A New Algorithm for Estimating a Noiseless, Evenly Sampled, Heart Rate Modulating Signal
Abstract
:1. Introduction
1.1. Intrinsic Signal Analysis Problems in the Frequency Demodulation of the ECG Signal
1.2. Competing Methods for the Frequency Demodulation of the ECG Signal
2. Materials and Methods
2.1. Algorithm for the Estimation of the Instantaneous Heart Rate Signal from the ECG
2.2. Practical Implementation of the Algorithm
function pf = zerofind(y) % zerofind function % % This function finds all the positive zero-crossings in the series % of values passed by y which is a row vector with values to explore for % zero-crossings % the function returns a two columns matrix %—first column contains the indexes where zeroes were found, %—second columns contains values of y vector at those indexes % size(pf,1) is the number of zeroes found % pf=[]; tdold=0; iold=1; for i=2:size(y,2) if (y(i-1)<0) && (y(i)>0) td=i-iold; if (td-tdold)>0 pf=[pf; i-1 y(i)]; tdold=td; end end end |
% events cumulative summing (or counting of complete cycles) % vector peaks is the output of the zerofind function % sumecg=[0]; % initialize the cumulative sum count signal j=1; % initialize index on the peaks matrix for i=2:(size(ecg,2)-1) % running over the ecg values if i>peaks(j,1) % present index just passed event position % event found, increment cumulative counter and add sumecg=[sumecg sumecg(size(sumecg,2))+1]; if i<peaks(size(peaks,1),1) % go on if event not found j=j+1; else break; % exit for end else % no event found sumecg=[sumecg sumecg(size(sumecg,2))]; end end |
3. Results I: Testing the Algorithm on More Complex Artificially Generated Heart Rate Variability Signals
4. Results II: Analysis of Real ECG Signals Epochs for the Appreciation of Ultra-Short-Term HRV
function pf = RWaveFind(y,yth,tth) % % RWAVEFIND Find all the peaks in the values passed on y % RWAVEFIND (y, yth, tth) % where each valid peak found must have a value above yth and % must be more distant than tth indexes from last found peak % returns a two columns matrix % first column are indexes where peaks were found % second column are amplitudes of peaks found % pf=[]; % start with an empty output matrix iold=1; % sampling index where last peak found for i=2:(size(y,2)-1) % explore all samples on the input vector if (y(i-1)<y(i)) && (y(i+1)<y(i)) && (y(i)>yth) % test if current sample is a peak td=i-iold; % calculate time delay from last peak found iftd>tth % test if new time delay too short pf=[pf; i y(i)]; % add time delay to output vector iold=i; % keep memory of new peak found yth=0.5*y(i); % threshold adapting to half last end end end |
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carson, J.R. Notes on the theory of modulation. Proc. IRE 1922, 10, 57–64. [Google Scholar] [CrossRef]
- Kuusela, T. Methodological Aspects of Heart Rate Variability Analysis. In Heart Rate Variability (HRV) Signal Analysis. Clinical Applications; Kamath, M.V., Watanabe, M.A., Upton, A.R.M., Eds.; CRCPress: Boca Raton, FL, USA, 2013; pp. 9–42. [Google Scholar]
- Yamada, M.; Ayabe, M. Treatment of Resampling Frequency and Epoch Length for RR interval in Autonomic Nervous System Analysis. In Proceedings of the 2022 IEEE 4th Global Conference on Life Science and technologies (LifeTech), Osaka, Japan, 7–9 March 2022. [Google Scholar]
- Cao, P.; Ye, B.; Yang, L.; Lu, F.; Fang, L.; Cai, G.; Su, Q.; Ning, G.; Pan, Q. Preprocessing Unevenly Sampled RR Interval Signals to Enhance Estimation of Heart Rate Deceleration and Acceleration Capacities in Discriminating Chronic Heart Failure Patients from Healthy Controls. Comput. Math. Methods Med. 2020, 2020, 9763826. [Google Scholar] [CrossRef]
- Choudhary, G.; Singh, S.N. Prediction of heart disease using machine learning algorithms. In Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020; pp. 197–202. [Google Scholar]
- Zhao, L.; Li, J.; Wan, X.; Wei, S.; Liu, C. Determination of Parameters for an Entropy-Based Atrial Fibrillation Detector. Entropy 2021, 23, 1199. [Google Scholar] [CrossRef] [PubMed]
- VanderPlas, J.T. Understanding the Lomb-Scale Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Moody, G.B. Spectral Analysis of Heart Rate Without Resampling. In Proceedings of the Computers in Cardiology Conference, London, UK, 5–8 September 1993. [Google Scholar]
- Li, K.; Rüdiger, H.; Ziemssen, T. Spectral analysis of heart rate variability: Time window matters. Front. Neurol. 2019, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Laguna, P.; Moody, G.B.; Mark, R.G. Power spectral density of unevenly sampled data by least-square analysis: Performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 1998, 45, 698–715. [Google Scholar] [CrossRef]
- Isler, Y.; Narin, A.; Ozer, M.; Perc, M. Multi-stage classification of congestive heart failure based on short-term heart rate variability. Chaos Solitons Fractals 2019, 118, 145–151. [Google Scholar] [CrossRef]
- Vollmer, M. A Robust, Simple and Reliable Measure of Heart Rate Variability using Relative RR Intervals. Comput. Cardiol. 2015, 42, 609–612. [Google Scholar]
- Sodmann, P.; Vollmer, M.; Nath, N.; Kaderali, L. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms. Physiol. Meas. 2018, 39, 104005. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, M.; Kayançiçek, H.; Çekici, Y. Heart rate variability: Highlights from hidden signals. J. Integr. Cardiol. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Clifford, G.D. Quantifying Errors in Spectral Estimates of HRV Due to Beat Replacement and Resampling. IEEE Trans. Biomed. Eng. 2005, 52, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Peltola, M.A. Role of editing of R–R intervals in the analysis of heart rate variability. Front. Physiol. 2012, 3, 148. [Google Scholar] [CrossRef] [PubMed]
- Weippert, M.; Kumar, M.; Kreuzfeld, S.; Arndt, D.; Rieger, A.; Stoll, R. Comparison of three mobile devices for measuring R–R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur. J. Appl. Physiol. 2010, 109, 779–786. [Google Scholar] [CrossRef]
- Singh, D.; Vinod, K.; Saxena, S.C. Sampling frequency of the RR interval time series for spectral analysis of heart rate variability. J. Med. Eng. Technol. 2004, 28, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Can, Y.S.; Gokay, D.; Kılıç, D.R.; Ekiz, D.; Chalabianloo, N.; Ersoy, C. How laboratory experiments can be exploited for monitoring stress in the wild: A bridge between laboratory and daily life. Sensors 2020, 20, 838. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, T.; Kähönen, M.; Jula, A.; Laitinen, T.; Keltikangas-Järvinen, L.; Viikari, J.; Välimäki, I.; Raitakari, O.T. Short-term heart rate variability in healthy young adults: The Cardiovascular Risk in Young Finns Study. Auton. Neurosci. 2009, 145, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, P. What Is a Signal [Lecture Notes]. IEEE Signal Process. Mag. 2018, 35, 175–177. [Google Scholar] [CrossRef]
- Wolaver, D.H. Phase-Locked Loop Circuit Design; Prentice Hall: Hoboken, NJ, USA, 1991; p. 211. [Google Scholar]
- Holoborodko, P. Smooth Noise Robust Differentiators. Available online: http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/ (accessed on 14 December 2022).
- Yadav, A.; Grover, N. A Review of R Peak Detection Techniques of Electrocardiogram (ECG). J. Eng. Technol. 2017, 8, 115–134. [Google Scholar]
- Fierro, G.I.I.; Jorge, R.R.; Mizera-Pietraszko, J.; Martínez-García, E.A. Design and Implementation of a Data Acquisition System for R Peak Detection in Electrocardiograms. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, Funchal, Portugal, 19–21 January 2018; Volume 5, pp. 715–721. [Google Scholar] [CrossRef]
- Sabherwal, P.; Agrawal, M.; Singh, L. Automatic detection of the R peaks in single-lead ECG signal. Circuits Syst. Signal Process. 2017, 36, 4637–4652. [Google Scholar] [CrossRef]
- Rexy, J.; Velmani, P.; Rajakumar, T.C. Heart beat peak detection using signal filtering in ECG data. Int. J. Adv. Technol. Eng. Explor. 2019, 6, 12–24. [Google Scholar] [CrossRef]
- Pstras, L.; Thomaseth, K.; Waniewski, J.; Balzani, I.; Bellavere, F. The Valsalva manoeuvre: Physiology and clinical examples. Acta Physiol. 2016, 217, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Fernhall, B. Advanced Cardiovascular Exercise Physiology; Human Kinetics: Singapore, 2022. [Google Scholar]
- Perry, B.G.; Lucas, S.J. The acute cardiorespiratory and cerebrovascular response to resistance exercise. Sport. Med.-Open 2021, 7, 1–9. [Google Scholar]
- Staderini, E.M.; Mugnaini, S.; Kambampati, H.; Magrini, A.; Gentili, S. Improved Multichannel Electromyograph Using Off-the-Shelf Components for Education and Research. Sensors 2022, 10, 3616. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Seok, H.S.; Shin, H. Is Ultra-Short-Term Heart Rate Variability Valid in Non-static Conditions? Front. Physiol. 2021, 12, 596060. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Meehan, Z.M.; Zerr, C.L. A Critical Review of Ultra-Short-Term Heart Rate Variability Norms Research. Front. Neurosci. 2020, 14, 594880. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staderini, E.M.; Kambampati, H.; Ramakrishnaiah, A.K.; Mugnaini, S.; Magrini, A.; Gentili, S. A New Algorithm for Estimating a Noiseless, Evenly Sampled, Heart Rate Modulating Signal. Bioengineering 2023, 10, 552. https://doi.org/10.3390/bioengineering10050552
Staderini EM, Kambampati H, Ramakrishnaiah AK, Mugnaini S, Magrini A, Gentili S. A New Algorithm for Estimating a Noiseless, Evenly Sampled, Heart Rate Modulating Signal. Bioengineering. 2023; 10(5):552. https://doi.org/10.3390/bioengineering10050552
Chicago/Turabian StyleStaderini, Enrico M., Harish Kambampati, Amith K. Ramakrishnaiah, Stefano Mugnaini, Andrea Magrini, and Sandro Gentili. 2023. "A New Algorithm for Estimating a Noiseless, Evenly Sampled, Heart Rate Modulating Signal" Bioengineering 10, no. 5: 552. https://doi.org/10.3390/bioengineering10050552
APA StyleStaderini, E. M., Kambampati, H., Ramakrishnaiah, A. K., Mugnaini, S., Magrini, A., & Gentili, S. (2023). A New Algorithm for Estimating a Noiseless, Evenly Sampled, Heart Rate Modulating Signal. Bioengineering, 10(5), 552. https://doi.org/10.3390/bioengineering10050552