Using AI to Detect Pain through Facial Expressions: A Review
Abstract
:1. Introduction
Research Question and Objectives
- Summarize the current state of research in this field.
- Identify and discuss the potential implications and challenges of deploying this technology in the healthcare system.
- Determine research gaps and propose areas for future work.
2. Materials and Methods
3. Objective Pain Measurement and AI
Models Using AI/ML for Pain Detection through Facial Expressions
4. Current Evidence of AI-Based Pain Detection through Facial Expressions
5. Discussion
5.1. The Ground Truth for Pain Assessment
5.2. Is PSPI Suitable for Estimating Pain?
5.3. Performance of AI for Pain Detection through Facial Expressions
5.4. AI/ML Characteristics and Differences
5.5. Combining Facial Expressions with Other Physiological Data as Input
5.6. Machine Learning vs. Human Observers for Pain Estimation
5.7. Potential Applications
5.8. Confounding Effect
5.9. Ethical Concerns
6. Challenges and Limitations
Limitations of This Review
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghazisaeidi, S.; Muley, M.M.; Salter, M.W. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Witte, W. Pain and anesthesiology: Aspects of the development of modern pain therapy in the twentieth century. Der Anaesthesist 2011, 60, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Melzack, R. Measurement of pain. Surg. Clin. N. Am. 1999, 79, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Katz, J. Pain assessment in adult patients. In Wall and Melzack’s Textbook of Pain; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bulloch, B.; Garcia-Filion, P.; Notricia, D.; Bryson, M.; McConahay, T. Reliability of the color analog scale: Repeatability of scores in traumatic and nontraumatic injuries. Acad. Emerg. Med. 2009, 16, 465–469. [Google Scholar] [CrossRef]
- Bahreini, M.; Jalili, M.; Moradi-Lakeh, M. A comparison of three self-report pain scales in adults with acute pain. J. Emerg. Med. 2015, 48, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu, O.; Topacoglu, H.; Dikme, O.; Dikme, O. A systematic review of the pain scales in adults: Which to use? Am. J. Emerg. Med. 2018, 36, 707–714. [Google Scholar] [CrossRef]
- Benzon, H.; Raja, S.N.; Fishman, S.E.; Liu, S.S.; Cohen, S.P. Essentials of Pain Medicine E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Severgnini, P.; Pelosi, P.; Contino, E.; Serafinelli, E.; Novario, R.; Chiaranda, M. Accuracy of Critical Care Pain Observation Tool and Behavioral Pain Scale to assess pain in critically ill conscious and unconscious patients: Prospective, observational study. J. Intensive Care 2016, 4, 68. [Google Scholar] [CrossRef]
- Payen, J.F.; Bru, O.; Bosson, J.L.; Lagrasta, A.; Novel, E.; Deschaux, I.; Lavagne, P.; Jacquot, C. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit. Care Med. 2001, 29, 2258–2263. [Google Scholar] [CrossRef]
- Ahn, Y.; Kang, H.; Shin, E. Pain assessment using CRIES, FLACC and PIPP in high-risk infants. J. Korean Acad. Nurs. 2005, 35, 1401–1409. [Google Scholar] [CrossRef]
- Vink, P.; Lucas, C.; Maaskant, J.M.; van Erp, W.S.; Lindeboom, R.; Vermeulen, H. Clinimetric properties of the Nociception Coma Scale (-Revised): A systematic review. Eur. J. Pain 2017, 21, 1463–1474. [Google Scholar] [CrossRef]
- Robinson, M.E.; Wise, E.A. Gender bias in the observation of experimental pain. Pain 2003, 104, 259–264. [Google Scholar] [CrossRef]
- Contreras-Huerta, L.S.; Baker, K.S.; Reynolds, K.J.; Batalha, L.; Cunnington, R. Racial Bias in Neural Empathic Responses to Pain. PLoS ONE 2013, 8, e84001. [Google Scholar] [CrossRef]
- Khatibi, A.; Mazidi, M. Observers’ impression of the person in pain influences their pain estimation and tendency to help. Eur. J. Pain 2019, 23, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.D.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef]
- Saccò, M.; Meschi, M.; Regolisti, G.; Detrenis, S.; Bianchi, L.; Bertorelli, M.; Pioli, S.; Magnano, A.; Spagnoli, F.; Giuri, P.G.; et al. The Relationship Between Blood Pressure and Pain. J. Clin. Hypertens. 2013, 15, 600–605. [Google Scholar] [CrossRef]
- Jha, R.K.; Amatya, M.S.; Nepal, O.; Bade, M.M.; Jha, M.M.K. Effect of cold stimulation induced pain on galvanic skin response in medical undergraduates of Kathmandu University School of medical sciences (KUSMS). Int. J. Sci. Healthc. Res. 2017, 2, 55–58. [Google Scholar]
- López de Audícana-Jimenez de Aberasturi, Y.; Vallejo-De la Cueva, A.; Aretxabala-Cortajarena, N.; Quintano-Rodero, A.; Rodriguez-Nuñez, C.; Pelegrin-Gaspar, P.M.; Gil-Garcia, Z.I.; Margüello-Fernandez, A.A.; Aparicio-Cilla, L.; Parraza-Diez, N. Pupillary dilation reflex and behavioural pain scale: Study of diagnostic test. Intensive Crit. Care Nurs. 2023, 74, 103332. [Google Scholar] [CrossRef]
- Cowen, R.; Stasiowska, M.K.; Laycock, H.; Bantel, C. Assessing pain objectively: The use of physiological markers. Anaesthesia 2015, 70, 828–847. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, W.E. Behavioral Methods for Chronic Pain and Illness; Mosby: Maryland Heights, MO, USA, 1976. [Google Scholar]
- Keefe, F.J.; Pryor, R.W. Assessment of Pain Behaviors. In Encyclopedia of Pain; Schmidt, R.F., Willis, W.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 136–138. [Google Scholar]
- LeResche, L.; Dworkin, S.F. Facial expressions of pain and emotions in chronic TMD patients. Pain 1988, 35, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Friesen, W.V. Facial Action Coding System. Environ. Psychol. Nonverbal Behav. 1978. Available online: https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft27734-000 (accessed on 26 March 2023).
- Prkachin, K.M. The consistency of facial expressions of pain: A comparison across modalities. Pain 1992, 51, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Prkachin, K.M.; Solomon, P.E. The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain. Pain 2008, 139, 267–274. [Google Scholar] [CrossRef]
- Coan, J.A.; Allen, J.J. Handbook of Emotion Elicitation and Assessment; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Craig, K.; Prkachin, K.; Grunau, R.; Turk, D.; Melzack, R. The facial expression of pain. In Handbook of Pain Assessment; The Guilford Press: New York, NY, USA, 2001. [Google Scholar]
- Lucey, P.; Cohn, J.; Lucey, S.; Matthews, I.; Sridharan, S.; Prkachin, K.M. Automatically Detecting Pain Using Facial Actions. In Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, The Netherlands, 10–12 September 2009; pp. 1–8. [Google Scholar]
- Feighelstein, M.; Shimshoni, I.; Finka, L.R.; Luna, S.P.L.; Mills, D.S.; Zamansky, A. Automated recognition of pain in cats. Sci. Rep. 2022, 12, 9575. [Google Scholar] [CrossRef]
- Lucey, P.; Cohn, J.F.; Matthews, I.; Lucey, S.; Sridharan, S.; Howlett, J.; Prkachin, K.M. Automatically detecting pain in video through facial action units. IEEE Trans. Syst. Man Cybern. B Cybern. 2011, 41, 664–674. [Google Scholar] [CrossRef]
- Fontaine, D.; Vielzeuf, V.; Genestier, P.; Limeux, P.; Santucci-Sivilotto, S.; Mory, E.; Darmon, N.; Lanteri-Minet, M.; Mokhtar, M.; Laine, M.; et al. Artificial intelligence to evaluate postoperative pain based on facial expression recognition. Eur. J. Pain 2022, 26, 1282–1291. [Google Scholar] [CrossRef]
- Bargshady, G.; Zhou, X.; Deo, R.C.; Soar, J.; Whittaker, F.; Wang, H. Ensemble neural network approach detecting pain intensity from facial expressions. Artif. Intell. Med. 2020, 109, 101954. [Google Scholar] [CrossRef]
- Bartlett, M.S.; Littlewort, G.C.; Frank, M.G.; Lee, K. Automatic decoding of facial movements reveals deceptive pain expressions. Curr. Biol. 2014, 24, 738–743. [Google Scholar] [CrossRef]
- Othman, E.; Werner, P.; Saxen, F.; Al-Hamadi, A.; Gruss, S.; Walter, S. Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database. Sensors 2021, 21, 3273. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.; Cucurull, G.; Gonzalez, J.; Gonfaus, J.M.; Nasrollahi, K.; Moeslund, T.B.; Roca, F.X. Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. IEEE Trans. Cybern. 2022, 52, 3314–3324. [Google Scholar] [CrossRef] [PubMed]
- Rathee, N.; Ganotra, D. A novel approach for pain intensity detection based on facial feature deformations. J. Vis. Commun. Image Represent. 2015, 33, 247–254. [Google Scholar] [CrossRef]
- Bargshady, G.; Zhou, X.J.; Deo, R.C.; Soar, J.; Whittaker, F.; Wang, H. Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert. Syst. Appl. 2020, 149, 10. [Google Scholar] [CrossRef]
- Littlewort, G.C.; Bartlett, M.S.; Lee, K. Automatic coding of facial expressions displayed during posed and genuine pain. Image Vis. Comput. 2009, 27, 1797–1803. [Google Scholar] [CrossRef]
- Barua, P.D.; Baygin, N.; Dogan, S.; Baygin, M.; Arunkumar, N.; Fujita, H.; Tuncer, T.; Tan, R.S.; Palmer, E.; Azizan, M.M.B.; et al. Automated detection of pain levels using deep feature extraction from shutter blinds-based dynamic-sized horizontal patches with facial images. Sci. Rep. 2022, 12, 17297. [Google Scholar] [CrossRef]
- Bargshady, G.; Zhou, X.; Deo, R.C.; Soar, J.; Whittaker, F.; Wang, H. The modeling of human facial pain intensity based on Temporal Convolutional Networks trained with video frames in HSV color space. Appl. Soft Comput. J. 2020, 97, 106805. [Google Scholar] [CrossRef]
- Rathee, N.; Ganotra, D. Multiview Distance Metric Learning on facial feature descriptors for automatic pain intensity detection. Comput. Vis. Image Underst. 2016, 147, 77–86. [Google Scholar] [CrossRef]
- Casti, P.; Mencattini, A.; Filippi, J.; D’Orazio, M.; Comes, M.C.; Di Giuseppe, D.; Martinelli, E. Metrological Characterization of a Pain Detection System Based on Transfer Entropy of Facial Landmarks. IEEE Trans. Instrum. Meas. 2021, 70, 8. [Google Scholar] [CrossRef]
- Tavakolian, M.; Lopez, M.B.; Liu, L. Self-supervised pain intensity estimation from facial videos via statistical spatiotemporal distillation. Pattern Recogn. Lett. 2020, 140, 26–33. [Google Scholar] [CrossRef]
- Sikka, K.; Ahmed, A.A.; Diaz, D.; Goodwin, M.S.; Craig, K.D.; Bartlett, M.S.; Huang, J.S. Automated Assessment of Children’s Postoperative Pain Using Computer Vision. Pediatrics 2015, 136, E124–E131. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Lopez-Martinez, D.; Walter, S.; Al-Hamadi, A.; Gruss, S.; Picard, R.W. Automatic Recognition Methods Supporting Pain Assessment: A Survey. IEEE Trans. Affect. Comput. 2022, 13, 530–552. [Google Scholar] [CrossRef]
- Craig, K.D. The social communication model of pain. Can. Psychol. Psychol. Can. 2009, 50, 22. [Google Scholar] [CrossRef]
- Herr, K.; Coyne, P.J.; McCaffery, M.; Manworren, R.; Merkel, S. Pain assessment in the patient unable to self-report: Position statement with clinical practice recommendations. Pain Manag. Nurs. 2011, 12, 230–250. [Google Scholar] [CrossRef]
- Gregory, J. Use of pain scales and observational pain assessment tools in hospital settings. Nurs. Stand. 2019, 34, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Lukas, A.; Barber, J.B.; Johnson, P.; Gibson, S.J. Observer-rated pain assessment instruments improve both the detection of pain and the evaluation of pain intensity in people with dementia. Eur. J. Pain 2013, 17, 1558–1568. [Google Scholar] [CrossRef]
- Walter, S.; Gruss, S.; Ehleiter, H.; Junwen, T.; Traue, H.C.; Werner, P.; Al-Hamadi, A.; Crawcour, S.; Andrade, A.O.; da Silva, G.M. The biovid heat pain database data for the advancement and systematic validation of an automated pain recognition system. In Proceedings of the 2013 IEEE International Conference on Cybernetics (CYBCO), Lausanne, Switzerland, 13–15 June 2013; pp. 128–131. [Google Scholar]
- Kunz, M.; Meixner, D.; Lautenbacher, S. Facial muscle movements encoding pain—A systematic review. Pain 2019, 160, 535–549. [Google Scholar] [CrossRef]
- Prkachin, K.M.; Craig, K.D. Expressing pain: The communication and interpretation of facial pain signals. J. Nonverbal Behav. 1995, 19, 191–205. [Google Scholar] [CrossRef]
- Kunz, M.; Mylius, V.; Schepelmann, K.; Lautenbacher, S. On the relationship between self-report and facial expression of pain. J. Pain 2004, 5, 368–376. [Google Scholar] [CrossRef]
- Hadjistavropoulos, T.; LaChapelle, D.L.; MacLeod, F.K.; Snider, B.; Craig, K.D. Measuring movement-exacerbated pain in cognitively impaired frail elders. Clin. J. Pain 2000, 16, 54–63. [Google Scholar] [CrossRef]
- Prkachin, K.M.; Schultz, I.; Berkowitz, J.; Hughes, E.; Hunt, D. Assessing pain behaviour of low-back pain patients in real time: Concurrent validity and examiner sensitivity. Behav. Res. Ther. 2002, 40, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Al-Hamadi, A.; Limbrecht-Ecklundt, K.; Walter, S.; Gruss, S.; Traue, H. Supplemental Material (Automatic Pain Assessment with Facial Activity Descriptors). IEEE Trans. Affect. Comput. 2016, 8, 99. [Google Scholar]
- Badi Mame, A.; Tapamo, J.-R. A Comparative Study of Local Descriptors and Classifiers for Facial Expression Recognition. Appl. Sci. 2022, 12, 12156. [Google Scholar] [CrossRef]
- Susam, B.; Riek, N.; Akcakaya, M.; Xu, X.; de Sa, V.; Nezamfar, H.; Diaz, D.; Craig, K.; Goodwin, M.; Huang, J. Automated Pain Assessment in Children Using Electrodermal Activity and Video Data Fusion via Machine Learning. IEEE Trans. Biomed. Eng. 2022, 69, 422–431. [Google Scholar] [CrossRef]
- Kächele, M.; Thiam, P.; Amirian, M.; Werner, P.; Walter, S.; Schwenker, F.; Palm, G. Multimodal data fusion for person-independent, continuous estimation of pain intensity. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 275–285. [Google Scholar]
- Kächele, M.; Werner, P.; Al-Hamadi, A.; Palm, G.; Walter, S.; Schwenker, F. Bio-Visual Fusion for Person-Independent Recognition of Pain Intensity; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 220–230. [Google Scholar]
- Xu, X.; Susam, B.T.; Nezamfar, H.; Diaz, D.; Craig, K.D.; Goodwin, M.S.; Akcakaya, M.; Huang, J.S.; Virginia, R.S. Towards Automated Pain Detection in Children using Facial and Electrodermal Activity. In Proceedings of the International Workshop on Artificial Intelligence in Health, Stockholm, Sweden, 13–14 July 2018; Volume 2142, pp. 208–211. [Google Scholar]
- Liu, D.; Peng, F.; Shea, A.; Ognjen; Rudovic, O.; Picard, R. DeepFaceLIFT: Interpretable Personalized Models for Automatic Estimation of Self-Reported Pain. In Proceedings of the IJCAI 2017 Workshop on Artificial Intelligence in Affective Computing, Melbourne, Australia, 19–25 August 2017. [Google Scholar]
- Craig, K.D. Social communication model of pain. Pain 2015, 156, 1198–1199. [Google Scholar] [CrossRef]
- Kaseweter, K.A.; Drwecki, B.B.; Prkachin, K.M. Racial Differences in Pain Treatment and Empathy in a Canadian Sample. Pain Res. Manag. 2012, 17, 803474. [Google Scholar] [CrossRef]
- Al Darwish, Z.Q.; Hamdi, R.; Fallatah, S. Evaluation of Pain Assessment Tools in Patients Receiving Mechanical Ventilation. AACN Adv. Crit. Care 2016, 27, 162–172. [Google Scholar] [CrossRef]
- Rahu, M.A.; Grap, M.J.; Cohn, J.F.; Munro, C.L.; Lyon, D.E.; Sessler, C.N. Facial Expression as an Indicator of Pain in Critically Ill Intubated Adults during Endotracheal Suctioning. Am. J. Crit. Care 2013, 22, 412–422. [Google Scholar] [CrossRef]
- Wu, C.L.; Liu, S.F.; Yu, T.L.; Shih, S.J.; Chang, C.H.; Yang Mao, S.F.; Li, Y.S.; Chen, H.J.; Chen, C.C.; Chao, W.C. Deep Learning-Based Pain Classifier Based on the Facial Expression in Critically Ill Patients. Front. Med. 2022, 9, 851690. [Google Scholar] [CrossRef]
- Jiménez-Moreno, C.; Aristizábal-Nieto, J.K.; Giraldo-Salazar, O.L. Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks. Vis. Electrón. 2021, 15, 7–16. [Google Scholar]
- Baratta, J.L.; Schwenk, E.S.; Viscusi, E.R. Clinical consequences of inadequate pain relief: Barriers to optimal pain management. Plast. Reconstr. Surg. 2014, 134, 15s–21s. [Google Scholar] [CrossRef] [PubMed]
- Birnie, K.A.; Chambers, C.T.; Fernandez, C.V.; Forgeron, P.A.; Latimer, M.A.; McGrath, P.J.; Cummings, E.A.; Finley, G.A. Hospitalized children continue to report undertreated and preventable pain. Pain Res. Manag. 2014, 19, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Park, J.; Kim, J. Agreement of Postoperative Pain Assessment by Parents and Clinicians in Children Undergoing Orthopedic Surgery. J. Trauma Nurs. 2020, 27, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Schmand, B.; Lindeboom, J.; Schagen, S.; Heijt, R.; Koene, T.; Hamburger, H.L. Cognitive complaints in patients after whiplash injury: The impact of malingering. J. Neurol. Neurosurg. Psychiatry 1998, 64, 339. [Google Scholar] [CrossRef]
- Greve, K.W.; Ord, J.S.; Bianchini, K.J.; Curtis, K.L. Prevalence of malingering in patients with chronic pain referred for psychologic evaluation in a medico-legal context. Arch. Phys. Med. Rehabil. 2009, 90, 1117–1126. [Google Scholar] [CrossRef]
- Mittenberg, W.; Patton, C.; Canyock, E.M.; Condit, D.C. Base Rates of Malingering and Symptom Exeggeration. J. Clin. Exp. Neuropsychol. 2002, 24, 1094–1102. [Google Scholar] [CrossRef]
- Simon, D.; Craig, K.D.; Gosselin, F.; Belin, P.; Rainville, P. Recognition and discrimination of prototypical dynamic expressions of pain and emotions. Pain 2008, 135, 55–64. [Google Scholar] [CrossRef]
- Williams, A. Facial expression of pain: An evolutionary account. Behav. Brain Sci. 2002, 25, 439–455, discussion 455. [Google Scholar] [CrossRef]
- Dirupo, G.; Garlasco, P.; Chappuis, C.; Sharvit, G.; Corradi-Dell’Acqua, C. State-Specific and Supraordinal Components of Facial Response to Pain. IEEE Trans. Affect. Comput. 2022, 13, 793–804. [Google Scholar] [CrossRef]
- Prkachin, K.M.; Hammal, Z. Computer mediated automatic detection of pain-related behavior: Prospect, progress, perils. Front. Pain Res. 2021, 2, 788606. [Google Scholar] [CrossRef]
- Price, W.N., II; Gerke, S.; Cohen, I.G. Potential Liability for Physicians Using Artificial Intelligence. JAMA 2019, 322, 1765–1766. [Google Scholar] [CrossRef] [PubMed]
- Balthazar, P.; Harri, P.; Prater, A.; Safdar, N.M. Protecting Your Patients’ Interests in the Era of Big Data, Artificial Intelligence, and Predictive Analytics. J. Am. Coll. Radiol. 2018, 15, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martin, N. What Are Important Ethical Implications of Using Facial Recognition Technology in Health Care? AMA J. Ethics 2019, 21, E180–E187. [Google Scholar] [CrossRef] [PubMed]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L., 3rd. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 2009, 10, 447–485. [Google Scholar] [CrossRef]
- Wandner, L.D.; Scipio, C.D.; Hirsh, A.T.; Torres, C.A.; Robinson, M.E. The perception of pain in others: How gender, race, and age influence pain expectations. J. Pain 2012, 13, 220–227. [Google Scholar] [CrossRef]
- Grouper, H.; Eisenberg, E.; Pud, D. More Insight on the Role of Personality Traits and Sensitivity to Experimental Pain. J. Pain Res. 2021, 14, 1837–1844. [Google Scholar] [CrossRef]
- Littlewort, G.; Frank, M.; Lainscsek, C.; Fasel, I.; Movellan, J. Automatic Recognition of Facial Actions in Spontaneous Expressions. J. Multimed. 2006, 1, 22–35. [Google Scholar] [CrossRef]
- Rudovic, O.; Pavlovic, V.; Pantic, M. Context-Sensitive Dynamic Ordinal Regression for Intensity Estimation of Facial Action Units. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 944–958. [Google Scholar] [CrossRef]
- Kunz, M.; Seuss, D.; Hassan, T.; Garbas, J.U.; Siebers, M.; Schmid, U.; Schöberl, M.; Lautenbacher, S. Problems of video-based pain detection in patients with dementia: A road map to an interdisciplinary solution. BMC Geriatr. 2017, 17, 33. [Google Scholar] [CrossRef]
- Taati, B.; Zhao, S.; Ashraf, A.B.; Asgarian, A.; Browne, M.E.; Prkachin, K.M.; Mihailidis, A.; Hadjistavropoulos, T. Algorithmic Bias in Clinical Populations—Evaluating and Improving Facial Analysis Technology in Older Adults with Dementia. IEEE Access 2019, 7, 25527–25534. [Google Scholar] [CrossRef]
- Priebe, J.A.; Kunz, M.; Morcinek, C.; Rieckmann, P.; Lautenbacher, S. Does Parkinson’s disease lead to alterations in the facial expression of pain? J. Neurol. Sci. 2015, 359, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Maza, A.; Moliner, B.; Ferri, J.; Llorens, R. Visual Behavior, Pupil Dilation, and Ability to Identify Emotions from Facial Expressions After Stroke. Front. Neurol. 2020, 10, 1415. [Google Scholar] [CrossRef] [PubMed]
- Delor, B.; D’Hondt, F.; Philippot, P. The Influence of Facial Asymmetry on Genuineness Judgment. Front. Psychol. 2021, 12, 727446. [Google Scholar] [CrossRef] [PubMed]
- Prkachin, K.; Hammal, Z. Automated Assessment of Pain: Prospects, Progress, and a Path Forward. In Proceedings of the 2021 International Conference on Multimodal Interaction, Montreal, QC, Canada, 18–22 October 2021; pp. 54–57. [Google Scholar]
- Sedgwick, P.; Greenwood, N. Understanding the Hawthorne effect. BMJ 2015, 351, h4672. [Google Scholar] [CrossRef]
- London, A.J. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings Cent. Rep. 2019, 49, 15–21. [Google Scholar] [CrossRef]
Author and Date | Population | Pain Setting | Ground Truth | ML Classifiers | Outcomes | Performance |
---|---|---|---|---|---|---|
Fontaine et al. (2022) [36] | Adult patients from a single university hospital | Postoperative pain | NRS | CNN | Pain intensity estimation | Estimation of pain intensity
Detection of pain (NRS ≥ 4/10)
Detection of severe pain (NRS ≥ 7/10)
|
Bargshady et al. (2020) [37] | UNBC-McMaster database MIntPAIN database | UNBC-McMaster database: self-identified shoulder pain MIntPAIN database: electrical-induced pain | UNBC-McMaster database: PSPI MIntPAIN database: stimuli-based pain levels (0–4) | CNN-RNN | Pain intensity estimation
| UNBC-McMaster
MIntPAIN
|
Bartlett et al. (2014) [38] | Healthy subjects | Cold pressor-induced pain | Pain stimuli-dependent assessments | SVM | Detection of genuine vs. faked pain |
|
Othman et al. (2021) [39] | X-ITE Pain Database | Heat-induced and electrical-induced pain | NRS categorized into 4 pain intensities (no pain, low, medium, and severe) | Two-CNN with sample weighting | Pain intensity detection for electrical and thermal stimuli using two groupings of pain levels: none/low/severe and none/moderate/severe | Mean accuracy = 51.7% |
Rodriguez et al. (2022) [40] | UNBC-McMaster database | Self-identified shoulder pain | PSPI | CNN-LSTM | Pain detection Estimation of pain intensity, categorized into 6 levels: PSPI 0, 1, 2, 3, 4–5, and ≥6 | Pain detection
Pain intensity estimation
|
Rathee et al. (2015) [41] | UNBC-McMaster database | Self-identified shoulder pain | PSPI | DML combined with SVM | Detection of pain intensity by PSPI score (16 levels) | Accuracy = 96% |
Lucey et al. (2011) [35] | UNBC-McMaster database | Self-identified shoulder pain | PSPI | SVM | Pain detection |
|
Bargshady et al. (2020) [42] | UNBC-McMaster database | Self-identified shoulder pain | PSPI | Hybrid CNN-bidirectional LSTM | Estimation of pain intensity, categorized into four levels: PSPI 0, 1, 2–3, and ≥4 |
|
Littlewort et al. (2009) [43] | University students | Cold pressor-induced pain | Pain stimuli-dependent assessments | Gaussian SVM | Detection of genuine vs. faked pain | Accuracy = 88% |
Barua et al. (2022) [44] | UNBC-McMaster database | Self-identified shoulder pain | PSPI | K-Nearest Neighbor | Estimation of pain intensity, categorized into four levels: PSPI 0, 1, 2–3, and ≥4 |
|
Bargshady et al. (2020) [45] | UNBC-McMaster database MIntPAIN database | UNBC-McMaster database: self-identified shoulder pain MIntPAIN database: electrical-induced pain | UNBC-McMaster database: PSPI MIntPAIN database: stimuli-based pain levels (0–4) | Temporal Convolutional Network | Estimation of pain intensity
| UNBC-McMaster
MIntPAIN
|
Rathee et al. (2016) [46] | UNBC-McMaster database | Self-identified shoulder pain | PSPI | SVM | Pain detection Estimation of pain intensity, categorized into four levels: PSPI 0, 1, 2, and ≥3 | Pain detection
Pain intensity estimation
|
Casti et al. (2021) [47] | UNBC-McMaster database | Self-identified shoulder pain | VAS | Linear discriminant analysis | Pain detection (VAS≥0) Pain intensity (VAS) estimation | Pain detection
Pain intensity estimation
|
Tavakolian et al. (2020) [48] | UNBC-McMaster database BioVid database (part A) | UNBC-McMaster database: self-identified shoulder pain BioVid database: heat-induced pain | UNBC-McMaster database: PSPI BioVid database: stimuli-based pain (5 levels) | CNNs | Estimation of pain intensity UNBC-McMaster: 16 pain levels BioVid: 5 pain levels | Training with BioVid and testing on UNBC-McMaster
Training with UNBC-McMaster and testing on BioVid
|
Sikka et al. (2015) [49] | Pediatric patients from a tertiary care center | Postoperative pain | NRS | Logistic regression and linear regression models | Detection of clinically significant pain (NRS ≥ 4) Pain intensity (NRS) estimation | Clinically significant pain detection
Pain intensity estimation
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sario, G.D.; Haider, C.R.; Maita, K.C.; Torres-Guzman, R.A.; Emam, O.S.; Avila, F.R.; Garcia, J.P.; Borna, S.; McLeod, C.J.; Bruce, C.J.; et al. Using AI to Detect Pain through Facial Expressions: A Review. Bioengineering 2023, 10, 548. https://doi.org/10.3390/bioengineering10050548
De Sario GD, Haider CR, Maita KC, Torres-Guzman RA, Emam OS, Avila FR, Garcia JP, Borna S, McLeod CJ, Bruce CJ, et al. Using AI to Detect Pain through Facial Expressions: A Review. Bioengineering. 2023; 10(5):548. https://doi.org/10.3390/bioengineering10050548
Chicago/Turabian StyleDe Sario, Gioacchino D., Clifton R. Haider, Karla C. Maita, Ricardo A. Torres-Guzman, Omar S. Emam, Francisco R. Avila, John P. Garcia, Sahar Borna, Christopher J. McLeod, Charles J. Bruce, and et al. 2023. "Using AI to Detect Pain through Facial Expressions: A Review" Bioengineering 10, no. 5: 548. https://doi.org/10.3390/bioengineering10050548
APA StyleDe Sario, G. D., Haider, C. R., Maita, K. C., Torres-Guzman, R. A., Emam, O. S., Avila, F. R., Garcia, J. P., Borna, S., McLeod, C. J., Bruce, C. J., Carter, R. E., & Forte, A. J. (2023). Using AI to Detect Pain through Facial Expressions: A Review. Bioengineering, 10(5), 548. https://doi.org/10.3390/bioengineering10050548