, L.; Salmon, E.D. High Hydrostatic Pressure Effects in Vivo: Changes in Cell Morphology, Microtubule Assembly, and Actin Organization. Cell Motil. Cytoskelet. 1988, 10, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Symington, A.L.; Zimmerman, S.; Stein, J.; Stein, G.; Zimmerman, A.M. Hydrostatic Pressure Influences Histone MRNA. J. Cell Sci. 1991, 98, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Haskin, C.; Cameron, I. Physiological Levels of Hydrostatic Pressure Alter Morphology and Organization of Cytoskeletal and Adhesion Proteins in MG-63 Osteosarcoma Cells. Biochem. Cell Biol. Biochim. Et Biol. Cell 1993, 71, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Haskin, C.L.; Athanasiou, K.A.; Klebe, R.; Cameron, I.L. A Heat-Shock-like Response with Cytoskeletal Disruption Occurs Following Hydrostatic Pressure in MG-63 Osteosarcoma Cells. Biochem. Cell Biol. 1993, 71, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.G.; Trogadis, J.E.; Zimmerman, S.; Zimmerman, A.M. Hydrostatic Pressure Induced Changes in the Cytoarchitecture of Pheochromocytoma (PC-12) Cells. Cell Biol. Int. 2001, 25, 649–666. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.G.; Zimmerman, S.; Zimmerman, A.M. The Effects of Hydrostatic Pressure-Induced Changes on the Cytoskeleton and on the Regulation of Gene Expression in Pheochromocytoma (PC-12) Cells. Cell Biol. Int. 2001, 25, 667–677. [Google Scholar] [CrossRef]
- Karow, A.M.; Liu, W.P.; Humphries, A.L. Survival of Dog Kidneys Subjected to High Pressures: Necrosis of Kidneys after Freezing. Cryobiology 1970, 7, 122–128. [Google Scholar] [CrossRef]
- Fahy, G.M. The Biophysics of Organ Cryopreservation. In The Biophysics of Organ Cryopreservation; Peggy, D.E., Karow, A., Eds.; Plenum: New York, NY, USA, 1987; p. 339. [Google Scholar]
- Frey, B.; Janko, C.; Ebel, N.; Meister, S.; Schlucker, E.; Meyer-Pittroff, R.; Fietkau, R.; Herrmann, M.; Gaipl, U. Cells Under Pressure—Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death. Curr. Med. Chem. 2008, 15, 2329–2336. [Google Scholar] [CrossRef]
- Multhoff, G. Heat Shock Protein 70 (Hsp70): Membrane Location, Export and Immunological Relevance. Methods 2007, 43, 229–237. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Elo, M.; Sironen, R.; Lammi, M.J.; Goldring, M.B.; Eriksson, J.E.; Sistonen, L.; Helminen, H.J. Hsp70 Accumulation in Chondrocytic Cells Exposed to High Continuous Hydrostatic Pressure Coincides with MRNA Stabilization Rather than Transcriptional Activation. Proc. Natl. Acad. Sci. USA 2002, 95, 2319–2324. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Elo, M.A.; Sironen, R.K.; Karjalainen, H.M.; Helminen, H.J.; Lammi, M.J. Stress Responses of Mammalian Cells to High Hydrostatic Pressure. Biorheology 2002, 40, 87–92. [Google Scholar]
- Kaarniranta, K.; Holmberg, C.I.; Lammi, M.J.; Eriksson, J.E.; Sistonen, L.; Helminen, H.J. Primary Chondrocytes Resist Hydrostatic Pressure-Induced Stress While Primary Synovial Cells and Fibroblasts Show Modified Hsp70 Response. Osteoarthr. Cartil. 2001, 9, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Haqqi, T.M.; Jepsen, K.J.; Kraay, M.; Welter, J.F.; Goldberg, V.M.; Malemud, C.J. Hydrostatic Pressure Induces Apoptosis in Human Chondrocytes from Osteoarthritic Cartilage through Up-Regulation of Tumor Necrosis Factor-α, Inducible Nitric Oxide Synthase, P53, c-Myc, and Bax-α, and Suppression of Bcl-2. J. Cell. Biochem. 2000, 87, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Boonyaratanakornkit, B.B.; Park, C.B.; Clark, D.S. Pressure Effects on Intra- and Intermolecular Interactions within Proteins. Biochim. Et Biophys. Acta-Protein Struct. Mol. Enzymol. 2002, 1595, 235–249. [Google Scholar] [CrossRef]
- Heremans, K. High Pressure Effects on Proteins and Other Biomolecules. Annu. Rev. Biophys. Bioeng. 1982, 11, 1–21. [Google Scholar] [CrossRef]
- Heremans, K.; Smeller, L. Protein Structure and Dynamics at High Pressure1. Biochim. Et Biophys. Acta-Protein Struct. Mol. Enzymol. 1998, 1386, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Winter, R.; Dzwolak, W.; Wolynes, P.G.; Dobson, C.M.; Saykally, R.J. Exploring the Temperature-Pressure Configurational Landscape of Biomolecules: From Lipid Membranes to Proteins. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 537–563. [Google Scholar] [CrossRef]
- Meersman, F.; Smeller, L.; Heremans, K. Protein Stability and Dynamics in the Pressure-Temperature Plane. Biochim. Et Biophys. Acta-Proteins Proteom. 2006, 1764, 346–354. [Google Scholar] [CrossRef]
- Winter, R.; Dzwolak, W. Temperature-Pressure Configurational Landscape of Lipid Bilayers and Proteins. Cell. Mol. Biol. 2004, 50, 397–417. [Google Scholar]
- Balny, C.; Hayashi, R. High Pressure Bioscience and Biotechnology, 1st ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Balny, C. Advances in High Pressure Bioscience and Biotechnology; Ludwig, H., Ed.; Springer: Berlin, Germany, 1999. [Google Scholar]
- Balny, C.; Masson, P.; Heremans, K. High Pressure Effects on Biological Macromolecules: From Structural Changes to Alteration of Cellular Processes. Biochim. Et Biophys. Acta 2002, 1595, 3–10. [Google Scholar] [CrossRef]
- Smeller, L.; Meersman, F.; Heremans, K. Refolding Studies Using Pressure: The Folding Landscape of Lysozyme in the Pressure–Temperature Plane. Biochim. Et Biophys. Acta (Bba)-Proteins Proteom. 2006, 1764, 497–505. [Google Scholar] [CrossRef]
- Winter, R. Synchrotron X-Ray and Neutron Small-Angle Scattering of Lyotropic Lipid Mesophases, Model Biomembranes and Proteins in Solution at High Pressure. Biochim. Et Biophys. Acta (Bba)-Protein Struct. Mol. Enzymol. 2002, 1595, 160–184. [Google Scholar] [CrossRef]
- Smeller, L. The Pressure Dependence of the Lipid Phase Transitions. Effect of the Pressure on the Pre-and Subtransition. J. Theor. Biol. 1990, 142, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Take, J.; Yamaguchi, T.; Mine, N.; Terada, S. Caspase Activation in High-Pressure. Induced Apoptosis of Murine Erythroleukemia Cells. Jpn. J. Physiol. 2005, 51, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Hashiguchi, K.; Katsuki, S.; Iwamoto, W.; Tsuruhara, S.; Terada, S. Activation of the Intrinsic and Extrinsic Pathways in High Pressure-Induced Apoptosis of Murine Erythroleukemia Cells. Cell. Mol. Biol. Lett. 2008, 13, 49–57. [Google Scholar] [CrossRef]
- Diehl, P.; Schmitt, M.; Blümelhuber, G.; Frey, B.; Van Laak, S.; Fischer, S.; Muehlenweg, B.; Meyer-Pittroff, R.; Gollwitzer, H.; Mittelmeier, W. Induction of Tumor Cell Death by High Hydrostatic Pressure as a Novel Supporting Technique in Orthopedic Surgery. Oncol. Rep. 2003, 10, 1851–1855. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.; Franz, S.; Sheriff, A.; Korn, A.; Bluemelhuber, G.; Gaipl, U.S.; Voll, R.E.; Meyer-Pittroff, R.; Herrmann, M. Hydrostatic Pressure Induced Death of Mammalian Cells Engages Pathways Related to Apoptosis or Necrosis. Cell. Mol. Biol. 2004, 50, 459–467. [Google Scholar]
- Korn, A.; Frey, B.; Sheriff, A.; Gaipl, U.S.; Franz, S.; Meyer-Pttroff, R.; Herrmann, M.; Bluemelhuber, G. High Hydrostatic Pressure Inactivated Human Tumour Cells Preserve Their Immunogenicity. Cell. Mol. Biol. 2004, 50, 65–74. [Google Scholar]
- Takano, T.; Yamanquchi, Y.; Satou, T.; Takano, K.J. Pressure-Induced Cell Death and Apoptosis in Human Lymphoblasts. Jpn. J. Hum. Genet. 1997, 42, 111. [Google Scholar]
- Frey, B.; Hartmann, M.; Herrmann, M.; Meyer-Pittroff, R.; Sommer, K.; Bluemelhuber, G. Microscopy under Pressure—An Optical Chamber System for Fluorescence Microscopic Analysis of Living Cells under High Hydrostatic Pressure. Microsc. Res. Tech. 2006, 69, 65–72. [Google Scholar] [CrossRef]
- Hartmann, M.; Pfeifer, F.; Dornheim, G.; Sommer, K. High Pressure Cell for Observing Microscopic Processes under High Pressure. Chem.-Ing.-Tech. 2003, 75, 1763–1767. [Google Scholar] [CrossRef]
- Hartmann, M.; Kreuss, M.; Sommer, K. High Pressure Microscopy--a Powerful Tool for Monitoring Cells and Macromolecules under High Hydrostatic Pressure. Cell. Mol. Biol. 2004, 50, 479–484. [Google Scholar] [PubMed]
- Pegg, D. Principles of Cryopreservation. Methods Mol Biol 2007, 368, 39–57. [Google Scholar] [PubMed]
- Fahy, G.M.; Wowk, B. Principles of Cryopreservation by Vitrification. Methods Mol. Biol. 2015, 1257, 21–82. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Stott, S.L.; Toner, M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu. Rev. Biomed. Eng. 2018, 21, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Towey, J.J.; Dougan, L. Structural Examination of the Impact of Glycerol on Water Structure. J. Phys. Chem. B 2012, 116, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Ziaei, S.; Elliott, G.D. Effects of Water on Structure and Dynamics of Trehalose Glasses at Low Water Contents and Its Relationship to Preservation Outcomes. Sci. Rep. 2016, 6, 28795. [Google Scholar] [CrossRef]
- Egorov, A.V.; Lyubartsev, A.P.; Laaksonen, A. Molecular Dynamics Simulation Study of Glycerol-Water Liquid Mixtures. J. Phys. Chemistry. B 2011, 115, 14572–14581. [Google Scholar] [CrossRef]
- Weng, L.; Elliott, G.D. Dynamic and Thermodynamic Characteristics Associated with the Glass Transition of Amorphous Trehalose-Water Mixtures. Phys. Chem. Chem. Phys. Pccp 2014, 16, 11555–11565. [Google Scholar] [CrossRef]
- Conrad, P.B.; de Pablo, J.J. Computer Simulation of the Cryoprotectant Disaccharide α,α-Trehalose in Aqueous Solution. J. Phys. Chem. A 1999, 103, 4049–4055. [Google Scholar] [CrossRef]
- Lerbret, A.; Bordat, P.; Affouard, F.; Descamps, M.; Migliardo, F. How Homogeneous Are the Trehalose, Maltose, and Sucrose Water Solutions? An Insight from Molecular Dynamics Simulations. J. Phys. Chemistry. B 2005, 109, 11046–11057. [Google Scholar] [CrossRef]
- Fahy, G.M. The Relevance of Cryoprotectant “Toxicity” to Cryobiology. Cryobiology 1986, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fahy, G.M.; Levy, D.I.; Ali, S.E. Some Emerging Principles Underlying the Physical Properties, Biological Actions, and Utility of Vitrification Solutions. Cryobiology 1987, 24, 196–213. [Google Scholar] [CrossRef] [PubMed]
- Abazari, A.; Jomha, N.M.; Elliott, J.A.W.; McGann, L.E. Cryopreservation of Articular Cartilage. Cryobiology 2013, 66, 201–209. [Google Scholar] [CrossRef]
- Naccache, P. Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane. J. Gen. Physiol. 1973, 62, 714–736. [Google Scholar] [CrossRef] [PubMed]
- Sum, A.K.; Faller, R.; De Pablo, J.J. Molecular Simulation Study of Phospholipid Bilayers and Insights of the Interactions with Disaccharides. Biophys. J. 2003, 85, 2830–2844. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Lins, R.D.; Chandrasekhar, I.; Freitas, L.C.G.; Hünenberger, P.H. Interaction of the Disaccharide Trehalose with a Phospholipid Bilayer: A Molecular Dynamics Study. Biophys. J. 2004, 86, 2273–2285. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Hünenberger, P.H. Interaction of the Sugars Trehalose, Maltose and Glucose with a Phospholipid Bilayer: A Comparative Molecular Dynamics Study. J. Phys. Chem. B 2006, 110, 15572–15581. [Google Scholar] [CrossRef]
- Hughes, Z.E.; Malajczuk, C.J.; Mancera, R.L. The Effects of Cryosolvents on DOPC-β-Sitosterol Bilayers Determined from Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 117, 3362–3375. [Google Scholar] [CrossRef]
- Malajczuk, C.J.; Hughes, Z.E.; Mancera, R.L. Molecular Dynamics Simulations of the Interactions of DMSO, Mono- and Polyhydroxylated Cryosolvents with a Hydrated Phospholipid Bilayer. Biochim. Et Biophys. Acta-Biomembr. 2013, 1828, 2041–2055. [Google Scholar] [CrossRef]
- Notman, R.; Noro, M.; O’Malley, B.; Anwar, J. Molecular Basis for Dimethylsulfoxide (DMSO) Action on Lipid Membranes. J. Am. Chem. Soc. 2006, 128, 13982–13983. [Google Scholar] [CrossRef]
- Gurtovenko, A.A.; Anwar, J. Modulating the Structure and Properties of Cell Membranes: The Molecular Mechanism of Action of Dimethyl Sulfoxide. J. Phys. Chem. B 2007, 111, 10453–10460. [Google Scholar] [CrossRef] [PubMed]
- Hughes, Z.E.; Mark, A.E.; Mancera, R.L. Molecular Dynamics Simulations of the Interactions of DMSO with DPPC and DOPC Phospholipid Membranes. J. Phys. Chem. B 2012, 116, 11911–11923. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.M.; Ampo, E.; Nelson, D.; Benson, J.D.; Eroglu, A.; Higgins, A.Z. Rapid Quantification of Multi-Cryoprotectant Toxicity Using an Automated Liquid Handling Method. Cryobiology 2021, 98, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.D.; Higgins, A.Z.; Desai, K.; Eroglu, A. A Toxicity Cost Function Approach to Optimal CPA Equilibration in Tissues. Cryobiology 2018, 80, 144–155. [Google Scholar] [CrossRef]
- Benson, J.D.; Kearsley, A.J.; Higgins, A.Z. Mathematical Optimization of Procedures for Cryoprotectant Equilibration Using a Toxicity Cost Function. Cryobiology 2012, 64, 144–151. [Google Scholar] [CrossRef]
- Glick, D.; Malmstrom, B.G. Studies in Histochemistry XXIII. Simple and Efficient Freezing-Drying Apparatus for the Preparation of Embedded Tissue. Exp. Cell Res. 1952, 3, 125–135. [Google Scholar] [CrossRef]
- REBHUN, L.I. Applications of Freeze-Substitution to Electron Microscope Studies of Invertebrate Oocytes. J. Biophys. Biochem. Cytol. 1961, 9, 785–798. [Google Scholar] [CrossRef]
- Rick, R.; Dörge, A.; Thurau, K. Quantitative Analysis of Electrolytes in Frozen Dried Sections. J. Microsc. 1982, 125, 239–247. [Google Scholar] [CrossRef]
- Steinbrecht, R.A. Cryofixation without Cryoprotectants. Freeze Substitution and Freeze Etching of an Insect Olfactory Receptor. Tissue Cell 1980, 12, 73–100. [Google Scholar] [CrossRef]
- Steinbrecht, R.A. Experiments on Freezing Damage with Freeze Substitution Using Moth Antennae as Test Objects. J. Microsc. 1982, 125, 187–192. [Google Scholar] [CrossRef]
- Porter, K.R.; Anderson, K.L. The Structure of the Cytoplasmic Matrix Preserved by Freeze-Drying and Freeze-Substitution. Eur. J. Cell Biol. 1982, 29, 83–96. [Google Scholar] [PubMed]
- Silvester, N.R.; Marchese-Ragona, S.; Johnston, D.N. The Relative Efficiency of Various Fluids in the Rapid Freezing of Protozoa. J. Microsc. 1982, 128, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Severs, N. Rapid Freezing of Unpretreated Tissues for Freeze-Fracture Electron Microscopy; Wiley-Liss: New York, NY, USA, 1983. [Google Scholar]
- Moor, H.; Mühletttaler, K. Fine Structure in Frozen-Etched Yeast Cells. J. Cell Biol. 1963, 17, 609–628. [Google Scholar] [CrossRef]
- Bank, H.; Mazur, P. Visualization of Freezing Damage. J. Cell Biol. 1973, 57, 729–742. [Google Scholar] [CrossRef]
- Howard, R.J.; Aist, J.R. Hyphal Tip Cell Ultrastructure of the Fungus Fusarium: Improved Preservation by Freeze-Substitution. J. Ultrasructure Res. 1979, 66, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.J.; Aist, J.R. Cytoplasmic Microtubules and Fungal Morphogenesis: Ultrastructural Effects of Methyl Benzimidazole-2-Ylcarbamate Determined by Freeze-Substitution of Hyphal Tip Cells. J. Cell Biol. 1980, 87, 55–64. [Google Scholar] [CrossRef]
- Allen, N.S. Cytoplasmic Streaming and Transport in the Characean Alga Nitella. Can. J. Bot. 1980, 58, 786–796. [Google Scholar] [CrossRef]
- Hoch, H.C.; Howard, R.J. Ultrastructure of Freeze-Substituted Hyphae of the Basidiomycete Laetisaria Arvalis. Protoplasma 1980, 103, 281–297. [Google Scholar] [CrossRef]
- Gupta, B.L.; Hall, T.A. The X-Ray Microanalysis of Frozen-Hydrated Sections in Scanning Electron Microscopy: An Evaluation. Tissue Cell 1981, 13, 623–643. [Google Scholar] [CrossRef]
- Howard, R.J. Ultrastructural Analysis of Hyphal Tip Cell Growth in Fungi: Spitzenkorper, Cytoskeleton and Endomembranes after Freeze-Substitution. J. Cell Sci. 1981, 48, 89–103. [Google Scholar] [CrossRef]
- Handley, D.A.; Alexander, J.T.; Chien, S. The Design and Use of a Simple Device for Rapid Quench-freezing of Biological Samples. J. Microsc. 1981, 121, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Bellare, J.R.; Davis, H.T.; Scriven, L.E.; Talmon, Y. Controlled Environment Vitrification System: An Improved Sample Preparation Technique. J. Electron Microsc. Tech. 1988, 10, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.P.; Purse, D.H.; Robinson, S.G.; Wood, J.W. The Relative Efficiency of Cryogens Used for Plunge-Cooling Biological Specimens. J. Microsc. 1987, 145, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Glover, A.J.; Garvitch, Z.S. The Freezing Rate of Freeze-Etch Specimens for Electron Microscopy. Cryobiology 1974, 11, 248–254. [Google Scholar] [CrossRef]
- Escaig, J. New Instruments Which Facilitate Rapid Freezing at 83 K and 6 K. J. Microsc. 1982, 126, 221–229. [Google Scholar] [CrossRef]
- Heath, I.B.; Rethoret, K. Mitosis in the Fungus Zygorhynchus Moelleri: Evidence for Stage Specific Enhancement of Microtubule Preservation by Freeze Substitution. Eur. J. Cell. Biol. 1982, 28, 180–189. [Google Scholar]
- Costello, M.J.; Corless, J.M. The Direct Measurement of Temperature Changes within Freeze-fracture Specimens during Rapid Quenching in Liquid Coolants. J. Microsc. 1978, 112, 17–37. [Google Scholar] [CrossRef]
- Schwabe, K.G.; Terracio, L. Ultrastructural and Thermocouple Evaluation of Rapid Freezing Techniques. Cryobiology 1980, 17, 571–584. [Google Scholar] [CrossRef]
- Marchese-Ragona, S.P. Ethanol, an Efficient Coolant for Rapid Freezing of Biological Material. J. Microsc. 1984, 134, 169–171. [Google Scholar] [CrossRef]
- Steinbrecht, R.A.; Zierold, K. A Cryoembedding Method for Cutting Ultrathin Cryosections from Small Frozen Specimens. J. Microsc. 1984, 136, 69–75. [Google Scholar] [CrossRef]
- Lee, H.N.; Park, J.K.; Paek, S.K.; Byun, J.H.; Song, H.; Lee, H.J.; Chang, E.M.; Kim, J.W.; Lee, W.S.; Lyu, S.W. Does Duration of Cryostorage Affect Survival Rate, Pregnancy, and Neonatal Outcomes? Large-Scale Single-Center Study of Slush Nitrogen (SN2) Vitrified-Warmed Blastocysts. Int. J. Gynecol. Obstet. 2021, 152, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Osman, E.K.; Esbert, M.; Hanson, B.M.; Winslow, A.D.; Seli, E.; Scott, R.T. EMBRYO VITRIFICATION IN SUPER COOLED SLUSH NITROGEN RESULTS IN SUPERIOR POST-THAW SURVIVAL COMPARED TO CONVENTIONAL LIQUID NITROGEN: A BLINDED, RANDOMIZED CONTROLLED TRIAL. Fertil. Steril. 2020, 114, e38. [Google Scholar] [CrossRef]
- Ryan, K.P.; Liddicoat, M.I. Safety Considerations Regarding the Use of Propane and Other Liquefied Gases as Coolants for Rapid Freezing Purposes. J. Microsc. 1987, 147, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Meister, N.; Moor, H. Freezing in a Propane Jet and Its Application in Freeze-Fracturing. Mikroskopie 1980, 36, 129–140. [Google Scholar]
- Greene, W.B.; Walsh, L.G. An Improved Cryo-Jet Freezing Method. J. Microsc. 1992, 166, 207–218. [Google Scholar] [CrossRef]
- Knoll, G.; Oebel, G.; Plattner, H. A Simple Sandwich-Cryogen-Jet Procedure with High Cooling Rates for Cryofixation of Biological Materials in the Native State. Protoplasma 1982, 111, 161–176. [Google Scholar] [CrossRef]
- Pscheid, P.; Schudt, C.; Plattner, H. Cryofixation of Monolayer Cell Cultures for Freeze-Fracturing without Chemical Pre-Treatments. J. Microsc. 1981, 121, 149–167. [Google Scholar] [CrossRef]
- Boyne, A. A Gentle, Bounce-Free Assembly for Quick-Freezing Tissues for Electron Microscopy: Application to Isolated Torpedine Ray Electrocyte Stacks. J. Neurosci. Methods 1979, 1, 353–364. [Google Scholar] [CrossRef]
- Heuser, J.; Reese, T.; Dennis, M.; Jan, Y. Synaptic Vesicle Exocytosis Captured by Quick Freezing and Correlated with Quantal Transmitter Release. J. Cell Biol. 1979, 81, 275. [Google Scholar] [CrossRef]
- Heuser, J.; Reese, T.; Landis, D. Preservation of Synaptic Structure by Rapid Freezing. Cold Spring Harb Symp Quant Biol 1976, 40, 17–24. [Google Scholar] [CrossRef]
- Simpson, W.L. An Experimental Analysis of the Altmann Technic of Freezing-Drying. Anat. Rec. 1941, 80, 173–189. [Google Scholar] [CrossRef]
- van Harreveld, A.; Crowell, J. Electron Microscopy after Rapid Freezing on a Metal Surface and Substitution Fixation. Anat. Rec. 1964, 149, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Van Harreveld, A.; Crowell, J.; Malhotra, S. A Study of Extracellular Space in Central Nervous Tissue by Freeze-Substitution. J. Cell Biol. 1965, 25, 117. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.E.; Boyne, A.F. Liquid Nitrogen-based Quick Freezing: Experiences with Bounce-free Delivery of Cholinergic Nerve Terminals to a Metal Surface. J. Electron Microsc. Tech. 1984, 1, 9–29. [Google Scholar] [CrossRef]
- Heath, I.B. A Simple and Inexpensive Liquid Helium Cooled ‘Slam Freezing’ Device. J. Microsc. 1984, 135, 75–82. [Google Scholar] [CrossRef]
- Hirokawa, N.; Kirino, T. An Ultrastructural Study of Nerve and Glial Cells by Freeze-Substitution. J. Neurocytol. 1980, 9, 243–254. [Google Scholar] [CrossRef]
- Ichikawa, A.; Ichikawa, M.; Hirokawa, N. The Ultrastructure of Rapid-frozen, Substitution Fixed Parotid Gland Acinar Cells of the Mongolian Gerbil (Meriones Meridianus). Am. J. Anat. 1980, 157, 107–110. [Google Scholar] [CrossRef]
- Ornberg, R.; Reese, T. A Freeze-Substitution Method for Localizing Divalent Cations: Examples from Secretory Systems. europepmc.org 1980, 3, 2802–2808. [Google Scholar]
- Hirokawa, N.; Heuser, J. Quick-Freeze, Deep-Etch Visualization of the Cytoskeleton beneath Surface Differentiations of Intestinal Epithelial Cells. J. Cell Biol. 1981, 91, 399. [Google Scholar] [CrossRef]
- Terracio, L.; Bankston, P.; McAteer, J. Ultrastructural Observations on Tissues Processed by a Quick-Freezing, Rapid-Drying Method: Comparison with Conventional Specimen Preparation. Elsevier 1981, 18, 55–71. [Google Scholar] [CrossRef]
- Hirokawa, N. Cross-Linker System between Neurofilaments, Microtubules and Membranous Organelles in Frog Axons Revealed by the Quick-Freeze, Deep-Etching Method. J. Cell Biol. 1982, 94, 129. [Google Scholar] [CrossRef] [PubMed]
- Schnapp, B.; Reese, T. Cytoplasmic Structure in Rapid-Frozen Axons. J. Cell Biol. 1982, 94, 667. [Google Scholar] [CrossRef] [PubMed]
- McGuire, P.G.; Twietmeyer, T.A. Morphology of Rapidly Frozen Aortic Endothelial Cells. Glutaraldehyde Fixation Increases the Number of Caveolae. Circ. Res. 1983, 53, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Menco, B.P.M. Ciliated and Microvillous Structures of Rat Olfactory and Nasal Respiratory Epithelia—A Study Using Ultra-Rapid Cryo-Fixation Followed by Freeze-Substitution or Freeze-Etching. Cell Tissue Res. 1984, 235, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.; Heuser, J. Membrane Fusion during Secretion: Cortical Granule Exocytosis in Sex Urchin Eggs as Studied by Quick-Freezing and Freeze-Fracture. J. Cell Biol. 1979, 83, 91. [Google Scholar] [CrossRef]
- Chandler, D.; Heuser, J. Arrest of Membrane Fusion Events in Mast Cells by Quick-Freezing. J. Cell Biol. 1980, 86, 666. [Google Scholar] [CrossRef] [PubMed]
- Ornberg, R.; Reese, T. Beginning of Exocytosis Captured by Rapid-Freezing of Limulus Amebocytes. J. Cell Biol. 1981, 90, 40. [Google Scholar] [CrossRef]
- Chandler, D. Comparison of Quick-Frozen and Chemically Fixed Sea-Urchin Eggs: Structural Evidence That Cortical Granule Exocytosis Is Preceded by a Local Increase in Membrane. J. Cell Sci. 1984, 72, 23–36. [Google Scholar] [CrossRef]
- Wagner, R.; Andrews, S. Ultrastructure of the Vesicular System in Rapidly Frozen Capillary Endothelium of the Rete Mirabile. J. Ultrastruct. Res. 1985, 90, 172–182. [Google Scholar] [CrossRef]
- Plattner, H.; Bachmann, L. Cryofixation: A Tool in Biological Ultrastructural Research. Elsevier 1982, 79, 237–304. [Google Scholar]
- Christensen, A.K. Frozen Thin Sections of Fresh Tissue for Electron Microscopy, with a Description of Pancreas and Liver. J. Cell Biol. 1971, 51, 772–804. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, G.P.; Bullivant, S. A Copper Block Method for Freezing Non-cryoprotected Tissue to Produce Ice-crystal-free Regions for Electron Microscopy: I. Evaluation Using Freeze-substitution. J. Microsc. 1976, 106, 251–260. [Google Scholar] [CrossRef]
- Eränkö, O. Quenching of Tissues for Freeze-Drying. Cells Tissues Organs 1954, 22, 331–336. [Google Scholar] [CrossRef]
- Wollenberger, A.; Ristau, O.; Schoffa, G. Eine Einfache Technik Der Extrem Schnellen Abkühlung Größerer Gewebestücke. Pflügers Arch. Für Die Gesamte Physiol. Des Menschen Und Der Tiere 1960, 270, 399–412. [Google Scholar] [CrossRef]
- Sjöström, M.; Cytochemistry, R.J. Cryo-Ultramicrotomy of Muscles in Defined State. Methodological Aspects; North-Holland Publishing Company: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Moor, H. Recent Progress in the Freeze-Etching Technique. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1971, 261, 121–131. [Google Scholar] [CrossRef]
- Moor, H.; Bellin, G.; Sandri, C.; Akert, K. The Influence of High Pressure Freezing on Mammalian Nerve Tissue. Cell Tissue Res. 1980, 209, 201–216. [Google Scholar] [CrossRef]
- Hunziker, E.B.; Herrmann, W.; Schenk, R.K.; Mueller, M.; Moor, H. Cartilage Ultrastructure after High Pressure Freezing, Freeze Substition, and Low Temperature Embedding. I. Chondrocyte Ultrastructure—Implications for the Theories of Mineralization and Vascular Invasion. J. Cell Biol. 1984, 98, 267–276. [Google Scholar] [CrossRef]
- Marti, R.; Wild, P.; Schraner, E.M.; Mueller, M.; Moor, H. Parathyroid Ultrastructure after Aldehyde Fixation, High-Pressure Freezing, or Microwave Irradiation. J. Histochem. Cytochem. 1987, 35, 1415–1424. [Google Scholar] [CrossRef]
- Wolf, K.V.; Stockem, W.; Wohlfarth-Bottermann, K.E.; Moor, H. Cytoplasmic Actomyosin Fibrils after Preservation with High Pressure Freezing. Cell Tissue Res. 1981, 217, 479–495. [Google Scholar] [CrossRef]
- Wan, L.; Powell-Palm, M.; Lee, C.; Gupta, A.; Weegman, B.; Clemens, M.; Rubinsky, B. Preservation of Rat Hearts in Subfreezing Temperature Isochoric Conditions to—8 C and 78 MPa. Biochem. Biophys. Res. Commun. 2018, 496, 852–857. [Google Scholar] [CrossRef]
- Năstase, G.; Lyu, C.; Ukpai, G.; Şerban, A.; Rubinsky, B. Isochoric and Isobaric Freezing of Fish Muscle. Biochem. Biophys. Res. Commun. 2017, 485, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Preciado, J.; Rubinsky, B. The Effect of Isochoric Freezing on Mammalian Cells in an Extracellular Phosphate Buffered Solution. Cryobiology 2018, 82, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Pauli, B.U.; Weinstein, R.S.; Soble, L.W.; Alroy, J. Freeze Fracture of Monolayer Cultures. J. Cell Biol. 1977, 72, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Saritha, K.R.; Bongso, A. Comparative Evaluation of Fresh and Washed Human Sperm Cryopreserved in Vapor and Liquid Phases of Liquid Nitrogen. J. Androl. 2001, 22, 857–862. [Google Scholar] [CrossRef]
- Chang, H.J.; Lee, J.R.; Chae, S.J.; Jee, B.C.; Suh, C.S.; Kim, S.H. Comparative Study of Two Cryopreservation Methods of Human Spermatozoa: Vitrification versus Slow Freezing. Fertil. Steril. 2008, 90, S280. [Google Scholar] [CrossRef]
- Deng, X.; Hua, Z.; Xuan, Y.; Hongling, Y.; Chengmei, Z.; Lan, C.; Ruichang, L.; Wenjun, L. Cryopreserved Ovarian Tissues Can Maintain a Long-Term Function after Heterotopic Autotransplantation in Rat. Reproduction 2009, 138, 519–525. [Google Scholar] [CrossRef]
- Lee, J.; Kim, E.J.; Kong, H.S.; Youm, H.W.; Kim, S.K.; Lee, J.R.; Suh, C.S.; Kim, S.H. Establishment of an Improved Vitrification Protocol by Combinations of Vitrification Medium for Isolated Mouse Ovarian Follicles. Theriogenology 2018, 121, 97–103. [Google Scholar] [CrossRef]
- Ramezani, M.; Salehnia, M.; Jafarabadi, M. Short Term Culture of Vitrified Human Ovarian Cortical Tissue to Assess the Cryopreservation Outcome: Molecular and Morphological Analysis. J. Reprod. Infertil. 2017, 18, 162. [Google Scholar]
- Murray, P.W.L.R.; Robards, A.W.; Waites, P.R. Countercurrent Plunge Cooling: A New Approach to Increase Reproducibility in the Quick Freezing of Biological Tissue. J. Microsc. 1989, 156, 173–182. [Google Scholar] [CrossRef]
- Bridgman, P.C.; Reese, T.S. The Structure of Cytoplasm in Directly Frozen Cultured Cells. I. Filamentous Meshworks and the Cytoplasmic Ground Substance. J. Cell Biol. 1984, 99, 1655–1668. [Google Scholar] [CrossRef]
- FEDER, N.; SIDMAN, R.L. Methods and Principles of Fixation by Freeze-Substitution. J. Biophys. Biochem. Cytol. 1958, 4, 593–600. [Google Scholar] [CrossRef]
- Paul, A.K.; Liang, Y.; Srirattana, K.; Nagai, T.; Parnpai, R. Vitrification of Bovine Matured Oocytes and Blastocysts in a Paper Container. Anim. Sci. J. 2018, 89, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Arav, A.; Natan, Y.; Kalo, D.; Komsky-Elbaz, A.; Roth, Z.; Levi-Setti, P.E.; Leong, M.; Patrizio, P. A New, Simple, Automatic Vitrification Device: Preliminary Results with Murine and Bovine Oocytes and Embryos. J. Assist. Reprod. Genet. 2018, 35, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Olexiková, L.; Makarevich, A.V.; Bédeová, L.; Kubovičová, E. The Technique for Cryopreservation of Cattle Eggs. Slovak J. Anim. Sci. 2019, 52, 166–170. [Google Scholar]
- Bachmann, L.; Schmitt, W.W. Improved Cryofixation Applicable to Freeze Etching (Spray-Freezing/Solute Model Systems/Liquid Nitrogen and Propane). 1971. Volume 68. Available online: https://www.pnas.org/content/68/9/2149.short (accessed on 19 May 2020).
- Knoll, G.; Braun, C.; Plattner, H. Quenched Flow Analysis of Exocytosis in Paramecium Cells: Time Course, Changes in Membrane Structure, and Calcium Requirements Revealed after Rapid Mixing and Rapid Freezing of Intact Cells. J. Cell Biol. 1991, 113, 1295–1304. [Google Scholar] [CrossRef]
- De Vries, R.J.; Banik, P.D.; Nagpal, S.; Weng, L.; Ozer, S.; Van Gulik, T.M.; Toner, M.; Tessier, S.N.; Uygun, K. Bulk Droplet Vitrification: An Approach to Improve Large-Scale Hepatocyte Cryopreservation Outcome. Langmuir 2019, 35, 7354–7363. [Google Scholar] [CrossRef]
- Dou, R.; Saunders, R.; Mohamet, L.; Ward, C.; Chip, B.D.-L. on a; 2015, undefined. High Throughput Cryopreservation of Cells by Rapid Freezing of Sub-Μl Drops Using Inkjet Printing–Cryoprinting. Lab a Chip 2015, 15, 3503–3513. [Google Scholar] [CrossRef] [PubMed]
- Plattner, H.; Artalejo, A.R.; Neher, E. Ultrastructural Organization of Bovine Chromaffin Cell Cortex—Analysis by Cryofixation and Morphometry of Aspects Pertinent to Exocytosis. J. Cell Biol. 1997, 139, 1709–1717. [Google Scholar] [CrossRef]
- Espevik, T.; Elgsaeter, A. In Situ Liquid Propane Jet-Freezing and Freeze-Etching of Monolayer Cell Cultures. J. Microsc. 1981, 123, 105–110. [Google Scholar] [CrossRef]
- Katkov, I.I.; Bolyukh, V.F.; Sukhikh, G.T. KrioBlast TM as a New Technology of Ultrafast Cryopreservation of Cells and Tissues. 2. Kinetic Vitrification of Human Pluripotent Stem Cells and Spermatozoa. Bull. Exp. Biol. Med. 2018, 165, 63–68. [Google Scholar] [CrossRef]
- Bolyukh, V.F.; Katkov, I.I.; Bolyukh, V.F. KRIOBLAST TM: A PROMISING CRYOGENIC PLATFORM FOR KINETIC VITRIFICATION BY HYPERFATST COOLING. In Proceedings of the 2nd Thermal and Fluid Engineering Conference, TFEC2017, 4th International Workshop on Heat Transfer, IWHT2017, Las Vegas, NV, USA, 2–5 April 2017. [Google Scholar]
- Patra, T.; Gupta, M.K. Solid Surface Vitrification of Goat Testicular Cell Suspension Enriched for Spermatogonial Stem Cells. Cryobiology 2022, 104, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Patra, T.; Gupta, M.K. Cryopreservation of Murine Testicular Leydig Cells by Modified Solid Surface Vitrification with Supplementation of Antioxidants. Cryobiology 2019, 88, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.C.C.; Domingues, S.F.S.; Rodrigues, A.P.R.; Figueiredo, J.R.; Santos, R.R.; Pieczarka, J.C. Vitrification of Domestic Cat (Felis Catus) Ovarian Tissue: Effects of Three Different Sugars. Cryobiology 2018, 83, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Villamil, P.; Lozano, D.; Oviedo, J.M.; Ongaratto, F.L.; Bó, G.A. Developmental Rates of in Vivo and in Vitro Produced Bovine Embryos Cryopreserved in Ethylene Glycol Based Solutions by Slow Freezing or Solid Surface Vitrification. Anim. Reprod. 2012, 9, 86–92. [Google Scholar]
- Sharma, A.; Bischof, J.C.; Finger, E.B. Liver Cryopreservation for Regenerative Medicine Applications. Regen. Eng. Transl. Med. 2021, 7, 57–65. [Google Scholar] [CrossRef]
- Manuchehrabadi, N.; Gao, Z.; Zhang, J.; Ring, H.L.; Shao, Q.; Liu, F.; McDermott, M.; Fok, A.; Rabin, Y.; Brockbank, K.G.M. Improved Tissue Cryopreservation Using Inductive Heating of Magnetic Nanoparticles. Sci. Transl. Med. 2017, 9, eaah4586. [Google Scholar] [CrossRef]
- Khosla, K.; Zhan, L.; Bhati, A.; Carley-Clopton, A.; Hagedorn, M.; Bischof, J. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation. Langmuir 2019, 35, 7364–7375. [Google Scholar] [CrossRef]
- Ruan, H.; Wang, T.; Gao, C. Microwave-Water Bath Hybrid Warming for Frozen Cryoprotectant Solution Using a Helical Antenna. Cryoletters 2020, 41, 26–30. [Google Scholar]
- Zhan, L.; Han, Z.; Shao, Q.; Etheridge, M.L.; Hays, T.; Bischof, J.C. Rapid Joule Heating Improves Vitrification Based Cryopreservation. Nat. Commun. 2022, 13, 1–15. [Google Scholar] [CrossRef]
- Giwa, S.; Lewis, J.K.; Alvarez, L.; Langer, R.; Roth, A.E.; Church, G.M.; Markmann, J.F.; Sachs, D.H.; Chandraker, A.; Wertheim, J.A. The Promise of Organ and Tissue Preservation to Transform Medicine. Nat. Biotechnol 2017, 35, 530–542. [Google Scholar] [CrossRef]
Sample | CPA Solution | Cryocarrier | Sample Size | Viability Evaluation | Outcome | Ref. |
---|---|---|---|---|---|---|
Ovine embryo | 15% EG + 15% DMSO + 0.5 M sucrose + 30% Ficoll 70 | Cryotop-Spatula | <0.1 µL | Embryo morphology Cell membrane integrity with propidium iodide | 79.7% viability | [119] |
Cow blastocyst | 16% EG + 16% DMSO + 0.5 M sucrose | Fork | 0.5 µl | Immunostaining | 74% hatching rate with warming in straw | [120] |
Donkey embryo | 15% EG + 15% DMSO + 0.5 M sucrose + 18% Ficoll 70 | Cryotop | <1 µL | Transrectal ultrasonography to track follicular activity and confirm ovulation Cell membrane integrity with propidium iodide and Hoechst 33342 | 70% viability | [121] |
Bovine oocytes | 2% EG + 2% PG | Cryotop | <1 µL | Oocyte viability, nuclear maturation status, embryo development, and blastocyst quality | 15% blastocyst yield | [122] |
Mouse embryo | 20% EG + 0.4 M sucrose + 24% Ficoll 70 | Cryotube | 5 μL drop | Developmental ability | 98.7% viability | [123] |
Human ovarian tissue | 30% EG + 0.5% trehalose + 6% FBS | Cold solid-surface, Straw, drop size into LN2 | 100 µL | Histologic analysis | Higher morphological follicles by the method of drop size into LN2 | [124] |
Ovine cumulus-oocyte complexes | VS1, VS2 | Plastic insemination straw | 250 µL | Morphological evaluation, Trypan blue staining | 54.5% viability, 16.8% ultrastructural changes | [125] |
Bovine oocyte | 15% EG + 15% DMSO + 1.0 M sucrose | Hollow fiber | Inner diameter 200 μm, wall thickness 15 μm | Acetolacmoid staining | 23% blastocyst yield | [126] |
Human embryo | 15% EG + 15% DMSO + 0.5 M sucrose | Plastic blade | Thickness: 0.05 mm | Assessment of pregnancy by transvaginal ultrasound imaging | 100% viability in Blastocyst | [127] |
Bovine oocytes | 7.5% EG + 7.5% DMSO | Silk fibroin sheet multilayer | 0.1 mm thickness, 0.7 mm width, 10 mm depth | Morphological survival rates | 23% blastocyst yield | [128] |
Rabbit chondrocyte sheets | 20% EG + 20% DMSO + 0.5 M sucrose + 10% COOH-PLL | Sealable polyethylene bag and nylon meshes | 110 × 85 mm; film thickness: 0.063–0.064 mm | Trypan blue staining Histological examination Immunohistochemical staining | 91% viability | [129] |
Human liver tissue | 4.7 M 1,2-propanediol | Honeycomb-like tray | Diameter: 1 cm, Thickness: 200–250 µm | Xenobiotics metabolism | 7-EC metabolism, 7-HC conjugation (Results are very unstable) | [81] |
Human ovarian tissue | 7.5% EG + 7.5% DMSO + 20% FBS + 13.5% EG + 13.5% DMSO + 0.5 mol/l sucrose | Needle directly into LN2 | 1 mm3 | Histologic Analysis by H&E Ultrastructural evaluation using TEM TUNEL assay for detection of apoptosis Assessment of tissue damage using an LDH assay | Higher viability in stroma cells and lower apoptotic primordial follicles | [130] |
Human ovarian tissue | 10% DMSO + 10% EG | Direct cover vitrification (DCV) | 1 × 1 × 1 mm | Follicle examination using electron microscopy and TUNEL | Higher normal follicles and lower apoptotic cells | [131] |
Ovine testicular tissues | 18% EG + 18% DMSO + 0.5 M trehalose | E. Vit (modified plastic straw) | 1 mm3 | Cell plasma membrane integrity | 73.6% viability | [132] |
Human ovarian tissue | 2.62 mol/L DMSO + 2.6 mol/L acetamide + 1.31 mol/L PROH + 0.0075 mol/L PEG | 20 μL droplet into LN2 | 4 mm × 4 mm × 1.5 mm | Immunohistochemistry histology | Higher follicles growth | [133] |
Cat testicular tissues | 15% EG + 20% glycerol + 0.5 M sucrose | Needle | 1–2 mm3 | Seminiferous tubule Morphology Mitochondrial activity Cell composition | 92.9% viability | [134] |
Human ovarian tissue | 40% EG + 1 M sucrose + 30% ficoll 70 | Cryovial | 2 mm3 | Histological examination Molecular assessment Hormonal assay Immunocytochemistry | 95.5% viability | [135] |
Mouse testicular tissues | 15% EG + 15% DMSO + 0.5 M sucrose | Metal grid | Tissue fragments (0.5–1 mm2) | Trypan blue staining Hematoxylin and eosin (H&E) staining Immunohistochemistry staining | 97.7% viability | [136] |
Dog ovarian tissue | 15% EG + 7.5% DMSO + 0.5 M sucrose + 2.5% PVP | Needle | Diameter: 2 mm | Neutral red staining Histology Xenotransplantation assays | 94.5% follicular viability | [137] |
Rat testicular tissues | 15% EG + 15% DMSO + 0.5 M sucrose | Inoculation loop | Pieces of approximately 3 mm | Trypan blue staining histological evaluation | 84.8% viability | [138] |
Rabbit trachea | 18% EG + 22% DMSO + 0.5 M sucrose | Cryotube | 0.5 cm × 0.5 cm | Morphological and ultrastructural assessment HE examination TUNEL assays TEM and SEM | 97% viability | [139] |
Rat kidney tissue | VM3 (8.44 M) in VS4 buffer (7.5 M) | Cryovial | Diameter: 5 mm | ATP content Histological integrity | Cortex: histomorphology (86%), ATP content (113%); medulla: histomorphology (79%), ATP content (68%) | [140] |
Rat liver tissue | VM3 (8.44 M) in VS4 buffer (7.5 M) | Cryovial | Diameter: 8 mm | ATP content Histological integrity | histomorphology (71%), ATP content (58%) | [140] |
Human osteochondral dowel | 9.5% EG + 18% DMSO + 5.8% PG + 14.1% glycerol + 0.1 mg/mL chondroitin sulfate (CS) | 5 mL vial | Full thickness in 10 mm diameter | Membrane integrity Metabolic activity Histology Immunohistochemistry | 75.4% viability | [141] |
Pig osteochondral dowel | 16.6% EG + 21.5% DMSO + 22% PG + 0.1 mg/mL CS | Conical tube | two diameter sizes (10.0 mm and 6.9 mm) with 10 mm thickness | Chondrocyte assessment with membrane integrity stain and the chondrocyte metabolic activity by Alamar Blue. | 60–80% viability | [142] |
Technique | Advantages | Disadvantages | Sample | Result | Ref. |
---|---|---|---|---|---|
Conventional rapid freezing | -Simple -Less costly -Most widely used | -Low cooling rate -Leidenfrost effect -High CPA concentration | Bovine endothelial cells TE-85 strain human osteosarcoma cells Human breast carcinoma cells | Freeze-fracturing of cells in monolayers or multilayer tissue cultures | [281] |
Human spermatozoa | No difference in motility was detected compared with slow freezing | [282] | |||
Human spermatozoa | No difference in DNA fragmentation was detected compared with slow freezing | [283] | |||
Rat ovarian tissue | Follicular pool reduced. | [284] | |||
Mouse follicle | No significant differences in meiotic spindle formation | [285] | |||
Human ovarian tissue | Similarity of genes expression in vitrified and non-vitrified groups | [286] | |||
Plunge freezing | -Relative simplicity, low cost, most widely used | -Sophisticated compared to the conventional technique | Human erythrocytes | Two opposing 25–30 μm surface zones were frozen in the apparent absence of ice | [228] |
-Higher cooling rate compared to the conventional method | -Low cooling rate for thick biospecimen | Rat liver tissue | Increasing the cooling rate | [232] | |
Maize root epidermal cells | Achieving ice crystals being acceptably small and non-disruptive | [287] | |||
PtK2 cells | Reducing shrinkage and alteration of the trabecular structure | [217] | |||
Fibroblasts or epithelial cells derived from Xenopus laevis embryos | Observation of the cytoplasm included interconnected filaments. The general organization was similar to intact cells. | [288] | |||
Hyphal tip cells of Fusarium acuminatum | Observing all cellular membranes and most organelles due to the transparency of freezing | [222] | |||
Whole eyes of adult albino mice | The low depth freezing due to the thickness of samples | [289] | |||
Slices of rat kidney | Reaching high-quality morphological preservation | [235] | |||
Antennae of the silk moth, Bombyx mori | Observation of freezing damage just in deeper tissue regions under CPA-free and probably due to natural CPA | [215] | |||
Bovine oocytes and blastocysts | 8% blastocyst yield | [290] | |||
Murine and bovine oocytes and embryos | 73% cleavage rate 7% blastocyst rate | [291] | |||
Cattle oocytes | 55.81% cleavage rate 11.24% blastocyst rate | [292] | |||
Spray freezing | -High cooling rate due to the high surface-to-volume ratio of biospecimen | -Limited to particulates up to 1 µm in diameter -Costly and tedious | 5% glycerol-water solution (cryomedia sample without biospecimen) | Preventing large ice compartment A smooth surface of frozen water | [293] |
-Biospecimen damage due to shearing forces in the spray nozzle | Paramecium tetraurelia 7S (wild type) cells | No Ca+ 2 influx, which is necessary for induction of membrane fusion. | [294] | ||
Rat hepatocytes | Higher viability and better morphology in the bulk droplet (3–5 mm diameter) compared to controlled rate freezing | [295] | |||
3T3 mouse fibroblast cells, human neuroprogenitor cells (NPCs) | 90% Viability with CPA concentration less than 0.8 M in 114 nL droplet | [296] | |||
Jet freezing | -Quite high cooling rate due to the high velocity of the cryogen jet -Fast process | -Difficulty in sample handling -Biospecimen damage due to direct jetting with high velocity | Bovine chromaffin cell | Increasing rapid cooling rate up to 40,000 °C/s | [297] |
-High depth of cooling due to cooling from both sides of the specimen at atmospheric pressure | -Non-uniform freezing through the biospecimen -Biospecimen adhesion to cryodevice holder after freezing | Yeast cells | Enhancing the cooling rate to 18,000 °C/s | [243] | |
-Moderate cost of equipment and operation | -Less advantage in tissue samples compared to the cold metal technique | Spinal cord explants from mouse embryos | Retaining the shape of the tissue surface | [242] | |
Rat Sertoli cells Human monocytes | High cooling rate even in the absence of any CPA | [298] | |||
Human embryonic stem cells, human spermatozoa | Higher cell membrane integrity compared to conventional freezing | [299] | |||
15% glycerol-water solution (cryosolution sample without biospecimen) | Vitrification of 4000 µL of cryosolution | [29,300] | |||
Metal block freezing | -High thermal diffusivity of copper and silver block | -The high cost and challenging nature of manufacturing and operating copper and silver blocks due to their softness | Red blood cells | Modifying ice microcrystals appeared at a depth of 25–30 μm, while it was already observed at a depth of 12–15 μm. | [232] |
-Biospecimen damage due to crushing, shearing, and bounce | Mouse liver tissue | Obtaining acceptable blocks of preserved tissues for cryofixation | [249] | ||
-Low depth of cooling due to cooling from just one side -Bare biospecimen without container causing contamination | Mouse liver and diaphragm tissues, Isolated strands of celery phloem, rose phloem, pea root tip, and Chinese cabbage and tobacco leaf tissue | Using the heat-conductive properties of copper to increase the cooling rate The tissue surface layer was ice-free up to 12 μm in depth. | [269] | ||
Goat testicular cell | 74.8% cell viability | [301] | |||
Leydig cells (murine cell line TM3) | Superior cell growth, mitochondrial activity, and cytoplasmic esterase enzyme activity than the conventional method | [302] | |||
Mouse myoblast C2C12 cells, rat primary mesenchymal stem cells | More than 80% cell viability in 40 pL CPA-free droplet | [26] | |||
Cat ovarian tissue | Normal follicles after thawing | [303] | |||
Cow blastocyst | 69% hatching rate | [304] | |||
High Pressure (hyperbaric) freezing | -Higher depth of cooling due to cooling from both sides of the specimen under high pressure -Lower CPA concentration -Ability to cool ultra-rapidly thick biospecimen such as tissue | -Biospecimen preservation quality for cryomicroscopy is not as good as well-prepared biospecimen under ultra-rapidly frozen at atmospheric pressure. | Rat brain tissue | Preventing large ice crystal formation in tissue up to 0.5 mm thick | [274] |
-Lower rate of ice crystal formation and growth | -The least known and least tested technique -High temperature and low cooling rate for the isochoric condition | Beef liver catalase crystals | Increasing the depth of vitrification approximately ten times larger with freezing at high pressure (2 Kbar) | [60] | |
Ascites tumor cell | Obtaining the same quality of vitrification without CPA | [273] | |||
Rat cartilage tissue | Enhancing the quality of preserved chondrocytes than those preserved by chemical fixation | [275] | |||
Bovine and rat parathyroid cell | Excellent preservation of ultrastructure of cells | [276] | |||
Actomyosin system of Physarum polycephalum | Avoiding artificial alterations observed in chemical fixation | [277] | |||
Rat heart | The first freezing of mammalian organs without CPA at −4 °C, 41 MPa, and under the isochoric condition | [278] | |||
Fish muscle tissue | No cellular dehydration and maintaining the morphology of the frozen tissue under the isochoric condition | [279] | |||
Madin-Darby canine Kidney epithelial cells (MDCK) | 60% and 18% cell viability during 60 and 120 min at –10 °C under the isochoric condition | [280] | |||
Human red blood cells | 8% or less hemolysis of RBCs with 5% DMSO (v/v) or 8% glycerol (v/v) and 120 MPa pressure | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amini, M.; Benson, J.D. Technologies for Vitrification Based Cryopreservation. Bioengineering 2023, 10, 508. https://doi.org/10.3390/bioengineering10050508
Amini M, Benson JD. Technologies for Vitrification Based Cryopreservation. Bioengineering. 2023; 10(5):508. https://doi.org/10.3390/bioengineering10050508
Chicago/Turabian StyleAmini, Mohammad, and James D. Benson. 2023. "Technologies for Vitrification Based Cryopreservation" Bioengineering 10, no. 5: 508. https://doi.org/10.3390/bioengineering10050508
APA StyleAmini, M., & Benson, J. D. (2023). Technologies for Vitrification Based Cryopreservation. Bioengineering, 10(5), 508. https://doi.org/10.3390/bioengineering10050508