Nanocurcumin Release from Self-Cured Acrylic Resins; Effects on Antimicrobial Action and Flexural Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparations
2.2.2. The Distribution Pattern of the Nanoparticles in the Acrylic Samples
2.2.3. Release Study
2.2.4. Antimicrobial Test
2.2.5. Determining the Cytotoxicity
2.2.6. The Flexural Strength Test
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. The Distribution Pattern of the Nanoparticles in the Acrylic Samples
3.2. Release Study
3.3. Antimicrobial Results
3.4. Cytotoxicity Assay
3.5. Flexural Strength
4. Limitations of the Study
5. Conclusions
6. The Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bollen, A.-M.; Cunha-Cruz, J.; Bakko, D.W.; Huang, G.J.; Hujoel, P.P. The effects of orthodontic therapy on periodontal health: A systematic review of controlled evidence. J. Am. Dent. Assoc. 2008, 139, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Boke, F.; Gazioglu, C.; Akkaya, S.; Akkaya, M. Relationship between orthodontic treatment and gingival health: A retrospective study. Eur. J. Dent. 2014, 8, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.; Tarraf, N.E.; Vasudavan, S.; Orthopedics, D. Direct printed removable appliances: A new approach for the Twin-block appliance. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 103–107. [Google Scholar] [CrossRef]
- Bobenchik, A.M.; Hindler, J.A.; Giltner, C.L.; Saeki, S.; Humphries, R. Performance of Vitek 2 for antimicrobial susceptibility testing of Staphylococcus spp. and Enterococcus spp. J. Clin. Microbiol. 2014, 52, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Pellissari, B.A.; Sabino, G.S.P.; de Souza Lima, R.N.; Motta, R.H.L.; Suzuki, S.S.; Garcez, A.S.; Basting, R.T.; Barbosa, J.A.; Martins Montalli, V. Antimicrobial resistance of bacterial strains in patients undergoing orthodontic treatment with and without fixed appliances. Angle Orthod. 2021, 91, 672–679. [Google Scholar] [CrossRef]
- Esmaeilzadeh, M.; Divband, B.; Ranjkesh, B.; Pournaghi Azar, F.; Yeganeh Sefidan, F.; Kachoei, M.; Karimzadeh, B. Antimicrobial and Mechanical Properties of Orthodontic Acrylic Resin Containing Zinc Oxide and Titanium Dioxide Nanoparticles Supported on 4A Zeolite. Int. J. Dent. 2022, 2022, 8155971. [Google Scholar] [CrossRef]
- Lu, M.; Xuan, S.; Wang, Z.J.F.S.; Wellness, H. Oral microbiota: A new view of body health. Food Sci. Hum. Wellness 2019, 8, 8–15. [Google Scholar] [CrossRef]
- Ajami, S.; Habibagahi, R.; Khashei, R.; Soroorian, M. Evaluation of flexural strength and antibacterial effect of orthodontic acrylic resins containing Galla chinensis extract. Dent. Press J. Orthod. 2021, 25, 43–48. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R.; Shi, B.; Xu, Y.; Huang, H. Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. J. Funct. Biomater. 2022, 13, 251. [Google Scholar] [CrossRef]
- Wible, E.; Agarwal, M.; Altun, S.; Ramir, T.; Viana, G.; Evans, C.; Lukic, H.; Megremis, S.; Atsawasuwan, P. Long-term effects of various cleaning methods on polypropylene/ethylene copolymer retainer material. Angle Orthod. 2019, 89, 432–437. [Google Scholar] [CrossRef]
- Khezri, K.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Sharifi, S.; Shahi, S.; Ahmadian, E.; Eftekhari, A.; Dalir Abdolahinia, E.; Lotfipour, F. Osteogenic differentiation of mesenchymal stem cells via curcumin-containing nanoscaffolds. Stem Cells Int. 2021, 2021, 1520052. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Alipour, M.; Dalir Abdolahinia, E.; Ahmadian, E.; Eftekhari, A.; Forouhandeh, H.; Rahbar Saadat, Y.; Sharifi, S.; Zununi Vahed, S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother. Res. 2022, 36, 1156–1181. [Google Scholar] [CrossRef]
- Nagpal, M.; Sood, S. Role of curcumin in systemic and oral health: An overview. J. Nat. Sci. Biol. Med. 2013, 4, 3. [Google Scholar]
- Morales, P.Q.; Machuca, L.L.; Aguiluz, M.Q.; Melendrez-Castro, M.; Bello-Toledo, H.; González-Rocha, G.; Sánchez-Sanhueza, G.; Rocha, G.; Sánchez-Sanhueza, G. Antibacterial Activity of Zinc Oxide Nanoparticles in Self-Curing Acrylic Resin Against Streptococcus mutans. Int. J. Odontostomat. 2021, 15, 694–701. [Google Scholar] [CrossRef]
- Shang, W.; Zhao, L.J.; Dong, X.L.; Zhao, Z.M.; Li, J.; Zhang, B.B.; Cai, H. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol. Med. Rep. 2016, 14, 3620–3626. [Google Scholar] [CrossRef]
- Taylor, R.; Coulombe, S.; Otanicar, T.; Phelan, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H. Small particles, big impacts: A review of the diverse applications of nanofluids. J. Appl. Phys. 2013, 113, 011301. [Google Scholar] [CrossRef]
- Choukhachizadeh Moghaddam, S.; Negahdari, R.; Sharifi, S.; Maleki Dizaj, S.; Torab, A.; Rezaei, Y. Preparation and Assessment of Physicochemical Possessions, Solubility, and Antimicrobial Properties of Dental Prosthesis Glass Ionomer Cement Containing Curcumin Nanocrystals. J. Nanomater. 2022, 2022, 1229185. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Shokrgozar, H.; Yazdani, J.; Memar, M.Y.; Sharifi, S.; Ghavimi, M.A. Antibacterial Effects of Curcumin Nanocrystals against Porphyromonas gingivalis Isolated from Patients with Implant Failure. Clin. Pract. 2022, 12, 809–817. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; Conti, R.D.; Alves, O.L.; Costa, F.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 2010, 21, 949–959. [Google Scholar] [CrossRef]
- Ghaznavi, D.; Babaloo, A.; Shirmohammadi, A.; Zamani, A.R.N.; Azizi, M.; Rahbarghazi, R.; Ghaznavi, A. Advanced platelet-rich fibrin plus gold nanoparticles enhanced the osteogenic capacity of human mesenchymal stem cells. BMC Res. Notes 2019, 12, 721. [Google Scholar] [CrossRef]
- Abidin, Z.; Ramesh, K.; Taha, R.; Puteh, R.; Arof, A. Studies on the corrosion protection property of acrylic resin mixed with curcumin and dammar. Mater. Sci. Forum 2006, 517, 278–280. [Google Scholar] [CrossRef]
- Abidin, Z.H.Z.; Naziron, N.; Nasir, K.; Rusli, M.; Lee, S.; Kufian, M.; Majid, S.; Vengadaesvaran, B.; Arof, A.K.; Taha, R.J.P.; et al. Influence of curcumin natural dye colorant with PMMA-acrylic polyol blended polymer. Pigment. Resin Technol. 2013, 42, 95–102. [Google Scholar] [CrossRef]
- Sodagar, A.; Akhavan, A.; Arab, S.; Bahador, A.; Pourhajibagher, M.; Soudi, A. Evaluation of the effect of propolis nanoparticles on antimicrobial properties and shear bond strength of orthodontic composite bonded to bovine enamel. Front. Dent. 2019, 16, 96. [Google Scholar] [CrossRef] [PubMed]
- Akkuş, B.; Ozturk, A.N.; Yazman, Ş.; Akdemir, A. Effects of Al2O3 and SiO2 nanoparticles on flexural strength of heat cured acrylic resin. Int. J. Enhanc. Res. Sci. Technol. Eng. ISS 2015, 4, 158–163. [Google Scholar]
- Shillingburg, H.T.; Hobo, S.; Whitsett, L.D.; Jacobi, R.; Brackett, S. Fundamentals of Fixed Prosthodontics; Quintessence Publishing Company: Chicago, IL, USA, 1997. [Google Scholar]
- Kudzin, M.H.; Mrozińska, Z.; Kaczmarek, A.; Lisiak-Kucińska, A. Deposition of copper on poly (lactide) non-woven fabrics by magnetron sputtering—Fabrication of new multi-functional, antimicrobial composite materials. Materials 2020, 13, 3971. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen, T.A.; Dao, P.H.; Nguyen, A.H.; Do, M.T. Effect of rutile titania dioxide nanoparticles on the mechanical property, thermal stability, weathering resistance and antibacterial property of styrene acrylic polyurethane coating. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 045015. [Google Scholar] [CrossRef]
- Sabzi, M.; Mirabedini, S.; Zohuriaan-Mehr, J.; Atai, M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat. 2009, 65, 222–228. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Thai, H.; Mai, D.H.; Tran, H.T.; Vu, M.T. Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Compos. Part B Eng. 2013, 45, 1192–1198. [Google Scholar] [CrossRef]
- Brandão, N.L.; Portela, M.B.; Maia, L.C.; Antônio, A.; Silva, V.L.M.; Silva, E.M.d. Model resin composites incorporating ZnO-NP: Activity against S. mutans and physicochemical properties characterization. J. Appl. Oral Sci. 2018, 26, e20170270. [Google Scholar] [CrossRef]
- Ramani, M.; Ponnusamy, S.; Muthamizhchelvan, C. Preliminary investigations on the antibacterial activity of zinc oxide nanostructures. J. Nanoparticle Res. 2013, 15, 1557. [Google Scholar] [CrossRef]
- Cirano, F.; Pimentel, S.; Casati, M.; Corrêa, M.; Pino, D.; Messora, M.; Silva, P.; Ribeiro, F. Effect of curcumin on bone tissue in the diabetic rat: Repair of peri-implant and critical-sized defects. Int. J. Oral Maxillofac. Surg. 2018, 47, 1495–1503. [Google Scholar] [CrossRef]
- Xu, C.; Ip, M.; Leung, A.; Wang, X.; Yang, Z.; Zhang, B.; Ip, S. Sonodynamic bactericidal activity of curcumin against foodborne bacteria. Hong Kong Med. J. 2018, 24 (Suppl. S6), 43–44. [Google Scholar]
- Hu, P.; Huang, P.; Chen, M.W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch. Oral Biol. 2013, 58, 1343–1348. [Google Scholar] [CrossRef]
- Li, B.; Pan, T.; Lin, H.; Zhou, Y. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries. BMC Microbiol. 2020, 20, 286. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Noroozian, M.; Ahmad Akhoundi, M.S.; Bahador, A. Antimicrobial effects and mechanical properties of poly (methyl methacrylate) as an orthodontic acrylic resin containing Curcumin-Nisin-poly (L-lactic acid) nanoparticle: An in vitro study. BMC Oral Health 2022, 22, 158. [Google Scholar] [CrossRef]
- Khamooshi, P.; Pourhajibagher, M.; Sodagar, A.; Bahador, A.; Ahmadi, B.; Arab, S. Antibacterial properties of an acrylic resin containing curcumin nanoparticles: An in vitro study. J. Dent. Res. 2022, 16, 191. [Google Scholar] [CrossRef]
- Shahabi, M.; Movahedi Fazel, S.; Rangrazi, A.J.B. Incorporation of chitosan nanoparticles into a cold-cure orthodontic acrylic resin: Effects on mechanical properties. Biomimetics 2021, 6, 7. [Google Scholar] [CrossRef]
- Moslehifard, E.; Anaraki, M.R.; Shirkavand, S. Effect of adding TiO2 nanoparticles on the SEM morphology and mechanical properties of conventional heat-cured acrylic resin. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 234. [Google Scholar] [CrossRef]
- Ghaffari, T.; Barzegar, A.; Rad, F.H.; Moslehifard, E. Effect of nanoclay on thermal conductivity and flexural strength of polymethyl methacrylate acrylic resin. J. Dent. (Shiraz Iran) 2016, 17, 121. [Google Scholar]
- Comeau, P.; Panariello, B.; Duarte, S.; Manso, A. Impact of curcumin loading on the physicochemical, mechanical and antimicrobial properties of a methacrylate-based experimental dental resin. Sci. Rep. 2022, 12, 18691. [Google Scholar] [CrossRef]
- Vijay, A.; Prabhu, N.; Balakrishnan, D.; Narayan, A. Comparative Study of the Flexural Strength of High Impact Denture Base Resins Reinforced by Silver Nanoparticles and E-Glass Fibres: An In-Vitro Study. J. Clin. Diagn. Res. 2018, 12, 22–26. [Google Scholar] [CrossRef]
Groups | Formulations |
---|---|
Group 1, 0 percent curcumin nanoparticles (n = 12) | 0 g curcumin nanoparticles, 5 g acrylic resin and 3.5 g monomer |
Group 2, 0.5 percent curcumin nanoparticles (n = 12) | 0.0425 g curcumin nanoparticles, 5 g acrylic resin and 3.5 g monomer |
Group 3, 1 percent curcumin nanoparticles (n = 12) | 0.085 g curcumin nanoparticles, 5 g acrylic resin and 3.5 g monomer |
Group 4, 2.5 percent curcumin nanoparticles (n = 12) | 0.2125 g curcumin nanoparticles, 5 g acrylic resin and 3.5 g monomer |
Group 5, 5 percent curcumin nanoparticles (n = 12) | 0.425 g curcumin nanoparticles, 5 g acrylic resin and 3.5 g monomer |
Samples | Inhibition Zone (mm) |
---|---|
S. mutans | |
0% curcumin NPs (negative control) | 0 |
0.5% curcumin NPs | 3.80 ± 0.08 |
1% curcumin NPs | 9.33 ± 0.62 |
2.5% curcumin NPs | 12.36 ± 0.63 |
5% curcumin NPs | 16.00 ± 0.81 |
Vancomycin (positive control) | 17.2 ± 1.50 |
Samples | Mean Flexural Strength |
---|---|
0% curcumin NPs (negative control) | 60.23 ± 1.35 |
0.5% curcumin NPs | 59.80 ± 1.05 |
1% curcumin NPs | 54.58 ± 1.00 |
2.5% curcumin NPs | 52.36 ± 1.07 |
5% curcumin NPs | 50.03 ± 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleymanijadidi, P.; Moradi, M.; Hamedirad, F.; Ghanavati, Z.; Maleki Dizaj, S.; Salatin, S. Nanocurcumin Release from Self-Cured Acrylic Resins; Effects on Antimicrobial Action and Flexural Strength. Bioengineering 2023, 10, 559. https://doi.org/10.3390/bioengineering10050559
Soleymanijadidi P, Moradi M, Hamedirad F, Ghanavati Z, Maleki Dizaj S, Salatin S. Nanocurcumin Release from Self-Cured Acrylic Resins; Effects on Antimicrobial Action and Flexural Strength. Bioengineering. 2023; 10(5):559. https://doi.org/10.3390/bioengineering10050559
Chicago/Turabian StyleSoleymanijadidi, Parsa, Meysam Moradi, Fahimeh Hamedirad, Zahra Ghanavati, Solmaz Maleki Dizaj, and Sara Salatin. 2023. "Nanocurcumin Release from Self-Cured Acrylic Resins; Effects on Antimicrobial Action and Flexural Strength" Bioengineering 10, no. 5: 559. https://doi.org/10.3390/bioengineering10050559
APA StyleSoleymanijadidi, P., Moradi, M., Hamedirad, F., Ghanavati, Z., Maleki Dizaj, S., & Salatin, S. (2023). Nanocurcumin Release from Self-Cured Acrylic Resins; Effects on Antimicrobial Action and Flexural Strength. Bioengineering, 10(5), 559. https://doi.org/10.3390/bioengineering10050559