DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CXRs Acquisition and Preprocessing
2.3. Clinical Data Processing
2.4. Model Details
2.5. Statistical Analysis
3. Results
3.1. Experimental Design
3.2. Performance of DeepCOVID-Fuse
3.3. Comparison of Image-Only with Fusion-Image-Only
3.4. Comparison of Feature-Only with Fusion-Feature-Only
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19). 12 October 2020. Available online: https://covid19.who.int/ (accessed on 1 May 2023).
- Zuckerman, D.M. Emergency Use Authorizations (EUAs) Versus FDA Approval: Implications for COVID-19 and Public Health. Am. J. Public Health 2021, 111, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Sverzellati, N.; Ryerson, C.J.; Milanese, G.; Renzoni, E.A.; Volpi, A.; Spagnolo, P.; Bonella, F.; Comelli, I.; Affanni, P.; Veronesi, L.; et al. Chest Radiography or Computed Tomography for COVID-19 Pneumonia? Comparative Study in a Simulated Triage Setting. Eur. Respir. J. 2021, 58, 2004188. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, R.M.; Sheng, J.; Dutta, S.; Chai, S.; Dravid, A.; Barutcu, S.; Wu, Y.; Cantrell, D.R.; Xiao, N.; Allen, B.D.; et al. DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a Large U.S. Clinical Data Set. Radiology 2021, 299, E167–E176. [Google Scholar] [CrossRef]
- Oh, Y.; Park, S.; Ye, J.C. Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Trans. Med. Imaging 2020, 39, 2688–2700. [Google Scholar] [CrossRef]
- Harmon, S.A.; Sanford, T.H.; Xu, S.; Turkbey, E.B.; Roth, H.; Xu, Z.; Yang, D.; Myronenko, A.; Anderson, V.; Amalou, A.; et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 2020, 11, 4080. [Google Scholar] [CrossRef] [PubMed]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Choi, J.W.; Halsey, K.; Tran, T.M.L.; Hsieh, B.; Wang, D.; Eweje, F.; Wang, R.; Chang, K.; Wu, J.; et al. Prognostication of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: A retrospective study. Lancet Digit. Health 2021, 3, e286–e294. [Google Scholar] [CrossRef]
- Castiglioni, I.; Ippolito, D.; Interlenghi, M.; Monti, C.B.; Salvatore, C.; Schiaffino, S.; Polidori, A.; Gandola, D.; Messa, C.; Sardanelli, F. Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: A first experience from Lombardy, Italy. Eur. Radiol. Exp. 2021, 5, 7. [Google Scholar] [CrossRef]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Hemdan, E.E.D.; Shouman, M.A.; Karar, M.E. COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv 2020. [Google Scholar] [CrossRef]
- Shaheed, K.; Szczuko, P.; Abbas, Q.; Hussain, A.; Albathan, M. Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier. Healthcare 2023, 11, 837. [Google Scholar] [CrossRef]
- DeGrave, A.J.; Janizek, J.D.; Lee, S.-I. AI for radiographic COVID-19 detection selects shortcuts over signal. Nat. Mach. Intell. 2021, 3, 610–619. [Google Scholar] [CrossRef]
- Bayram, F.; Eleyan, A. COVID-19 detection on chest radiographs using feature fusion based deep learning. Signal Image Video Process. 2022, 16, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Juárez, M.A.; Torres-Gómez, A.; Hoyo-Ulloa, I.; León-Montiel, R.D.J.; U’ren, A.B. Identification of high-risk COVID-19 patients using machine learning. PLoS ONE 2021, 16, e0257234. [Google Scholar] [CrossRef]
- Barough, S.S.; Safavi-Naini, S.A.A.; Siavoshi, F.; Tamimi, A.; Ilkhani, S.; Akbari, S.; Ezzati, S.; Hatamabadi, H.; Pourhoseingholi, M.A. Generalizable machine learning approach for COVID-19 mortality risk prediction using on-admission clinical and laboratory features. Sci. Rep. 2023, 13, 2399. [Google Scholar] [CrossRef]
- Aboutalebi, H.; Pavlova, M.; Shafiee, M.J.; Florea, A.; Hryniowski, A.; Wong, A. COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data. arXiv 2022, arXiv:2204.11210. [Google Scholar]
- Daamen, A.R.; Bachali, P.; Grammer, A.C.; Lipsky, P.E. Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features. Int. J. Mol. Sci. 2023, 24, 4905. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland; pp. 234–241. [CrossRef]
- Jaeger, S.; Candemir, S.; Antani, S.; Wáng, Y.X.J.; Lu, P.X.; Thoma, G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 2014, 4, 475–477. [Google Scholar]
- Shiraishi, J.; Katsuragawa, S.; Ikezoe, J.; Matsumoto, T.; Kobayashi, T.; Komatsu, K.-I.; Matsui, M.; Fujita, H.; Kodera, Y.; Doi, K. Development of a Digital Image Database for Chest Radiographs With and Without a Lung Nodule. Am. J. Roentgenol. 2000, 174, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 Jun. 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Sacchetto, D.; Raviolo, M.; Beltrando, C.; Tommasoni, N. COVID-19 Surge Capacity Solutions: Our Experience of Converting a Concert Hall into a Temporary Hospital for Mild and Moderate COVID-19 Patients. Disaster Med. Public Health Prep. 2022, 16, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yao, J.; Chen, A.; Lv, Q.; Zanin, M.; Liu, J.; Wong, S.; Li, Y.; Lu, J.; Liang, H.; et al. Early triage of critically ill COVID-19 patients using deep learning. Nat. Commun. 2020, 11, 3543. [Google Scholar] [CrossRef] [PubMed]
- Shamout, F.E.; Shen, Y.; Wu, N.; Kaku, A.; Park, J.; Makino, T.; Jastrzębski, S.; Witowski, J.; Wang, D.; Zhang, B.; et al. An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. NPJ Digit. Med. 2021, 4, 80. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Toussie, D.; Finkelstein, M.; Cedillo, M.A.; Maron, S.Z.; Manna, S.; Voutsinas, N.; Eber, C.; Jacobi, A.; Bernheim, A.; et al. Combining Initial Radiographs and Clinical Variables Improves Deep Learning Prognostication in Patients with COVID-19 from the Emergency Department. Radiol. Artif. Intell. 2021, 3, e200098. [Google Scholar] [CrossRef] [PubMed]
- Soda, P.; D’amico, N.C.; Tessadori, J.; Valbusa, G.; Guarrasi, V.; Bortolotto, C.; Akbar, M.U.; Sicilia, R.; Cordelli, E.; Fazzini, D.; et al. AIforCOVID: Predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study. Med. Image Anal. 2021, 74, 102216. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.D.; Jha, R.K.; Kumar, R.; Tripathi, P.S.; Talera, Y.; Kumar, M. CoVSeverity-Net: An efficient deep learning model for COVID-19 severity estimation from Chest X-Ray images. Res. Biomed. Eng. 2023, 39, 85–98. [Google Scholar] [CrossRef]
- Mahmud, T.; Alam, J.; Chowdhury, S.; Ali, S.N.; Rahman, M.; Fattah, S.A.; Saquib, M. CovTANet: A Hybrid Tri-Level Attention-Based Network for Lesion Segmentation, Diagnosis, and Severity Prediction of COVID-19 Chest CT Scans. IEEE Trans. Ind. Inform. 2021, 17, 6489–6498. [Google Scholar] [CrossRef]
- Ullah, Z.; Usman, M.; Latif, S.; Gwak, J. Densely attention mechanism based network for COVID-19 detection in chest X-rays. Sci. Rep. 2023, 13, 261. [Google Scholar] [CrossRef] [PubMed]
EfficientNet | ResNet | DenseNet | Ensemble | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Latent feature (X_ray × clinical data) | 64 × 128 | 128 × 128 | 1408 × 128 | 64 × 128 | 128 × 128 | 2048 × 128 | 64 × 128 | 128 × 128 | 1408 × 128 | 64 × 128 |
Accuracy | 0.618 [0.600, 0.637] | 0.622 [0.606, 0.638] | 0.626 [0.590, 0.662] | 0.628 [0.610, 0.645] | 0.630 [0.620, 0.642] | 0.611 [0.589, 0.632] | 0.658 [0.650, 0.667] | 0.638 [0.622, 0.654] | 0.640 [0.632, 0.647] | 0.658 * |
Recall | 0.619 [0.600, 0.639] | 0.622 [0.606, 0.638] | 0.626 [0.590, 0.662] | 0.626 [0.595, 0.656] | 0.633 [0.623, 0.642] | 0.611 [0.589, 0.632] | 0.657 [0.649, 0.666] | 0.638 [0.621, 0.655] | 0.640 [0.632, 0.647] | 0.660 * |
Precision | 0.649 [0.631, 0.666] | 0.648 [0.620, 0.676] | 0.675 [0.648, 0.702] | 0.665 [0.652, 0.678] | 0.675 [0.664, 0.685] | 0.652 [0.619, 0.685] | 0.671 [0.658, 0.684] | 0.641 [0.623, 0.659] | 0.647 [0.635, 0.659] | 0.689 * |
F1 | 0.616 [0.599, 0.633] | 0.619 [0.603, 0.637] | 0.623 [0.583, 0.663] | 0.626 [0.608, 0.645] | 0.627 [0.612, 0.642] | 0.607 [0.586, 0.627], | 0.658 [0.650, 0.666] | 0.638 [0.621, 0.655] | 0.639 [0.632, 0.647] | 0.660 * |
MCC | 0.607 [0.603, 0.611] | 0.614 [0.606, 0.622] | 0.617 [0.609, 0.625] | 0.618 [0.612, 0.624] | 0.620 [0.615, 0.625] | 0.601 [0.594, 0.608] | 0.635 [0.629, 0.641] | 0.624 [0.619, 0.629] | 0.626 [0.620, 0.632] | 0.640 * |
AUC | 0.805 [0.798, 0.812] | 0.794 [0.778, 0.811] | 0.804 [0.780, 0.827] | 0.815 [0.804, 0.826] | 0.815 [0.809, 0.820] | 0.794 [0.782, 0.807] | 0.824 [0.822, 0.826] | 0.814 [0.797, 0.831] | 0.820 [0.805, 0.836] | 0.842 * |
COVID-Level | EfficientNet Image-Only | ResNet Image-Only | Densenet Image-Only | Image-Only Ensemble | EfficientNet Fusion-Image-Only | ResNet Fusion-Image-Only | DenseNet Fusion-Image-Only | Fusion-Image-Only Ensemble |
---|---|---|---|---|---|---|---|---|
Accuracy | 0.582 [0.572, 0.591] | 0.614 [0.604, 0.624] | 0.615 [0.608, 0.622] | 0.621 * | 0.593 [0.581, 0.606] | 0.625 [0.615, 0.634] | 0.623 [0.604, 0.641] | 0.632 * |
Recall | 0.581 [0.572, 0.591] | 0.616 [0.604, 0.624] | 0.616 [0.607, 0.624] | 0.619 * | 0.593 [0.582, 0.606] | 0.625 [0.615, 0.634] | 0.620 [0.608, 0.632] | 0.629 * |
Precision | 0.604 [0.594, 0.614] | 0.664 [0.645, 0.683] | 0.631 [0.627, 0.634] | 0.665 * | 0.657 [0.646, 0.667] | 0.662 [0.643, 0.681] | 0.639 [0.623, 0.647] | 0.664 * |
F1 | 0.576 [0.567, 0.586] | 0.609 [0.595, 0.624] | 0.614 [0.606, 0.621] | 0.620 * | 0.583 [0.567, 0.600] | 0.619 [0.607, 0.631] | 0.627 [0.611, 0.639] | 0.634 * |
MCC | 0.553 [0.540, 0.566] | 0.587 [0.580, 0.594] | 0.602 [0.590, 0.614] | 0.608 | 0.562 [0.553, 0.571] | 0.607 [0.594, 0.620] | 0.613 [0.605, 0.621] | 0.618 |
AUC | 0.769 [0.764, 0.774] | 0.798 [0.788, 0.808] | 0.781 [0.72, 0.792] | 0.807 * | 0.781 [0.768, 0.796] | 0.807 [0.803, 0.811] | 0.797 [0.784, 0.806] | 0.813 * |
COVID-Level | DNN Feature-Only | Fusion Feature-Only | Random Forests | QDA | Linear Ridge |
---|---|---|---|---|---|
Accuracy | 0.440 [0.432, 0.448] | 0.539 [0.525, 0.553] | 0.560 [0.553, 0.567] | 0.526 [0.519, 0.533] | 0.536 [0.527, 0.546] |
Recall | 0.441 [0.430, 0.449] | 0.540 [0.526, 0.555] | 0.563 [0.554, 0.569] | 0.528 [0.517, 0.539] | 0.533 [0.525, 0.541] |
Precision | 0.193 [0.183, 0.214] | 0.567 [0.553, 0.582] | 0.588 [0.517, 0.671] | 0.532 [0.526, 0.538] | 0.544 [0.532, 0.556] |
F1 | 0.269 [0.253, 0.280] | 0.560 [0.542, 0.577] | 0.573 [0.568, 0.581] | 0.479 [0.461, 0.496] | 0.536 [0.527, 0.545] |
MCC | 0.243 [0.230, 0.256] | 0.541 [0.529, 0.553] | 0.562 [0.550, 0.574] | 0.435 [0.421, 0.449] | 0.507 [0.497, 0.517] |
AUC | 0.502 [0.481, 0.522] | 0.733 [0.730, 0.737] | 0.768 [0.759, 0.777] | 0.600 [0.587, 0.613] | 0.625 [0.613, 0.636] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Dravid, A.; Wehbe, R.M.; Katsaggelos, A.K. DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels. Bioengineering 2023, 10, 556. https://doi.org/10.3390/bioengineering10050556
Wu Y, Dravid A, Wehbe RM, Katsaggelos AK. DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels. Bioengineering. 2023; 10(5):556. https://doi.org/10.3390/bioengineering10050556
Chicago/Turabian StyleWu, Yunan, Amil Dravid, Ramsey Michael Wehbe, and Aggelos K. Katsaggelos. 2023. "DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels" Bioengineering 10, no. 5: 556. https://doi.org/10.3390/bioengineering10050556
APA StyleWu, Y., Dravid, A., Wehbe, R. M., & Katsaggelos, A. K. (2023). DeepCOVID-Fuse: A Multi-Modality Deep Learning Model Fusing Chest X-rays and Clinical Variables to Predict COVID-19 Risk Levels. Bioengineering, 10(5), 556. https://doi.org/10.3390/bioengineering10050556